* Run a callback when the interruption epoch is reached
Adds Store::epoch_deadline_callback. This accepts a callback which, when
invoked, can mutate the store's contents. The callback can either return
an error (in which case we trap) or return a delta which we'll use to
set the new epoch deadline.
* Add a basic test for epoch interruption callback
* Some small nits
- Remove use of &mut in the pattern match
- Return both yields and state from run_and_count_yields_or_trap in
test code and assert on them separately.
- Add a test for trapping on a state failure.
Currently wasmtime's async tests use a mixture of `#[tokio::test]` and
`dummy_waker`. To be consistent this tries to move all tests possible to
`#[tokio::test]` and just a two need to keep using `dummy_waker` (no
renamed to `noop_waker`) due to what they're testing.
* Refactor away the `Instantiator` type in Wasmtime
This internal type in Wasmtime was primarily used for the module linking
proposal to handle instantiation of many instances and refactor out the
sync and async parts to minimize duplication. With the removal of the
module linking proposal, however, this type isn't really necessary any
longer. In working to implement the component model proposal I was
looking already to refactor this and I figured it'd be good to land that
ahead of time on `main` separate of other refactorings.
This commit removes the `Instantiator` type in the `instance` module.
The type was already private to Wasmtime so this shouldn't have any
impact on consumers. This allows simplifying various code paths to avoid
another abstraction. The meat of instantiation is moved to
`Instance::new_raw` which should be reusable for the component model as
well.
One bug is actually fixed in this commit as well where
`Linker::instantiate` and `InstancePre::instantiate` failed to check
that async support was disabled on a store. This means that they could
have led to a panic if used with an async store and a start function
called an async import (or an async resource limiter yielded). A few
tests were updated with this.
* Review comments
This PR introduces a new way of performing cooperative timeslicing that
is intended to replace the "fuel" mechanism. The tradeoff is that this
mechanism interrupts with less precision: not at deterministic points
where fuel runs out, but rather when the Engine enters a new epoch. The
generated code instrumentation is substantially faster, however, because
it does not need to do as much work as when tracking fuel; it only loads
the global "epoch counter" and does a compare-and-branch at backedges
and function prologues.
This change has been measured as ~twice as fast as fuel-based
timeslicing for some workloads, especially control-flow-intensive
workloads such as the SpiderMonkey JS interpreter on Wasm/WASI.
The intended interface is that the embedder of the `Engine` performs an
`engine.increment_epoch()` call periodically, e.g. once per millisecond.
An async invocation of a Wasm guest on a `Store` can specify a number of
epoch-ticks that are allowed before an async yield back to the
executor's event loop. (The initial amount and automatic "refills" are
configured on the `Store`, just as for fuel.) This call does only
signal-safe work (it increments an `AtomicU64`) so could be invoked from
a periodic signal, or from a thread that wakes up once per period.