These tests were only using "test compile" because it doesn't require
any filecheck directives to be present, so just stop requiring filecheck
directives for "test regalloc" and other filecheck-based test drivers.
Fixes#178.
When an instruction with a fixed output operand defines a globally live
SSA value, we need to check if the fixed register is available in the
`regs.global` set of registers that can be used across EBB boundaries.
If the fixed output register is not available in regs.global, set the
replace_global_defines flag so the output operands are rewritten as
local values.
Fixes#175.
The Intel division instructions have fixed input operands that are
clobbered by fixed output operands, so the value passed as an input will
be clobbered just like a tied operand.
The FixedTied operand constraint is used to indicate a fixed input
operand that has a corresponding output operand with the same fixed
register.
Teach the spiller to teach a FixedTied operand the same as a Tied
operand constraint and make sure that the input value is killed by the
instruction.
Track allocatable registers both locally and globally: Add a second
AllocatableSet which tracks registers allocated to global values without
accounting for register diversions. Since diversions are only local to
an EBB, global values must be assigned un-diverted locations that don't
interfere.
Handle the third "global" interference domain in the constraint solver in
addition to the existing "input" and "output" domains.
Extend the solver error code to indicate when a global define just can't
be allocated because there are not enough available global registers.
Resolve this problem by replacing the instruction's global defines with
local defines that are copied into their global destinations
afterwards.
The register allocator doesn't even try to compile unreachable EBBs, so
any values defined in such blocks won't be assigned registers.
Since the dominator tree already has determined which EBBs are
reachable, we should just eliminate any unreachable blocks instead o
trying to do something with the dead code.
Not that this is not a "dead code elimination" pass which would also
remove individual instructions whose results are not used.
- Create a new kind of stack slot: emergency_slot.
- Add a get_emergency_slot() method which finds a suitable emergency
slot given a list of slots already in use.
- Use emergency spill slots when schedule_moves needs them.
Fixes#165.
The constraint solver's schedule_move() function sometimes need to use
an extra available register when the moves to be scheduled contains
cycles.
The pending moves have associated register classes that come from the
constraint programming. Since the moves have hard-coded to and from
registers, these register classes are only meant to indicate the
register sizes. In particular, we can use the whole top-level register
class when scavenging for a spare register to break a cycle.
When we detect interference between the values that have already been
merged into the candidate virtual register and an EBB argument, we first
try to resolve the conflict by splitting. We also check if the existing
interfering value is fundamentally incompatible with the branch
instruction so it needs to be removed from the virtual register,
restarting the merge operation.
However, this existing interfering value is not necessarily the only
interference, so the split is not guaranteed to resolve the conflict. If
it turns out that splitting didn't resolve the conflict, restart the
merge after removing this second conflicting value.
Some REX-less encodings require an ABCD input because they are looking
at 8-bit registers. This constraint doesn't apply with a REX prefix
where the low 8 bits of all registers are addressable.
It can happen that the currently live registers are blocking a smaller
register class completely, so the only way of solving the allocation
problem is to turn some of the live-through registers into solver
variables.
When the quick_solve attempt fails, try to free up registers in the
critical register class by turning live-through values into solver
variables.
When the return value from a call has been spilled, the reload pass
needs to insert a spill instruction right after the call instruction
which returns its results in registers.
In 32-bit mode, all function arguments are passed on the stack, not in
registers.
This ABI support is not complete or properly tested, but at least it
doesn't try to pass arguments in r8.
Fixes#56.
We now have complete support for value location annotations in the
textual IL format. Values defined by instructions as well as EBB
arguments are covered.
Fixes#147.
The Solver::reassign_in() method would previously not record fixed
register assignments for values that are already in the correct
register. The register would simply be marked as unavailable for the
solver.
This did have the effect of tripping up the sanity checks in
Solver::add_var() when that method was called with such a "reassigned"
value. The function can be called for a value that already has a fixed
assignment, but the sanity checks want to make sure the variable
constraints are compatible with the existing fixed assignment. When no
such assignment could be found, the method panicked.
To fix this, make sure that even identity reassignments are recorded
in the assignments vector. Instead, filter the identity assignments out
before scheduling a move sequence for the assignments.
Also add some debug tracing to the regalloc solver.
A CallConv enum on every function signature makes it possible to
generate calls to functions with different calling conventions within
the same ISA / within a single function.
The calling conventions also serve as a way of customizing Cretonne's
behavior when embedded inside a VM. As an example, the SpiderWASM
calling convention is used to compile WebAssembly functions that run
inside the SpiderMonkey virtual machine.
All function signatures must have a calling convention at the end, so
this changes the textual IL syntax.
Before:
sig1 = signature(i32, f64) -> f64
After
sig1 = (i32, f64) -> f64 native
sig2 = (i32) spiderwasm
When printing functions, the signature goes after the return types:
function %r1() -> i32, f32 spiderwasm {
ebb1:
...
}
In the parser, this calling convention is optional and defaults to
"native". This is mostly to avoid updating all the existing test cases
under filetests/. When printing a function, the calling convention is
always included, including for "native" functions.
We allow ghost instructions to exist if they have no side effects.
Instructions that affect control flow or that have other side effects
must be encoded.
Teach the IL verifier to enforce this. Once any instruction has an
encoding, all instructions with side effects must have an encoding.
The following constraints may need to be resolved during spilling
because the resolution increases register pressure:
- A tied operand whose value is live through the instruction.
- A fixed register constraint for a value used more than once.
- A register use of a spilled value needs to account for the reload
register.
A priory, an EBB argument value only gets an affinity if it is used
directly by a non-ghost instruction. A use by a branch passing arguments
to an EBB doesn't count.
When an EBB argument value does have an affinity, the values passed by
all the predecessors must also have affinities. This can cause EBB
argument values to get affinities recursively.
- Add a second pass to the liveness computation for propagating EBB
argument affinities, possibly recursively.
- Verify EBB argument affinities correctly: A value passed to a branch
must have an affinity only if the corresponding EBB argument value in
the destination has an affinity.
When an EBB argument value is used only as a return value, it still
needs to be given a register affinity. Otherwise it would appear as a
ghost value with no affinity.
Do the same to call arguments.
A function parameter in an incoming_arg stack slot should not be
coalesced into any virtual registers. We don't want to force the whole
virtual register to spill to the incoming_arg slot.
Function arguments that don't fit in registers are passed on the stack.
Create "incoming_arg" stack slots representing the stack arguments, and
assign them to the value arguments during spilling.
When coloring registers for a branch instruction, also make sure that
the values passed as EBB arguments are in the registers expected by the
EBB.
The first time a branch to an EBB is processed, assign the EBB arguments
to the registers where the branch arguments already reside so no
regmoves are needed.
Coalescing means creating virtual registers and transforming the code
into conventional SSA form. This means that every value used as a branch
argument will belong to the same virtual register as the corresponding
EBB argument value.
Conventional SSA form makes it easy to avoid memory-memory copies when
spilling values, and the virtual registers can be used as hints when
picking registers too. This reduces the number of register moves needed
for EBB arguments.
As soon as a value is spilled, also assign it to a spill slot.
For now, create a new spill slot for each spilled value. In the future,
values will be sharing spill slots of they are phi-related.
An instruction may have fixed operand constraints that make it
impossibly to use a single register value to satisfy two at a time.
Detect when the same value is used for multiple fixed register operands
and insert copies during the spilling pass.
Add a spilling pass which lowers register pressure by assigning SSA
values to the stack. Important missing features:
- Resolve conflicts where an instruction uses the same value more than
once in incompatible ways.
- Deal with EBB arguments.
Fix bugs in the reload pass exposed by the first test case:
- Create live ranges for temporary registers.
- Set encodings on created spill and fill instructions.
* Function names should start with %
* Create FunctionName from string
* Implement displaying of FunctionName as %nnnn with fallback to #xxxx
* Run rustfmt and fix FunctionName::with_string in parser
* Implement FunctionName::new as a generic function
* Binary function names should start with #
* Implement NameRepr for function name
* Fix examples in docs to reflect that function names start with %
* Rebase and fix filecheck tests
The live value tracker expects them to be there.
We may eventually delete dead arguments from internal EBBs, but at least
the entry block needs to be able to handle dead function arguments.
The arguments to the entry block arrive in registers determined by the
ABI. This information is stored in the signature.
Use a separate function for coloring entry block arguments using the
signature information. We can't handle stack arguments yet.