* Update wasm-tools dependencies
This update brings in a number of features such as:
* The component model binary format and AST has been slightly adjusted
in a few locations. Names are dropped from parameters/results now in
the internal representation since they were not used anyway. At this
time the ability to bind a multi-return function has not been exposed.
* The `wasmparser` validator pass will now share allocations with prior
functions, providing what's probably a very minor speedup for Wasmtime
itself.
* The text format for many component-related tests now requires named
parameters.
* Some new relaxed-simd instructions are updated to be ignored.
I hope to have a follow-up to expose the multi-return ability to the
embedding API of components.
* Update audit information for new crates
This commit builds on bytecodealliance/wasm-tools#690 to add support to
testing of the component model to execute functions when running
`*.wast` files. This support is all built on #4442 as functions are
invoked through a "dynamic" API. Right now the testing and integration
is fairly crude but I'm hoping that we can try to improve it over time
as necessary. For now this should provide a hopefully more convenient
syntax for unit tests and the like.
I noticed that `TableOp::insert` had assertions that `num_params` and
`table_size` were greater than 0, but no assert for `num_globals`. These
asserts couldn't be hit because the `*_RANGE` constants were all set to
a minimum of 1.
But the only reason I can see to prohibit 0-sized tables, locals, or
globals, was because indexes into those spaces were generated with the
`%` operator. Allowing 0-sized spaces requires not generating the
corresponding instructions at all when there are no valid indexes.
So I pushed the final selection of which table/local/global to access
earlier, to the moment when we're picking which TableOps to run. Then,
instead of generating a random u8 or u32 and taking the remainder to get
it into the right range, I can just ask `arbitrary` to generate a number
in the right range to begin with.
So this now explores some size-0 corners that it didn't before, and it
doesn't require reasoning about whether remainder can divide by zero.
Also I think it uses fewer bits of the `Unstructured` input to produce
the same cases, and I hope that lets libFuzzer more quickly find bits it
can mutate to get to novel coverage paths.
* Improve cranelift disassembly of stack maps
Print out extra information about stack maps such as their contents and
other related metadata available. Additionally also print out addresses
in hex to line up with the disassembly otherwise printed as well.
* Improve the `table_ops` fuzzer
* Generate more instructions by default
* Fix negative indices appearing in `table.{get,set}`
* Assert that the traps generated are expected to prevent accidental
other errors reporting a fuzzing success.
* Fix `reftype_vregs` reported to `regalloc2`
This fixes a mistake in the register allocation of Cranelift functions
where functions using reference-typed arguments incorrectly report which
virtual registers are reference-typed values if there are vreg aliases
in play. The fix here is to apply the vreg aliases to the final list of
reftyped regs which is eventually passed to `regalloc2`.
The main consequence of this fix is that functions which previously
accidentally didn't have correct stack maps should now have the missing
stack maps.
* Add a test that `table_ops` gc's eventually
* Add a comment about new alias resolution
* Update crates/fuzzing/src/oracles.rs
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
* Add some comments
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
This commit updates the wasm-tools family of crates, notably pulling in
the refactorings and updates from bytecodealliance/wasm-tools#621 for
the latest iteration of the component model. This commit additionally
updates all support for the component model for these changes, notably:
* Many bits and pieces of type information was refactored. Many
`FooTypeIndex` namings are now `TypeFooIndex`. Additionally there is
now `TypeIndex` as well as `ComponentTypeIndex` for the two type index
spaces in a component.
* A number of new sections are now processed to handle the core and
component variants.
* Internal maps were split such as the `funcs` map into
`component_funcs` and `funcs` (same for `instances`).
* Canonical options are now processed individually instead of one bulk
`into` definition.
Overall this was not a major update to the internals of handling the
component model in Wasmtime. Instead this was mostly a surface-level
refactoring to make sure that everything lines up with the new binary
format for components.
* All text syntax used in tests was updated to the new syntax.
This makes the generator more similar to `wasm-smith` where it is keeping track
of what is on the stack and making choices about what instructions are valid to
generate given the current stack state. This should in theory allow the
generator to emit GC calls while there are live refs on the stack.
Fixes#3917
* Update wasm-tools crates
This commit updates the wasm-tools family of crates as used in Wasmtime.
Notably this brings in the update which removes module linking support
as well as a number of internal refactorings around names and such
within wasmparser itself. This updates all of the wasm translation
support which binds to wasmparser as appropriate.
Other crates all had API-compatible changes for at least what Wasmtime
used so no further changes were necessary beyond updating version
requirements.
* Update a test expectation
Ended up being a routine update but seemed good to go ahead and hook up
updates. While I was at it I went ahead and hooked up multi-value
swarm fuzzing as well now that wasm-smith implements it.
This will make it generate `table.set`s that come from `global.get`s and
`global.get`s that come from `table.set`s. Ultimately, it should give us much
more fuzzing coverage of `externref` globals, their barriers, and passing
`externref`s into and out of Wasm to get or set globals.
We _must not_ trigger a GC when moving refs from host code into
Wasm (e.g. returned from a host function or passed as arguments to a Wasm
function). After insertion into the table, this reference is no longer
rooted. If multiple references are being sent from the host into Wasm and we
allowed GCs during insertion, then the following events could happen:
* Reference A is inserted into the activations table. This does not trigger a
GC, but does fill the table to capacity.
* The caller's reference to A is removed. Now the only reference to A is from
the activations table.
* Reference B is inserted into the activations table. Because the table is at
capacity, a GC is triggered.
* A is reclaimed because the only reference keeping it alive was the activation
table's reference (it isn't inside any Wasm frames on the stack yet, so stack
scanning and stack maps don't increment its reference count).
* We transfer control to Wasm, giving it A and B. Wasm uses A. That's a use
after free.
To prevent uses after free, we cannot GC when moving refs into the
`VMExternRefActivationsTable` because we are passing them from the host to Wasm.
On the other hand, when we are *cloning* -- as opposed to moving -- refs from
the host to Wasm, then it is fine to GC while inserting into the activations
table, because the original referent that we are cloning from is still alive and
rooting the ref.
* Enable simd fuzzing on oss-fuzz
This commit generally enables the simd feature while fuzzing, which
should affect almost all fuzzers. For fuzzers that just throw random
data at the wall and see what sticks, this means that they'll now be
able to throw simd-shaped data at the wall and have it stick. For
wasm-smith-based fuzzers this commit also updates wasm-smith to 0.6.0
which allows further configuring the `SwarmConfig` after generation,
notably allowing `instantiate-swarm` to generate modules using simd
using `wasm-smith`. This should much more reliably feed simd-related
things into the fuzzers.
Finally, this commit updates wasmtime to avoid usage of the general
`wasm_smith::Module` generator to instead use a Wasmtime-specific custom
default configuration which enables various features we have
implemented.
* Allow dummy table creation to fail
Tables might creation for imports may exceed the memory limit on the
store, which we'll want to gracefully recover from and not fail the
fuzzers.
* 2499: First pass on TableOps fuzzer generator wasm_encoder migration
- wasm binary generated via sections and smushed together into a module
- test: compare generated wat against expected wat
- note: doesn't work
- Grouped instructions not implemented
- Vec<u8> to wat String not implemented
* 2499: Add typesection, abstract instruction puts, and update test
- TableOp.insert now will interact with a function object directly
- add types for generated function
- expected test string now reflects expected generated code
* 2499: Mark unused index as _i
* 2499: Function insertion is in proper stack order, and fix off by 1
index
- imported functions must be typed
- instructions operate on a stack ie. define values as instructions
before using
* 2499: Apply suggestions from code review
- typo fixing
- oracle ingests binary bytes itself
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
* 2499: Code cleanup + renaming vars
- busywork, nothing to see here
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
This new fuzz target exercises sequences of `table.get`s, `table.set`s, and
GCs.
It already found a couple bugs:
* Some leaks due to ref count cycles between stores and host-defined functions
closing over those stores.
* If there are no live references for a PC, Cranelift can avoid emiting an
associated stack map. This was running afoul of a debug assertion.