This fixes some hard-coded assumptions in the debug crate that
the native ELF files being accessed are little-endian; specifically
in create_gdbjit_image as well as in emit_dwarf.
In addition, data in WebAssembly memory always uses little-endian
byte order. Therefore, if the native architecture is big-endian,
all references to base types need to be marked as little-endian
using the DW_AT_endianity attribute, so that the debugger will
be able to correctly access them.
Now that we're using "possibly exported" as an impactful decision for
codegen (which trampolines to generate and which ABI a function has)
it's important that we calculate this property of a wasm function
correctly! Previously Wasmtime forgot to processed "declared" elements
in apart from active/passive element segments, but this updates Wasmtime
to ensure that these entries are processed and all the functions
contained within are flagged as "possibly exported".
Closes#2850
* Optimize `table.init` instruction and instantiation
This commit optimizes table initialization as part of instance
instantiation and also applies the same optimization to the `table.init`
instruction. One part of this commit is to remove some preexisting
duplication between instance instantiation and the `table.init`
instruction itself, after this the actual implementation of `table.init`
is optimized to effectively have fewer bounds checks in fewer places and
have a much tighter loop for instantiation.
A big fallout from this change is that memory/table initializer offsets
are now stored as `u32` instead of `usize` to remove a few casts in a
few places. This ended up requiring moving some overflow checks that
happened in parsing to later in code itself because otherwise the wrong
spec test errors are emitted during testing. I've tried to trace where
these can possibly overflow but I think that I managed to get
everything.
In a local synthetic test where an empty module with a single 80,000
element initializer this improves total instantiation time by 4x (562us
=> 141us)
* Review comments
* Add resource limiting to the Wasmtime API.
This commit adds a `ResourceLimiter` trait to the Wasmtime API.
When used in conjunction with `Store::new_with_limiter`, this can be used to
monitor and prevent WebAssembly code from growing linear memories and tables.
This is particularly useful when hosts need to take into account host resource
usage to determine if WebAssembly code can consume more resources.
A simple `StaticResourceLimiter` is also included with these changes that will
simply limit the size of linear memories or tables for all instances created in
the store based on static values.
* Code review feedback.
* Implemented `StoreLimits` and `StoreLimitsBuilder`.
* Moved `max_instances`, `max_memories`, `max_tables` out of `Config` and into
`StoreLimits`.
* Moved storage of the limiter in the runtime into `Memory` and `Table`.
* Made `InstanceAllocationRequest` use a reference to the limiter.
* Updated docs.
* Made `ResourceLimiterProxy` generic to remove a level of indirection.
* Fixed the limiter not being used for `wasmtime::Memory` and
`wasmtime::Table`.
* Code review feedback and bug fix.
* `Memory::new` now returns `Result<Self>` so that an error can be returned if
the initial requested memory exceeds any limits placed on the store.
* Changed an `Arc` to `Rc` as the `Arc` wasn't necessary.
* Removed `Store` from the `ResourceLimiter` callbacks. Custom resource limiter
implementations are free to capture any context they want, so no need to
unnecessarily store a weak reference to `Store` from the proxy type.
* Fixed a bug in the pooling instance allocator where an instance would be
leaked from the pool. Previously, this would only have happened if the OS was
unable to make the necessary linear memory available for the instance. With
these changes, however, the instance might not be created due to limits
placed on the store. We now properly deallocate the instance on error.
* Added more tests, including one that covers the fix mentioned above.
* Code review feedback.
* Add another memory to `test_pooling_allocator_initial_limits_exceeded` to
ensure a partially created instance is successfully deallocated.
* Update some doc comments for better documentation of `Store` and
`ResourceLimiter`.
This commit adds `Module::from_parts` as an internal constructor that shared
the implementation between `Module::from_binary` and module deserialization.
This commit uses a two-phase lookup of stack map information from modules
rather than giving back raw pointers to stack maps.
First the runtime looks up information about a module from a pc value, which
returns an `Arc` it keeps a reference on while completing the stack map lookup.
Second it then queries the module information for the stack map from a pc
value, getting a reference to the stack map (which is now safe because of the
`Arc` held by the runtime).
* Make `FunctionInfo` public and `CompiledModule::func_info` return it.
* Make the `StackMapLookup` trait unsafe.
* Add comments for the purpose of `EngineHostFuncs`.
* Rework ownership model of shared signatures: `SignatureCollection` in
conjunction with `SignatureRegistry` is now used so that the `Engine`,
`Store`, and `Module` don't need to worry about unregistering shared
signatures.
* Implement `Func::param_arity` and `Func::result_arity` in terms of
`Func::ty`.
* Make looking up a trampoline with the module registry more efficient by doing
a binary search on the function's starting PC value for the owning module and
then looking up the trampoline with only that module.
* Remove reference to the shared signatures from `GlobalRegisteredModule`.
This commit removes the stack map registry and instead uses the existing
information from the store's module registry to lookup stack maps.
A trait is now used to pass the lookup context to the runtime, implemented by
`Store` to do the lookup.
With this change, module registration in `Store` is now entirely limited to
inserting the module into the module registry.
This commit moves the shared signature registry out of `Store` and into
`Engine`.
This helps eliminate work that was performed whenever a `Module` was
instantiated into a `Store`.
Now a `Module` is registered with the shared signature registry upon creation,
storing the mapping from the module's signature index space to the shared index
space.
This also refactors the "frame info" registry into a general purpose "module
registry" that is used to look up trap information, signature information, and
(soon) stack map information.
* Introduce a new API that allows notifying that a Store has moved to a new thread
* Add backlink to documentation, and mention the new API in the multithreading doc;
This commit is intended to be a perf improvement for instantiation of
modules with lots of functions. Previously the `lookup_shared_signature`
callback was showing up quite high in profiles as part of instantiation.
As some background, this callback is used to translate from a module's
`SignatureIndex` to a `VMSharedSignatureIndex` which the instance
stores. This callback is called for two reasons, one is to translate all
of the module's own types into `VMSharedSignatureIndex` for the purposes
of `call_indirect` (the translation of that loads from this table to
compare indices). The second reason is that a `VMCallerCheckedAnyfunc`
is prepared for all functions and this embeds a `VMSharedSignatureIndex`
inside of it.
The slow part today is that the lookup callback was called
once-per-function and each lookup involved hashing a full
`WasmFuncType`. Albeit our hash algorithm is still Rust's default
SipHash algorithm which is quite slow, but we also shouldn't need to
re-hash each signature if we see it multiple times anyway.
The fix applied in this commit is to change this lookup callback to an
`enum` where one variant is that there's a table to lookup from. This
table is a `PrimaryMap` which means that lookup is quite fast. The only
thing we need to do is to prepare the table ahead of time. Currently
this happens on the instantiation path because in my measurments the
creation of the table is quite fast compared to the rest of
instantiation. If this becomes an issue, though, we can look into
creating the table as part of `SigRegistry::register_module` and caching
it somewhere (I'm not entirely sure where but I'm sure we can figure it
out).
There's in generally not a ton of efficiency around the `SigRegistry`
type. I'm hoping though that this fixes the next-lowest-hanging-fruit in
terms of performance without complicating the implementation too much. I
tried a few variants and this change seemed like the best balance
between simplicity and still a nice performance gain.
Locally I measured an improvement in instantiation time for a large-ish
module by reducing the time from ~3ms to ~2.6ms per instance.
This commit updates the implementation of `VMOffsets` to frontload all
checked arithmetic on construction of the `VMOffsets` which allows
eliding all checked arithmetic when accessing the fields of `VMOffsets`.
For testing and such this adds a new constructor as well from a new
`VMOffsetsFields` structure which is a clone of the old definition.
This should help speed up some profile hot spots I've been seeing where
with all the checked arithmetic on field sizes this was slowing down the
various accessors during instantiation (which uses `VMOffsets` to
initialize various fields of the `VMContext`).
Looking at some profiles these or their related functions were all
showing up, so this commit adds `#[inline]` to allow cross-crate
inlining by default.