Commit Graph

29 Commits

Author SHA1 Message Date
Chris Fallin
2be12a5167 egraph-based midend: draw the rest of the owl (productionized). (#4953)
* egraph-based midend: draw the rest of the owl.

* Rename `egg` submodule of cranelift-codegen to `egraph`.

* Apply some feedback from @jsharp during code walkthrough.

* Remove recursion from find_best_node by doing a single pass.

Rather than recursively computing the lowest-cost node for a given
eclass and memoizing the answer at each eclass node, we can do a single
forward pass; because every eclass node refers only to earlier nodes,
this is sufficient. The behavior may slightly differ from the earlier
behavior because we cannot short-circuit costs to zero once a node is
elaborated; but in practice this should not matter.

* Make elaboration non-recursive.

Use an explicit stack instead (with `ElabStackEntry` entries,
alongside a result stack).

* Make elaboration traversal of the domtree non-recursive/stack-safe.

* Work analysis logic in Cranelift-side egraph glue into a general analysis framework in cranelift-egraph.

* Apply static recursion limit to rule application.

* Fix aarch64 wrt dynamic-vector support -- broken rebase.

* Topo-sort cranelift-egraph before cranelift-codegen in publish script, like the comment instructs me to!

* Fix multi-result call testcase.

* Include `cranelift-egraph` in `PUBLISHED_CRATES`.

* Fix atomic_rmw: not really a load.

* Remove now-unnecessary PartialOrd/Ord derivations.

* Address some code-review comments.

* Review feedback.

* Review feedback.

* No overlap in mid-end rules, because we are defining a multi-constructor.

* rustfmt

* Review feedback.

* Review feedback.

* Review feedback.

* Review feedback.

* Remove redundant `mut`.

* Add comment noting what rules can do.

* Review feedback.

* Clarify comment wording.

* Update `has_memory_fence_semantics`.

* Apply @jameysharp's improved loop-level computation.

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Fix suggestion commit.

* Fix off-by-one in new loop-nest analysis.

* Review feedback.

* Review feedback.

* Review feedback.

* Use `Default`, not `std::default::Default`, as per @fitzgen

Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>

* Apply @fitzgen's comment elaboration to a doc-comment.

Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>

* Add stat for hitting the rewrite-depth limit.

* Some code motion in split prelude to make the diff a little clearer wrt `main`.

* Take @jameysharp's suggested `try_into()` usage for blockparam indices.

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Take @jameysharp's suggestion to avoid double-match on load op.

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Fix suggestion (add import).

* Review feedback.

* Fix stack_load handling.

* Remove redundant can_store case.

* Take @jameysharp's suggested improvement to FuncEGraph::build() logic

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Tweaks to FuncEGraph::build() on top of suggestion.

* Take @jameysharp's suggested clarified condition

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Clean up after suggestion (unused variable).

* Fix loop analysis.

* loop level asserts

* Revert constant-space loop analysis -- edge cases were incorrect, so let's go with the simple thing for now.

* Take @jameysharp's suggestion re: result_tys

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Fix up after suggestion

* Take @jameysharp's suggestion to use fold rather than reduce

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Fixup after suggestion

* Take @jameysharp's suggestion to remove elaborate_eclass_use's return value.

* Clarifying comment in terminator insts.

Co-authored-by: Jamey Sharp <jamey@minilop.net>
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
2022-10-11 18:15:53 -07:00
Chris Fallin
955d4e4ba1 AArch64: port load and store operations to ISLE. (#4785)
This retains `lower_amode` in the handwritten code (@akirilov-arm
reports that there is an upcoming patch to port this), but tweaks it
slightly to take a `Value` rather than an `Inst`.
2022-08-29 17:45:55 -07:00
Benjamin Bouvier
8a9b1a9025 Implement an incremental compilation cache for Cranelift (#4551)
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime. 

After the suggestion of Chris, `Function` has been split into mostly two parts:

- on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`.
- on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on.

Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache:

- most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set.
- user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`.
- some refactorings have been made for function names:
  - `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name.
  - The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with.

The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions.

A basic fuzz target has been introduced that tries to do the bare minimum:

- check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function.
- check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache.
  - This last check is less efficient and less likely to happen, so probably should be rethought a bit.

Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip.

Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement. 

Fixes #4155.
2022-08-12 16:47:43 +00:00
Ulrich Weigand
50fcab2984 s390x: Implement tls_value (#4616)
Implement the tls_value for s390 in the ELF general-dynamic mode.

Notable differences to the x86_64 implementation are:
- We use a __tls_get_offset libcall instead of __tls_get_addr.
- The current thread pointer (stored in a pair of access registers)
  needs to be added to the result of __tls_get_offset.
- __tls_get_offset has a variant ABI that requires the address of
  the GOT (global offset table) is passed in %r12.

This means we need a new libcall entries for __tls_get_offset.
In addition, we also need a way to access _GLOBAL_OFFSET_TABLE_.
The latter is a "magic" symbol with a well-known name defined
by the ABI and recognized by the linker.  This patch introduces
a new ExternalName::KnownSymbol variant to support such names
(originally due to @afonso360).

We also need to emit a relocation on a symbol placed in a
constant pool, as well as an extra relocation on the call
to __tls_get_offset required for TLS linker optimization.

Needed by the cg_clif frontend.
2022-08-10 10:02:07 -07:00
Sam Parker
9c43749dfe [RFC] Dynamic Vector Support (#4200)
Introduce a new concept in the IR that allows a producer to create
dynamic vector types. An IR function can now contain global value(s)
that represent a dynamic scaling factor, for a given fixed-width
vector type. A dynamic type is then created by 'multiplying' the
corresponding global value with a fixed-width type. These new types
can be used just like the existing types and the type system has a
set of hard-coded dynamic types, such as I32X4XN, which the user
defined types map onto. The dynamic types are also used explicitly
to create dynamic stack slots, which have no set size like their
existing counterparts. New IR instructions are added to access these
new stack entities.

Currently, during codegen, the dynamic scaling factor has to be
lowered to a constant so the dynamic slots do eventually have a
compile-time known size, as do spill slots.

The current lowering for aarch64 just targets Neon, using a dynamic
scale of 1.

Copyright (c) 2022, Arm Limited.
2022-07-07 12:54:39 -07:00
Pat Hickey
bca6946a9d Merge pull request #3432 from bjorn3/remove_reloc_constant
ConstantData related cleanups for the removal of the old backend
2021-10-10 09:59:13 -07:00
bjorn3
aa0486eb15 Remove offset fields from ConstantPool 2021-10-10 14:47:53 +02:00
bjorn3
2b89b13c57 Move condcodes from cranelift-codegen-shared to cranelift-codegen 2021-10-10 14:23:35 +02:00
bjorn3
2db3b5b9df Remove code offsets from Function (#3412)
* Remove code offsets from Function

* Remove reloc_jt and fix wasmtime-cranelift
2021-10-07 15:54:00 +02:00
bjorn3
c5c7508289 Remove StackLayoutInfo 2021-10-04 19:39:33 +02:00
Benjamin Bouvier
43a86f14d5 Remove more old backend ISA concepts (#3402)
This also paves the way for unifying TargetIsa and MachBackend, since now they map one to one. In theory the two traits could be merged, which would be nice to limit the number of total concepts. Also they have quite different responsibilities, so it might be fine to keep them separate.

Interestingly, this PR started as removing RegInfo from the TargetIsa trait since the adapter returned a dummy value there. From the fallout, noticed that all Display implementations didn't needed an ISA anymore (since these were only used to render ISA specific registers). Also the whole family of RegInfo / ValueLoc / RegUnit was exclusively used for the old backend, and these could be removed. Notably, some IR instructions needed to be removed, because they were using RegUnit too: this was the oddball of regfill / regmove / regspill / copy_special, which were IR instructions inserted by the old regalloc. Fare thee well!
2021-10-04 10:36:12 +02:00
Benjamin Bouvier
bae4ec6427 Remove ancient register allocation (#3401) 2021-09-30 21:27:23 +02:00
bjorn3
2fc964ea35 Add serde serialization support for the full clif ir 2021-02-18 11:27:02 +01:00
Chris Fallin
c84d6be6f4 Detailed debug-info (DWARF) support in new backends (initially x64).
This PR propagates "value labels" all the way from CLIF to DWARF
metadata on the emitted machine code. The key idea is as follows:

- Translate value-label metadata on the input into "value_label"
  pseudo-instructions when lowering into VCode. These
  pseudo-instructions take a register as input, denote a value label,
  and semantically are like a "move into value label" -- i.e., they
  update the current value (as seen by debugging tools) of the given
  local. These pseudo-instructions emit no machine code.

- Perform a dataflow analysis *at the machine-code level*, tracking
  value-labels that propagate into registers and into [SP+constant]
  stack storage. This is a forward dataflow fixpoint analysis where each
  storage location can contain a *set* of value labels, and each value
  label can reside in a *set* of storage locations. (Meet function is
  pairwise intersection by storage location.)

  This analysis traces value labels symbolically through loads and
  stores and reg-to-reg moves, so it will naturally handle spills and
  reloads without knowing anything special about them.

- When this analysis converges, we have, at each machine-code offset, a
  mapping from value labels to some number of storage locations; for
  each offset for each label, we choose the best location (prefer
  registers). Note that we can choose any location, as the symbolic
  dataflow analysis is sound and guarantees that the value at the
  value_label instruction propagates to all of the named locations.

- Then we can convert this mapping into a format that the DWARF
  generation code (wasmtime's debug crate) can use.

This PR also adds the new-backend variant to the gdb tests on CI.
2021-01-21 15:59:49 -08:00
Ulrich Weigand
467a1af83a Support explicit endianness in Cranelift IR MemFlags
WebAssembly memory operations are by definition little-endian even on
big-endian target platforms.  However, other memory accesses will require
native target endianness (e.g. to access parts of the VMContext that is
also accessed by VM native code).  This means on big-endian targets,
the code generator will have to handle both little- and big-endian
memory accesses.  However, there is currently no way to encode that
distinction into the Cranelift IR that describes memory accesses.

This patch provides such a way by adding an (optional) explicit
endianness marker to an instance of MemFlags.  Since each Cranelift IR
instruction that describes memory accesses already has an instance of
MemFlags attached, this can now be used to provide endianness
information.

Note that by default, memory accesses will continue to use the native
target ISA endianness.  To override this to specify an explicit
endianness, a MemFlags value that was built using the set_endianness
routine must be used.  This patch does so for accesses that implement
WebAssembly memory operations.

This patch addresses issue #2124.
2020-12-14 20:15:37 +01:00
Julian Seward
25e31739a6 Implement Wasm Atomics for Cranelift/newBE/aarch64.
The implementation is pretty straightforward.  Wasm atomic instructions fall
into 5 groups

* atomic read-modify-write
* atomic compare-and-swap
* atomic loads
* atomic stores
* fences

and the implementation mirrors that structure, at both the CLIF and AArch64
levels.

At the CLIF level, there are five new instructions, one for each group.  Some
comments about these:

* for those that take addresses (all except fences), the address is contained
  entirely in a single `Value`; there is no offset field as there is with
  normal loads and stores.  Wasm atomics require alignment checks, and
  removing the offset makes implementation of those checks a bit simpler.

* atomic loads and stores get their own instructions, rather than reusing the
  existing load and store instructions, for two reasons:

  - per above comment, makes alignment checking simpler

  - reuse of existing loads and stores would require extension of `MemFlags`
    to indicate atomicity, which sounds semantically unclean.  For example,
    then *any* instruction carrying `MemFlags` could be marked as atomic, even
    in cases where it is meaningless or ambiguous.

* I tried to specify, in comments, the behaviour of these instructions as
  tightly as I could.  Unfortunately there is no way (per my limited CLIF
  knowledge) to enforce the constraint that they may only be used on I8, I16,
  I32 and I64 types, and in particular not on floating point or vector types.

The translation from Wasm to CLIF, in `code_translator.rs` is unremarkable.

At the AArch64 level, there are also five new instructions, one for each
group.  All of them except `::Fence` contain multiple real machine
instructions.  Atomic r-m-w and atomic c-a-s are emitted as the usual
load-linked store-conditional loops, guarded at both ends by memory fences.
Atomic loads and stores are emitted as a load preceded by a fence, and a store
followed by a fence, respectively.  The amount of fencing may be overkill, but
it reflects exactly what the SM Wasm baseline compiler for AArch64 does.

One reason to implement r-m-w and c-a-s as a single insn which is expanded
only at emission time is that we must be very careful what instructions we
allow in between the load-linked and store-conditional.  In particular, we
cannot allow *any* extra memory transactions in there, since -- particularly
on low-end hardware -- that might cause the transaction to fail, hence
deadlocking the generated code.  That implies that we can't present the LL/SC
loop to the register allocator as its constituent instructions, since it might
insert spills anywhere.  Hence we must present it as a single indivisible
unit, as we do here.  It also has the benefit of reducing the total amount of
work the RA has to do.

The only other notable feature of the r-m-w and c-a-s translations into
AArch64 code, is that they both need a scratch register internally.  Rather
than faking one up by claiming, in `get_regs` that it modifies an extra
scratch register, and having to have a dummy initialisation of it, these new
instructions (`::LLSC` and `::CAS`) simply use fixed registers in the range
x24-x28.  We rely on the RA's ability to coalesce V<-->R copies to make the
cost of the resulting extra copies zero or almost zero.  x24-x28 are chosen so
as to be call-clobbered, hence their use is less likely to interfere with long
live ranges that span calls.

One subtlety regarding the use of completely fixed input and output registers
is that we must be careful how the surrounding copy from/to of the arg/result
registers is done.  In particular, it is not safe to simply emit copies in
some arbitrary order if one of the arg registers is a real reg.  For that
reason, the arguments are first moved into virtual regs if they are not
already there, using a new method `<LowerCtx for Lower>::ensure_in_vreg`.
Again, we rely on coalescing to turn them into no-ops in the common case.

There is also a ridealong fix for the AArch64 lowering case for
`Opcode::Trapif | Opcode::Trapff`, which removes a bug in which two trap insns
in a row were generated.

In the patch as submitted there are 6 "FIXME JRS" comments, which mark things
which I believe to be correct, but for which I would appreciate a second
opinion.  Unless otherwise directed, I will remove them for the final commit
but leave the associated code/comments unchanged.
2020-08-04 09:35:50 +02:00
Peter Huene
f7e9f86ba9 Refactor unwind generation in Cranelift.
This commit makes the following changes to unwind information generation in
Cranelift:

* Remove frame layout change implementation in favor of processing the prologue
  and epilogue instructions when unwind information is requested.  This also
  means this work is no longer performed for Windows, which didn't utilize it.
  It also helps simplify the prologue and epilogue generation code.

* Remove the unwind sink implementation that required each unwind information
  to be represented in final form. For FDEs, this meant writing a
  complete frame table per function, which wastes 20 bytes or so for each
  function with duplicate CIEs.  This also enables Cranelift users to collect the
  unwind information and write it as a single frame table.

* For System V calling convention, the unwind information is no longer stored
  in code memory (it's only a requirement for Windows ABI to do so).  This allows
  for more compact code memory for modules with a lot of functions.

* Deletes some duplicate code relating to frame table generation.  Users can
  now simply use gimli to create a frame table from each function's unwind
  information.

Fixes #1181.
2020-04-16 11:15:32 -07:00
Ryan Hunt
832666c45e Mass rename Ebb and relatives to Block (#1365)
* Manually rename BasicBlock to BlockPredecessor

BasicBlock is a pair of (Ebb, Inst) that is used to represent the
basic block subcomponent of an Ebb that is a predecessor to an Ebb.

Eventually we will be able to remove this struct, but for now it
makes sense to give it a non-conflicting name so that we can start
to transition Ebb to represent a basic block.

I have not updated any comments that refer to BasicBlock, as
eventually we will remove BlockPredecessor and replace with Block,
which is a basic block, so the comments will become correct.

* Manually rename SSABuilder block types to avoid conflict

SSABuilder has its own Block and BlockData types. These along with
associated identifier will cause conflicts in a later commit, so
they are renamed to be more verbose here.

* Automatically rename 'Ebb' to 'Block' in *.rs

* Automatically rename 'EBB' to 'block' in *.rs

* Automatically rename 'ebb' to 'block' in *.rs

* Automatically rename 'extended basic block' to 'basic block' in *.rs

* Automatically rename 'an basic block' to 'a basic block' in *.rs

* Manually update comment for `Block`

`Block`'s wikipedia article required an update.

* Automatically rename 'an `Block`' to 'a `Block`' in *.rs

* Automatically rename 'extended_basic_block' to 'basic_block' in *.rs

* Automatically rename 'ebb' to 'block' in *.clif

* Manually rename clif constant that contains 'ebb' as substring to avoid conflict

* Automatically rename filecheck uses of 'EBB' to 'BB'

'regex: EBB' -> 'regex: BB'
'$EBB' -> '$BB'

* Automatically rename 'EBB' 'Ebb' to 'block' in *.clif

* Automatically rename 'an block' to 'a block' in *.clif

* Fix broken testcase when function name length increases

Test function names are limited to 16 characters. This causes
the new longer name to be truncated and fail a filecheck test. An
outdated comment was also fixed.
2020-02-07 10:46:47 -06:00
Joshua Nelson
5edf015ada Make get_libcall_funcref pub(crate) (#1291)
* Make `get_libcall_funcref` `pub(crate)`

Closes https://github.com/bytecodealliance/cranelift/issues/1273.

Since get_libcall_funcref is only used internally by the verifier,
it doesn't make sense to have it be public. This will encourage users to
look elsewhere for `memcpy` (they should be looking at
https://docs.rs/cranelift-frontend/0.51.0/cranelift_frontend/struct.FunctionBuilder.html#method.emit_small_memcpy)
2020-01-24 16:43:44 +01:00
Ryan Hunt
946251e655 Codegen: Align representation of stackmap with SpiderMonkey
This commit aligns the representation of stackmaps to be the same
as Spidermonkey's by:
 * Reversing the order of the bitmap from low addresses to high addresses
 * Including incoming stack arguments
 * Excluding outgoing stack arguments

Additionally, some accessor functions were added to allow Spidermonkey
to access the internals of the bitmap.
2020-01-23 13:37:11 -06:00
iximeow
d804ab8b92 Track frame layout changes. (#1204)
* Track frame layout changes.
2019-11-18 10:18:38 -08:00
bjorn3
10e226f9ff Always use extern crate std in cranelift-codegen 2019-10-02 11:50:44 -07:00
Erin Power
dadfbcd32b Re-export ReplaceBuilder
ReplaceBuilder is available in the public API through
`DataFlowGraph::replace`, however it's documentation is not available
through rustdoc as the type isn't publicly importable.
2019-10-02 13:56:27 +02:00
Andrew Brown
c648fa3d06 Move condcodes.rs to a new crate, cranelift-codegen-shared
This move allows the `IntCC`/`FloatCC` enums to be used in both meta (for predicate matching) and in codegen. To avoid breaking any code dependent on the previous location of condcodes.rs (`cranelift-codegen/src/condcodes.rs`), the module is re-exported under `cranelift_codegen::ir`.
2019-09-24 09:33:07 -07:00
Andrew Brown
af1499ce99 Add x86 implementation of shuffle 2019-09-19 10:53:40 -07:00
Andrew Brown
c20b13d5a9 Add ConstantPool 2019-08-26 16:12:06 -07:00
Yury Delendik
29b32b3062 Serialize ValueLabel and StackSlots (#888) 2019-08-05 08:31:00 -05:00
Yury Delendik
8f95c51730 Reconstruct locations of the original source variable 2019-05-09 00:35:44 -07:00
lazypassion
747ad3c4c5 moved crates in lib/ to src/, renamed crates, modified some files' text (#660)
moved crates in lib/ to src/, renamed crates, modified some files' text (#660)
2019-01-28 15:56:54 -08:00