* Optimize `Func::call` and its C API
This commit is an alternative to #3298 which achieves effectively the
same goal of optimizing the `Func::call` API as well as its C API
sibling of `wasmtime_func_call`. The strategy taken here is different
than #3298 though where a new API isn't created, rather a small tweak to
an existing API is done. Specifically this commit handles the major
sources of slowness with `Func::call` with:
* Looking up the type of a function, to typecheck the arguments with and
use to guide how the results should be loaded, no longer hits the
rwlock in the `Engine` but instead each `Func` contains its own
`FuncType`. This can be an unnecessary allocation for funcs not used
with `Func::call`, so this is a downside of this implementation
relative to #3298. A mitigating factor, though, is that instance
exports are loaded lazily into the `Store` and in theory not too many
funcs are active in the store as `Func` objects.
* Temporary storage is amortized with a long-lived `Vec` in the `Store`
rather than allocating a new vector on each call. This is basically
the same strategy as #3294 only applied to different types in
different places. Specifically `wasmtime::Store` now retains a
`Vec<u128>` for `Func::call`, and the C API retains a `Vec<Val>` for
calling `Func::call`.
* Finally, an API breaking change is made to `Func::call` and its type
signature (as well as `Func::call_async`). Instead of returning
`Box<[Val]>` as it did before this function now takes a
`results: &mut [Val]` parameter. This allows the caller to manage the
allocation and we can amortize-remove it in `wasmtime_func_call` by
using space after the parameters in the `Vec<Val>` we're passing in.
This change is naturally a breaking change and we'll want to consider
it carefully, but mitigating factors are that most embeddings are
likely using `TypedFunc::call` instead and this signature taking a
mutable slice better aligns with `Func::new` which receives a mutable
slice for the results.
Overall this change, in the benchmark of "call a nop function from the C
API" is not quite as good as #3298. It's still a bit slower, on the
order of 15ns, because there's lots of capacity checks around vectors
and the type checks are slightly less optimized than before. Overall
though this is still significantly better than today because allocations
and the rwlock to acquire the type information are both avoided. I
personally feel that this change is the best to do because it has less
of an API impact than #3298.
* Rebase issues
This commit started off by deleting the `cranelift_codegen::settings`
reexport in the `wasmtime-environ` crate and then basically played
whack-a-mole until everything compiled again. The main result of this is
that the `wasmtime-*` family of crates have generally less of a
dependency on the `TargetIsa` trait and type from Cranelift. While the
dependency isn't entirely severed yet this is at least a significant
start.
This commit is intended to be largely refactorings, no functional
changes are intended here. The refactorings are:
* A `CompilerBuilder` trait has been added to `wasmtime_environ` which
server as an abstraction used to create compilers and configure them
in a uniform fashion. The `wasmtime::Config` type now uses this
instead of cranelift-specific settings. The `wasmtime-jit` crate
exports the ability to create a compiler builder from a
`CompilationStrategy`, which only works for Cranelift right now. In a
cranelift-less build of Wasmtime this is expected to return a trait
object that fails all requests to compile.
* The `Compiler` trait in the `wasmtime_environ` crate has been souped
up with a number of methods that Wasmtime and other crates needed.
* The `wasmtime-debug` crate is now moved entirely behind the
`wasmtime-cranelift` crate.
* The `wasmtime-cranelift` crate is now only depended on by the
`wasmtime-jit` crate.
* Wasm types in `cranelift-wasm` no longer contain their IR type,
instead they only contain the `WasmType`. This is required to get
everything to align correctly but will also be required in a future
refactoring where the types used by `cranelift-wasm` will be extracted
to a separate crate.
* I moved around a fair bit of code in `wasmtime-cranelift`.
* Some gdb-specific jit-specific code has moved from `wasmtime-debug` to
`wasmtime-jit`.
We previously had some off-by-one errors in our error messages and this led to
very confusing messages like "expected 0 types, found 0" that were quite
annoying to debug as an API consumer.
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.
Now that we're using "possibly exported" as an impactful decision for
codegen (which trampolines to generate and which ABI a function has)
it's important that we calculate this property of a wasm function
correctly! Previously Wasmtime forgot to processed "declared" elements
in apart from active/passive element segments, but this updates Wasmtime
to ensure that these entries are processed and all the functions
contained within are flagged as "possibly exported".
Closes#2850
* Fully support multiple returns in Wasmtime
For quite some time now Wasmtime has "supported" multiple return values,
but only in the mose bare bones ways. Up until recently you couldn't get
a typed version of functions with multiple return values, and never have
you been able to use `Func::wrap` with functions that return multiple
values. Even recently where `Func::typed` can call functions that return
multiple values it uses a double-indirection by calling a trampoline
which calls the real function.
The underlying reason for this lack of support is that cranelift's ABI
for returning multiple values is not possible to write in Rust. For
example if a wasm function returns two `i32` values there is no Rust (or
C!) function you can write to correspond to that. This commit, however
fixes that.
This commit adds two new ABIs to Cranelift: `WasmtimeSystemV` and
`WasmtimeFastcall`. The intention is that these Wasmtime-specific ABIs
match their corresponding ABI (e.g. `SystemV` or `WindowsFastcall`) for
everything *except* how multiple values are returned. For multiple
return values we simply define our own version of the ABI which Wasmtime
implements, which is that for N return values the first is returned as
if the function only returned that and the latter N-1 return values are
returned via an out-ptr that's the last parameter to the function.
These custom ABIs provides the ability for Wasmtime to bind these in
Rust meaning that `Func::wrap` can now wrap functions that return
multiple values and `Func::typed` no longer uses trampolines when
calling functions that return multiple values. Although there's lots of
internal changes there's no actual changes in the API surface area of
Wasmtime, just a few more impls of more public traits which means that
more types are supported in more places!
Another change made with this PR is a consolidation of how the ABI of
each function in a wasm module is selected. The native `SystemV` ABI,
for example, is more efficient at returning multiple values than the
wasmtime version of the ABI (since more things are in more registers).
To continue to take advantage of this Wasmtime will now classify some
functions in a wasm module with the "fast" ABI. Only functions that are
not reachable externally from the module are classified with the fast
ABI (e.g. those not exported, used in tables, or used with `ref.func`).
This should enable purely internal functions of modules to have a faster
calling convention than those which might be exposed to Wasmtime itself.
Closes#1178
* Tweak some names and add docs
* "fix" lightbeam compile
* Fix TODO with dummy environ
* Unwind info is a property of the target, not the ABI
* Remove lightbeam unused imports
* Attempt to fix arm64
* Document new ABIs aren't stable
* Fix filetests to use the right target
* Don't always do 64-bit stores with cranelift
This was overwriting upper bits when 32-bit registers were being stored
into return values, so fix the code inline to do a sized store instead
of one-size-fits-all store.
* At least get tests passing on the old backend
* Fix a typo
* Add some filetests with mixed abi calls
* Get `multi` example working
* Fix doctests on old x86 backend
* Add a mixture of wasmtime/system_v tests
Some recent refactorings accidentally had a local `Store` on the stack
when a longjmp was initiated, bypassing its destructor and causing
`Store` to leak.
Closes#2802
This bumps target-lexicon and adds support for the AppleAarch64 calling
convention. Specifically for WebAssembly support, we only have to worry
about the new stack slots convention. Stack slots don't need to be at
least 8-bytes, they can be as small as the data type's size. For
instance, if we need stack slots for (i32, i32), they can be located at
offsets (+0, +4). Note that they still need to be properly aligned on
the data type they're containing, though, so if we need stack slots for
(i32, i64), we can't start the i64 slot at the +4 offset (it must start
at the +8 offset).
Added one test that was failing on the Mac M1, as well as other tests
stressing different yet similar situations.
* Redo the statically typed `Func` API
This commit reimplements the `Func` API with respect to statically typed
dispatch. Previously `Func` had a `getN` and `getN_async` family of
methods which were implemented for 0 to 16 parameters. The return value
of these functions was an `impl Fn(..)` closure with the appropriate
parameters and return values.
There are a number of downsides with this approach that have become
apparent over time:
* The addition of `*_async` doubled the API surface area (which is quite
large here due to one-method-per-number-of-parameters).
* The [documentation of `Func`][old-docs] are quite verbose and feel
"polluted" with all these getters, making it harder to understand the
other methods that can be used to interact with a `Func`.
* These methods unconditionally pay the cost of returning an owned `impl
Fn` with a `'static` lifetime. While cheap, this is still paying the
cost for cloning the `Store` effectively and moving data into the
closed-over environment.
* Storage of the return value into a struct, for example, always
requires `Box`-ing the returned closure since it otherwise cannot be
named.
* Recently I had the desire to implement an "unchecked" path for
invoking wasm where you unsafely assert the type signature of a wasm
function. Doing this with today's scheme would require doubling
(again) the API surface area for both async and synchronous calls,
further polluting the documentation.
The main benefit of the previous scheme is that by returning a `impl Fn`
it was quite easy and ergonomic to actually invoke the function. In
practice, though, examples would often have something akin to
`.get0::<()>()?()?` which is a lot of things to interpret all at once.
Note that `get0` means "0 parameters" yet a type parameter is passed.
There's also a double function invocation which looks like a lot of
characters all lined up in a row.
Overall, I think that the previous design is starting to show too many
cracks and deserves a rewrite. This commit is that rewrite.
The new design in this commit is to delete the `getN{,_async}` family of
functions and instead have a new API:
impl Func {
fn typed<P, R>(&self) -> Result<&Typed<P, R>>;
}
impl Typed<P, R> {
fn call(&self, params: P) -> Result<R, Trap>;
async fn call_async(&self, params: P) -> Result<R, Trap>;
}
This should entirely replace the current scheme, albeit by slightly
losing ergonomics use cases. The idea behind the API is that the
existence of `Typed<P, R>` is a "proof" that the underlying function
takes `P` and returns `R`. The `Func::typed` method peforms a runtime
type-check to ensure that types all match up, and if successful you get
a `Typed` value. Otherwise an error is returned.
Once you have a `Typed` then, like `Func`, you can either `call` or
`call_async`. The difference with a `Typed`, however, is that the
params/results are statically known and hence these calls can be much
more efficient.
This is a much smaller API surface area from before and should greatly
simplify the `Func` documentation. There's still a problem where
`Func::wrapN_async` produces a lot of functions to document, but that's
now the sole offender. It's a nice benefit that the
statically-typed-async verisons are now expressed with an `async`
function rather than a function-returning-a-future which makes it both
more efficient and easier to understand.
The type `P` and `R` are intended to either be bare types (e.g. `i32`)
or tuples of any length (including 0). At this time `R` is only allowed
to be `()` or a bare `i32`-style type because multi-value is not
supported with a native ABI (yet). The `P`, however, can be any size of
tuples of parameters. This is also where some ergonomics are lost
because instead of `f(1, 2)` you now have to write `f.call((1, 2))`
(note the double-parens). Similarly `f()` becomes `f.call(())`.
Overall I feel that this is a better tradeoff than before. While not
universally better due to the loss in ergonomics I feel that this design
is much more flexible in terms of what you can do with the return value
and also understanding the API surface area (just less to take in).
[old-docs]: https://docs.rs/wasmtime/0.24.0/wasmtime/struct.Func.html#method.get0
* Rename Typed to TypedFunc
* Implement multi-value returns through `Func::typed`
* Fix examples in docs
* Fix some more errors
* More test fixes
* Rebasing and adding `get_typed_func`
* Updating tests
* Fix typo
* More doc tweaks
* Tweak visibility on `Func::invoke`
* Fix tests again
* Implement defining host functions at the Config level.
This commit introduces defining host functions at the `Config` rather than with
`Func` tied to a `Store`.
The intention here is to enable a host to define all of the functions once
with a `Config` and then use a `Linker` (or directly with
`Store::get_host_func`) to use the functions when instantiating a module.
This should help improve the performance of use cases where a `Store` is
short-lived and redefining the functions at every module instantiation is a
noticeable performance hit.
This commit adds `add_to_config` to the code generation for Wasmtime's `Wasi`
type.
The new method adds the WASI functions to the given config as host functions.
This commit adds context functions to `Store`: `get` to get a context of a
particular type and `set` to set the context on the store.
For safety, `set` cannot replace an existing context value of the same type.
`Wasi::set_context` was added to set the WASI context for a `Store` when using
`Wasi::add_to_config`.
* Add `Config::define_host_func_async`.
* Make config "async" rather than store.
This commit moves the concept of "async-ness" to `Config` rather than `Store`.
Note: this is a breaking API change for anyone that's already adopted the new
async support in Wasmtime.
Now `Config::new_async` is used to create an "async" config and any `Store`
associated with that config is inherently "async".
This is needed for async shared host functions to have some sanity check during their
execution (async host functions, like "async" `Func`, need to be called with
the "async" variants).
* Update async function tests to smoke async shared host functions.
This commit updates the async function tests to also smoke the shared host
functions, plus `Func::wrap0_async`.
This also changes the "wrap async" method names on `Config` to
`wrap$N_host_func_async` to slightly better match what is on `Func`.
* Move the instance allocator into `Engine`.
This commit moves the instantiated instance allocator from `Config` into
`Engine`.
This makes certain settings in `Config` no longer order-dependent, which is how
`Config` should ideally be.
This also removes the confusing concept of the "default" instance allocator,
instead opting to construct the on-demand instance allocator when needed.
This does alter the semantics of the instance allocator as now each `Engine`
gets its own instance allocator rather than sharing a single one between all
engines created from a configuration.
* Make `Engine::new` return `Result`.
This is a breaking API change for anyone using `Engine::new`.
As creating the pooling instance allocator may fail (likely cause is not enough
memory for the provided limits), instead of panicking when creating an
`Engine`, `Engine::new` now returns a `Result`.
* Remove `Config::new_async`.
This commit removes `Config::new_async` in favor of treating "async support" as
any other setting on `Config`.
The setting is `Config::async_support`.
* Remove order dependency when defining async host functions in `Config`.
This commit removes the order dependency where async support must be enabled on
the `Config` prior to defining async host functions.
The check is now delayed to when an `Engine` is created from the config.
* Update WASI example to use shared `Wasi::add_to_config`.
This commit updates the WASI example to use `Wasi::add_to_config`.
As only a single store and instance are used in the example, it has no semantic
difference from the previous example, but the intention is to steer users
towards defining WASI on the config and only using `Wasi::add_to_linker` when
more explicit scoping of the WASI context is required.
This commit fixes an issue with wasmtime where it was possible for a
trampoline from one module to get used for another module after it was
freed. This issue arises because we register a module's native
trampolines *before* it's fully instantiated, which is a fallible
process. Some fallibility is predictable, such as import type
mismatches, but other fallibility is less predictable, such as failure
to allocate a linear memory.
The problem happened when a module was registered with a `Store`,
retaining information about its trampolines, but then instantiation
failed and the module's code was never persisted within the `Store`.
Unlike as documented in #2374 the `Module` inside an `Instance` is not
the primary way to hold on to a module's code, but rather the
`Arc<ModuleCode>` is persisted within the global frame information off
on the side. This persistence only made its way into the store through
the `Box<Any>` field of `InstanceHandle`, but that's never made if
instantiation fails during import matching.
The fix here is to build on the refactoring of #2407 to not store module
code in frame information but rather explicitly in the `Store`.
Registration is now deferred until just-before an instance handle is
created, and during module registration we insert the `Arc<ModuleCode>`
into a set stored within the `Store`.
This commit updates `wasmtime::FuncType` to exactly store an internal
`WasmFuncType` from the cranelift crates. This allows us to remove a
translation layer when we are given a `FuncType` and want to get an
internal cranelift type out as a result.
The other major change from this commit was changing the constructor and
accessors of `FuncType` to be iterator-based instead of exposing
implementation details.
Currently `Func::new` will panic if one of the arguments of the function
is a reference type and the `Store` doesn't have reference types
enabled. This happens because cranelift isn't configure to enable stack
maps but the register allocators expects them to exist when reference
types are seen.
The fix here is to always enable reference types in cranelift for our
trampoline generation and `Func::new`. This should hopefully ensure that
trampolines are generated correctly and they'll just not be able to get
hooked up to an `Instance` because validation will prevent reference
types from being used elsewhere.
* Moves CodeMemory, VMInterrupts and SignatureRegistry from Compiler
* CompiledModule holds CodeMemory and GdbJitImageRegistration
* Store keeps track of its JIT code
* Makes "jit_int.rs" stuff Send+Sync
* Adds the threads example.
* Remove Cranelift's OutOfBounds trap, which is no longer used.
* Change proc_exit to unwind instead of exit the host process.
This implements the semantics in https://github.com/WebAssembly/WASI/pull/235.
Fixes#783.
Fixes#993.
* Fix exit-status tests on Windows.
* Revert the wiggle changes and re-introduce the wasi-common implementations.
* Move `wasi_proc_exit` into the wasmtime-wasi crate.
* Revert the spec_testsuite change.
* Remove the old proc_exit implementations.
* Make `TrapReason` an implementation detail.
* Allow exit status 2 on Windows too.
* Fix a documentation link.
* Really fix a documentation link.
* Revamp memory management of `InstanceHandle`
This commit fixes a known but in Wasmtime where an instance could still
be used after it was freed. Unfortunately the fix here is a bit of a
hammer, but it's the best that we can do for now. The changes made in
this commit are:
* A `Store` now stores all `InstanceHandle` objects it ever creates.
This keeps all instances alive unconditionally (along with all host
functions and such) until the `Store` is itself dropped. Note that a
`Store` is reference counted so basically everything has to be dropped
to drop anything, there's no longer any partial deallocation of instances.
* The `InstanceHandle` type's own reference counting has been removed.
This is largely redundant with what's already happening in `Store`, so
there's no need to manage two reference counts.
* Each `InstanceHandle` no longer tracks its dependencies in terms of
instance handles. This set was actually inaccurate due to dynamic
updates to tables and such, so we needed to revamp it anyway.
* Initialization of an `InstanceHandle` is now deferred until after
`InstanceHandle::new`. This allows storing the `InstanceHandle` before
side-effectful initialization, such as copying element segments or
running the start function, to ensure that regardless of the result of
instantiation the underlying `InstanceHandle` is still available to
persist in storage.
Overall this should fix a known possible way to safely segfault Wasmtime
today (yay!) and it should also fix some flaikness I've seen on CI.
Turns out one of the spec tests
(bulk-memory-operations/partial-init-table-segment.wast) exercises this
functionality and we were hitting sporating use-after-free, but only on
Windows.
* Shuffle some APIs around
* Comment weak cycle
* Compute instance exports on demand.
Instead having instances eagerly compute a Vec of Externs, and bumping
the refcount for each Extern, compute Externs on demand.
This also enables `Instance::get_export` to avoid doing a linear search.
This also means that the closure returned by `get0` and friends now
holds an `InstanceHandle` to dynamically hold the instance live rather
than being scoped to a lifetime.
* Compute module imports and exports on demand too.
And compute Extern::ty on demand too.
* Add a utility function for computing an ExternType.
* Add a utility function for looking up a function's signature.
* Add a utility function for computing the ValType of a Global.
* Rename wasmtime_environ::Export to EntityIndex.
This helps differentiate it from other Export types in the tree, and
describes what it is.
* Fix a typo in a comment.
* Simplify module imports and exports.
* Make `Instance::exports` return the export names.
This significantly simplifies the public API, as it's relatively common
to need the names, and this avoids the need to do a zip with
`Module::exports`.
This also changes `ImportType` and `ExportType` to have public members
instead of private members and accessors, as I find that simplifies the
usage particularly in cases where there are temporary instances.
* Remove `Instance::module`.
This doesn't quite remove `Instance`'s `module` member, it gets a step
closer.
* Use a InstanceHandle utility function.
* Don't consume self in the `Func::get*` methods.
Instead, just create a closure containing the instance handle and the
export for them to call.
* Use `ExactSizeIterator` to avoid needing separate `num_*` methods.
* Rename `Extern::func()` etc. to `into_func()` etc.
* Revise examples to avoid using `nth`.
* Add convenience methods to instance for getting specific extern types.
* Use the convenience functions in more tests and examples.
* Avoid cloning strings for `ImportType` and `ExportType`.
* Remove more obviated clone() calls.
* Simplify `Func`'s closure state.
* Make wasmtime::Export's fields private.
This makes them more consistent with ExportType.
* Fix compilation error.
* Make a lifetime parameter explicit, and use better lifetime names.
Instead of 'me, use 'instance and 'module to make it clear what the
lifetime is.
* More lifetime cleanups.
* Move most wasmtime tests into one test suite
This commit moves most wasmtime tests into a single test suite which
gets compiled into one executable instead of having lots of test
executables. The goal here is to reduce disk space on CI, and this
should be achieved by having fewer executables which means fewer copies
of `libwasmtime.rlib` linked across binaries on the system. More
importantly though this means that DWARF debug information should only
be in one executable rather than duplicated across many.
* Share more build caches
Globally set `RUSTFLAGS` to `-Dwarnings` instead of individually so all
build steps share the same value.
* Allow some dead code in cranelift-codegen
Prevents having to fix all warnings for all possible feature
combinations, only the main ones which come up.
* Update some debug file paths