* Update the wasm-tools family of crates
This commit updates these crates as used by Wasmtime for the recently
published versions to pull in changes necessary to support the component
model. I've split this out from #4005 to make it clear what's impacted
here and #4005 can simply rebase on top of this to pick up the necessary
changes.
* More test fixes
* Update to clap 3.0
This commit migrates all CLI commands internally used in this project
from structopt/clap2 to clap 3. The intent here is to ensure that we're
using maintained versions of the dependencies as structopt and clap 2
are less maintained nowadays. Most transitions were pretty
straightforward and mostly dealing with structopt/clap3 differences.
* Fix a number of `cargo deny` errors
This commit fixes a few errors around duplicate dependencies which
arose from the prior update to clap3. This also uses a new feature in
`deny.toml`, `skip-tree`, which allows having a bit more targeted
ignores for skips of duplicate version checks. This showed a few more
locations in Wasmtime itself where we could update some dependencies.
This makes the generator more similar to `wasm-smith` where it is keeping track
of what is on the stack and making choices about what instructions are valid to
generate given the current stack state. This should in theory allow the
generator to emit GC calls while there are live refs on the stack.
Fixes#3917
* Update wasm-tools crates
This commit updates the wasm-tools family of crates as used in Wasmtime.
Notably this brings in the update which removes module linking support
as well as a number of internal refactorings around names and such
within wasmparser itself. This updates all of the wasm translation
support which binds to wasmparser as appropriate.
Other crates all had API-compatible changes for at least what Wasmtime
used so no further changes were necessary beyond updating version
requirements.
* Update a test expectation
* Upgrade all crates to the Rust 2021 edition
I've personally started using the new format strings for things like
`panic!("some message {foo}")` or similar and have been upgrading crates
on a case-by-case basis, but I think it probably makes more sense to go
ahead and blanket upgrade everything so 2021 features are always
available.
* Fix compile of the C API
* Fix a warning
* Fix another warning
A recently discovered fuzz bug reported a difference in execution result
between Wasmtime and v8. The module in question had an exported function
which had multiple results, including floats. About a year ago I
reported a bug on v8 about functions with multiple results leading to
incorrect results, and it was fixed many months back but I don't think
that we ever actually pulled in that update. After updating v8 I saw the
test failure go away, so this update is being done to fix the fuzz bug
test failure I saw.
* Move spec interpreter fuzzing behind a Cargo feature
Building the spec interpreter requires a local installation of Ocaml and
now libgmp which isn't always available, so this enables the ability to
disable building the spec interpreter by using `cargo +nightly fuzz
build --no-default-features`. The spec interpreter is still built by
default but if fuzzers are being built locally and the spec interpreter
isn't needed then this should enable it to be relatively easily
opted-out of.
* Tweak manifest directives
* fuzzing: Add a custom mutator based on `wasm-mutate`
* fuzz: Add a version of the `compile` fuzz target that uses `wasm-mutate`
* Update `wasmparser` dependencies
Ended up being a routine update but seemed good to go ahead and hook up
updates. While I was at it I went ahead and hooked up multi-value
swarm fuzzing as well now that wasm-smith implements it.
* Fuzz cranelift cpu flag settings with Wasmtime
This commit updates the `Config` fuzz-generator to consume some of the
input as configuration settings for codegen flags we pass to cranelift.
This should allow for ideally some more coverage where settings are
disabled or enabled, ideally finding possible bugs in feature-specific
implementations or generic implementations that are rarely used if the
feature-specific ones almost always take precedent.
The technique used in this commit is to weight selection of codegen
settings less frequently than using the native settings. Afterwards each
listed feature is individually enabled or disabled depending on the
input fuzz data, and if a feature is enabled but the host doesn't
actually support it then the fuzz input is rejected with a log message.
The goal here is to still have many fuzz inputs accepted but also ensure
determinism across hosts. If there's a bug specifically related to
enabling a flag then running it on a host without the flag should
indicate that the flag isn't supported rather than silently leaving it
disabled and reporting the fuzz case a success.
* Use built-in `Unstructured::ratio` method
* Tweak macro
* Bump arbitrary dep version
In working on #3787 I see now that our coverage of loading precompiled
files specifically is somewhat lacking, so this adds a config option to
the fuzzers where, if enabled, will round-trip all compiled modules
through the filesystem to test out the mmapped-file case.
This commit updates the crate name from `rusty_v8` to `v8` as well since
the upstream bindings have sinced moved. I originally wanted to do this
to see if a fix for one of our fuzz bugs was pulled in but I don't think
the fix has been pulled in yet. Despite that it seems reasonable to go
ahead and update.
* Update the spec reference testsuite submodule
This commit brings in recent updates to the spec test suite. Most of the
changes here were already fixed in `wasmparser` with some tweaks to
esoteric modules, but Wasmtime also gets a bug fix where where import
matching for the size of tables/memories is based on the current runtime
size of the table/memory rather than the original type of the
table/memory. This means that during type matching the actual value is
consulted for its size rather than using the minimum size listed in its
type.
* Fix now-missing directories in build script
This commit removes the `differential_spec` fuzz target for now,
although this removal is intended to be temporary. We have #3251 to
track re-enabling the spec interpreter in a way that it won't time out,
and additionally the spec interpreter is also failing to build with
ocaml on oss-fuzz so that will also need to be investigated when
re-enabling.
- Add relocation handling needed after PR #3275
- Fix incorrect handling of signed constants detected by PR #3056 test
- Fix LabelUse max pos/neg ranges; fix overflow in buffers.rs
- Disable fuzzing tests that require pre-built v8 binaries
- Disable cranelift test that depends on i128
- Temporarily disable memory64 tests
* Add differential fuzzing against V8
This commit adds a differential fuzzing target to Wasmtime along the
lines of the wasmi and spec interpreters we already have, but with V8
instead. The intention here is that wasmi is unlikely to receive updates
over time (e.g. for SIMD), and the spec interpreter is not suitable for
fuzzing against in general due to its performance characteristics. The
hope is that V8 is indeed appropriate to fuzz against because it's
naturally receiving updates and it also is expected to have good
performance.
Here the `rusty_v8` crate is used which provides bindings to V8 as well
as precompiled binaries by default. This matches exactly the use case we
need and at least for now I think the `rusty_v8` crate will be
maintained by the Deno folks as they continue to develop it. If it
becomes an issue though maintaining we can evaluate other options to
have differential fuzzing against.
For now this commit enables the SIMD and bulk-memory feature of
fuzz-target-generation which should enable them to get
differentially-fuzzed with V8 in addition to the compilation fuzzing
we're already getting.
* Use weak linkage for GDB jit helpers
This should help us deduplicate our symbol with other JIT runtimes, if
any. For now this leans on some C helpers to define the weak linkage
since Rust doesn't support that on stable yet.
* Don't use rusty_v8 on MinGW
They don't have precompiled libraries there.
* Fix msvc build
* Comment about execution
* Update wasm-smith to 0.7.0
* Canonicalize NaN with wasm-smith for differential fuzzing
This then also enables floating point executing in wasmi in addition to
the spec interpreter. With NaN canonicalization at the wasm level this
means that we should be producing deterministic results between Wasmtime
and these alternative implementations.
The WebAssembly spec interpreter is written in OCaml and the new crate
uses `ocaml-interop` along with a small OCaml wrapper to interpret Wasm
modules in-process. The build process for this crate is currently
Linux-specific: it requires several OCaml packages (e.g. `apt install -y
ocaml-nox ocamlbuild`) as well as `make`, `cp`, and `ar`.
* Enable simd fuzzing on oss-fuzz
This commit generally enables the simd feature while fuzzing, which
should affect almost all fuzzers. For fuzzers that just throw random
data at the wall and see what sticks, this means that they'll now be
able to throw simd-shaped data at the wall and have it stick. For
wasm-smith-based fuzzers this commit also updates wasm-smith to 0.6.0
which allows further configuring the `SwarmConfig` after generation,
notably allowing `instantiate-swarm` to generate modules using simd
using `wasm-smith`. This should much more reliably feed simd-related
things into the fuzzers.
Finally, this commit updates wasmtime to avoid usage of the general
`wasm_smith::Module` generator to instead use a Wasmtime-specific custom
default configuration which enables various features we have
implemented.
* Allow dummy table creation to fail
Tables might creation for imports may exceed the memory limit on the
store, which we'll want to gracefully recover from and not fail the
fuzzers.
* Bump the wasm-tools crates
Pulls in some updates here and there, mostly for updating crates to the
latest version to prepare for later memory64 work.
* Update lightbeam
* Update wasm-tools crates
This brings in recent updates, notably including more improvements to
wasm-smith which will hopefully help exercise non-trapping wasm more.
* Fix some wat
This PR switches the default backend on x86, for both the
`cranelift-codegen` crate and for Wasmtime, to the new
(`MachInst`-style, `VCode`-based) backend that has been under
development and testing for some time now.
The old backend is still available by default in builds with the
`old-x86-backend` feature, or by requesting `BackendVariant::Legacy`
from the appropriate APIs.
As part of that switch, it adds some more runtime-configurable plumbing
to the testing infrastructure so that tests can be run using the
appropriate backend. `clif-util test` is now capable of parsing a
backend selector option from filetests and instantiating the correct
backend.
CI has been updated so that the old x86 backend continues to run its
tests, just as we used to run the new x64 backend separately.
At some point, we will remove the old x86 backend entirely, once we are
satisfied that the new backend has not caused any unforeseen issues and
we do not need to revert.
* Update wasm-tools crates
* Update Wasm SIMD spec tests
* Invert 'experimental_x64_should_panic' logic
By doing this, it is easier to see which spec tests currently panic. The new tests correspond to recently-added instructions.
* Fix: ignore new spec tests for all backends
This commit goes through the dependencies that wasmtime has and updates
versions where possible. This notably brings in a wasmparser/wast update
which has some simd spec changes with new instructions. Otherwise most
of these are just routine updates.
This commit updates the various tooling used by wasmtime which has new
updates to the module linking proposal. This is done primarily to sync
with WebAssembly/module-linking#26. The main change implemented here is
that wasmtime now supports creating instances from a set of values, nott
just from instantiating a module. Additionally subtyping handling of
modules with respect to imports is now properly handled by desugaring
two-level imports to imports of instances.
A number of small refactorings are included here as well, but most of
them are in accordance with the changes to `wasmparser` and the updated
binary format for module linking.
* 2499: First pass on TableOps fuzzer generator wasm_encoder migration
- wasm binary generated via sections and smushed together into a module
- test: compare generated wat against expected wat
- note: doesn't work
- Grouped instructions not implemented
- Vec<u8> to wat String not implemented
* 2499: Add typesection, abstract instruction puts, and update test
- TableOp.insert now will interact with a function object directly
- add types for generated function
- expected test string now reflects expected generated code
* 2499: Mark unused index as _i
* 2499: Function insertion is in proper stack order, and fix off by 1
index
- imported functions must be typed
- instructions operate on a stack ie. define values as instructions
before using
* 2499: Apply suggestions from code review
- typo fixing
- oracle ingests binary bytes itself
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
* 2499: Code cleanup + renaming vars
- busywork, nothing to see here
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
This commit updates all the wasm-tools crates that we use and enables
fuzzing of the module linking proposal in our various fuzz targets. This
also refactors some of the dummy value generation logic to not be
fallible and to always succeed, the thinking being that we don't want to
accidentally hide errors while fuzzing. Additionally instantiation is
only allowed to fail with a `Trap`, other failure reasons are unwrapped.
* Implement imported/exported modules/instances
This commit implements the final piece of the module linking proposal
which is to flesh out the support for importing/exporting instances and
modules. This ended up having a few changes:
* Two more `PrimaryMap` instances are now stored in an `Instance`. The value
for instances is `InstanceHandle` (pretty easy) and for modules it's
`Box<dyn Any>` (less easy).
* The custom host state for `InstanceHandle` for `wasmtime` is now
`Arc<TypeTables` to be able to fully reconstruct an instance's types
just from its instance.
* Type matching for imports now has been updated to take
instances/modules into account.
One of the main downsides of this implementation is that type matching
of imports is duplicated between wasmparser and wasmtime, leading to
posssible bugs especially in the subtelties of module linking. I'm not
sure how best to unify these two pieces of validation, however, and it
may be more trouble than it's worth.
cc #2094
* Update wat/wast/wasmparser
* Review comments
* Fix a bug in publish script to vendor the right witx
Currently there's two witx binaries in our repository given the two wasi
spec submodules, so this updates the publication script to vendor the
right one.
This PR adds a new fuzz target, `differential_wasmi`, that runs a
Cranelift-based Wasm backend alongside a simple third-party Wasm
interpeter crate (`wasmi`). The fuzzing runs the first function in a
given module to completion on each side, and then diffs the return value
and linear memory contents.
This strategy should provide end-to-end coverage including both the Wasm
translation to CLIF (which has seen some subtle and scary bugs at
times), the lowering from CLIF to VCode, the register allocation, and
the final code emission.
This PR also adds a feature `experimental_x64` to the fuzzing crate (and
the chain of dependencies down to `cranelift-codegen`) so that we can
fuzz the new x86-64 backend as well as the current one.
* this requires upgrading to wasmparser 0.67.0.
* There are no CLIF side changes because the CLIF `select` instruction is
polymorphic enough.
* on aarch64, there is unfortunately no conditional-move (csel) instruction on
vectors. This patch adds a synthetic instruction `VecCSel` which *does*
behave like that. At emit time, this is emitted as an if-then-else diamond
(4 insns).
* aarch64 implementation is otherwise straightforwards.
I don't think this has happened in awhile but I've run a `cargo update`
as well as trimming some of the duplicate/older dependencies in
`Cargo.lock` by updating some of our immediate dependencies as well.