Commit Graph

62 Commits

Author SHA1 Message Date
Chris Fallin
1faff8c2ce Enable egraph-based optimization by default. (#5587)
This PR follows up on #5382 and #5391, which rebuilt the egraph-based optimization framework to be more performant, by enabling it by default.

Based on performance results in #5382 (my measurements on SpiderMonkey and bjorn3's independent confirmation with cg_clif), it seems that this is reasonable to enable. Now that we have been fuzzing compiler configurations with egraph opts (#5388) for 6 weeks, having fixed a few fuzzbugs that came up (#5409, #5420, #5438) and subsequently received no further reports from OSS-Fuzz, I believe it is stable enough to rely on.

This PR enables `use_egraphs`, and also normalizes its meaning: previously it forced optimization (it basically meant "turn on the egraph optimization machinery"), now it runs egraph opts if the opt level indicates (it means "use egraphs to optimize if we are going to optimize"). The conditionals in the top-level pass driver are a little subtle, but will get simpler once we can remove the non-egraph path (which we plan to do eventually!).

Fixes #5181.
2023-01-19 15:46:53 -08:00
Nick Fitzgerald
937601c7c3 Cranelift: GVN spectre guards and run redundant load elimination twice (#5517)
* Cranelift: Make spectre guards GVN-able

While these instructions have a side effect that is otherwise invisible to the
optimizer, the side effect in question is idempotent, so it can be de-duplicated
by GVN.

* Cranelift: Run redundant load replacement and GVN twice

This allows us to actually replace redundant Wasm loads with dynamic memories.

While this improves our hand-crafted test sequences, it doesn't seem to have any
improvement on sightglass benchmarks run with dynamic memories, however it also
isn't a hit to compilation times, so seems generally good to land anyways:

```
$ cargo run --release -- benchmark -e ~/scratch/once.so -e ~/scratch/twice.so -m insts-retired --processes 20 --iterations-per-process 3 --engine-flags="--static-memory-maximum-size 0" -- benchmarks/default.suite
compilation :: instructions-retired :: benchmarks/spidermonkey/benchmark.wasm

  No difference in performance.

  [683595240 683768610.53 684097577] once.so
  [683597068 700115966.83 1664907164] twice.so

instantiation :: instructions-retired :: benchmarks/spidermonkey/benchmark.wasm

  No difference in performance.

  [44107 60411.07 92785] once.so
  [44138 59552.32 92097] twice.so

compilation :: instructions-retired :: benchmarks/bz2/benchmark.wasm

  No difference in performance.

  [17369916 17404839.78 17471458] once.so
  [17369935 17625713.87 30700150] twice.so

compilation :: instructions-retired :: benchmarks/pulldown-cmark/benchmark.wasm

  No difference in performance.

  [126523640 126566170.80 126648265] once.so
  [126523076 127174580.30 163145149] twice.so

instantiation :: instructions-retired :: benchmarks/pulldown-cmark/benchmark.wasm

  No difference in performance.

  [34569 35686.25 36513] once.so
  [34651 35749.97 36953] twice.so

instantiation :: instructions-retired :: benchmarks/bz2/benchmark.wasm

  No difference in performance.

  [35146 36639.10 37707] once.so
  [34472 36580.82 38431] twice.so

execution :: instructions-retired :: benchmarks/spidermonkey/benchmark.wasm

  No difference in performance.

  [7055720115 7055841324.82 7056180024] once.so
  [7055717681 7055877095.85 7056225217] twice.so

execution :: instructions-retired :: benchmarks/pulldown-cmark/benchmark.wasm

  No difference in performance.

  [46436881 46437081.28 46437691] once.so
  [46436883 46437127.68 46437766] twice.so

execution :: instructions-retired :: benchmarks/bz2/benchmark.wasm

  No difference in performance.

  [653010530 653010533.27 653010539] once.so
  [653010531 653010532.95 653010538] twice.so
```
2023-01-04 20:05:43 +00:00
Chris Fallin
f980defe17 egraph support: rewrite to work in terms of CLIF data structures. (#5382)
* egraph support: rewrite to work in terms of CLIF data structures.

This work rewrites the "egraph"-based optimization framework in
Cranelift to operate on aegraphs (acyclic egraphs) represented in the
CLIF itself rather than as a separate data structure to which and from
which we translate the CLIF.

The basic idea is to add a new kind of value, a "union", that is like an
alias but refers to two other values rather than one.  This allows us to
represent an eclass of enodes (values) as a tree. The union node allows
for a value to have *multiple representations*: either constituent value
could be used, and (in well-formed CLIF produced by correct
optimization rules) they must be equivalent.

Like the old egraph infrastructure, we take advantage of acyclicity and
eager rule application to do optimization in a single pass. Like before,
we integrate GVN (during the optimization pass) and LICM (during
elaboration).

Unlike the old egraph infrastructure, everything stays in the
DataFlowGraph. "Pure" enodes are represented as instructions that have
values attached, but that are not placed into the function layout. When
entering "egraph" form, we remove them from the layout while optimizing.
When leaving "egraph" form, during elaboration, we can place an
instruction back into the layout the first time we elaborate the enode;
if we elaborate it more than once, we clone the instruction.

The implementation performs two passes overall:

- One, a forward pass in RPO (to see defs before uses), that (i) removes
  "pure" instructions from the layout and (ii) optimizes as it goes. As
  before, we eagerly optimize, so we form the entire union of optimized
  forms of a value before we see any uses of that value. This lets us
  rewrite uses to use the most "up-to-date" form of the value and
  canonicalize and optimize that form.

  The eager rewriting and acyclic representation make each other work
  (we could not eagerly rewrite if there were cycles; and acyclicity
  does not miss optimization opportunities only because the first time
  we introduce a value, we immediately produce its "best" form). This
  design choice is also what allows us to avoid the "parent pointers"
  and fixpoint loop of traditional egraphs.

  This forward optimization pass keeps a scoped hashmap to "intern"
  nodes (thus performing GVN), and also interleaves on a per-instruction
  level with alias analysis. The interleaving with alias analysis allows
  alias analysis to see the most optimized form of each address (so it
  can see equivalences), and allows the next value to see any
  equivalences (reuses of loads or stored values) that alias analysis
  uncovers.

- Two, a forward pass in domtree preorder, that "elaborates" pure enodes
  back into the layout, possibly in multiple places if needed. This
  tracks the loop nest and hoists nodes as needed, performing LICM as it
  goes. Note that by doing this in forward order, we avoid the
  "fixpoint" that traditional LICM needs: we hoist a def before its
  uses, so when we place a node, we place it in the right place the
  first time rather than moving later.

This PR replaces the old (a)egraph implementation. It removes both the
cranelift-egraph crate and the logic in cranelift-codegen that uses it.

On `spidermonkey.wasm` running a simple recursive Fibonacci
microbenchmark, this work shows 5.5% compile-time reduction and 7.7%
runtime improvement (speedup).

Most of this implementation was done in (very productive) pair
programming sessions with Jamey Sharp, thus:

Co-authored-by: Jamey Sharp <jsharp@fastly.com>

* Review feedback.

* Review feedback.

* Review feedback.

* Bugfix: cprop rule: `(x + k1) - k2` becomes `x - (k2 - k1)`, not `x - (k1 - k2)`.

Co-authored-by: Jamey Sharp <jsharp@fastly.com>
2022-12-06 14:58:57 -08:00
Chris Fallin
feaa7ca75f Alias analysis: refactor for use by other driver loops. (#5380)
* Alias analysis: refactor for use by other driver loops.

This PR pulls the core of the alias analysis infrastructure into a
`process_inst()` method that operates on a single instruction, and
allows another compiler pass to apply store-to-load forwarding and
redundant-load elimination interleaved with other work. The existing
behavior remains unchanged; the pass's toplevel loop calls this
extracted method.

This refactor is a prerequisite for using the alias analysis as part of
a refactored egraph-based optimization framework.

* Review feedback: remove unneeded mut.
2022-12-06 18:30:02 +00:00
Nick Fitzgerald
58a5089e48 Cranelift: log number of CLIF insts/blocks to optimize/lower (#5333) 2022-11-28 19:35:29 +00:00
Chris Fallin
2be12a5167 egraph-based midend: draw the rest of the owl (productionized). (#4953)
* egraph-based midend: draw the rest of the owl.

* Rename `egg` submodule of cranelift-codegen to `egraph`.

* Apply some feedback from @jsharp during code walkthrough.

* Remove recursion from find_best_node by doing a single pass.

Rather than recursively computing the lowest-cost node for a given
eclass and memoizing the answer at each eclass node, we can do a single
forward pass; because every eclass node refers only to earlier nodes,
this is sufficient. The behavior may slightly differ from the earlier
behavior because we cannot short-circuit costs to zero once a node is
elaborated; but in practice this should not matter.

* Make elaboration non-recursive.

Use an explicit stack instead (with `ElabStackEntry` entries,
alongside a result stack).

* Make elaboration traversal of the domtree non-recursive/stack-safe.

* Work analysis logic in Cranelift-side egraph glue into a general analysis framework in cranelift-egraph.

* Apply static recursion limit to rule application.

* Fix aarch64 wrt dynamic-vector support -- broken rebase.

* Topo-sort cranelift-egraph before cranelift-codegen in publish script, like the comment instructs me to!

* Fix multi-result call testcase.

* Include `cranelift-egraph` in `PUBLISHED_CRATES`.

* Fix atomic_rmw: not really a load.

* Remove now-unnecessary PartialOrd/Ord derivations.

* Address some code-review comments.

* Review feedback.

* Review feedback.

* No overlap in mid-end rules, because we are defining a multi-constructor.

* rustfmt

* Review feedback.

* Review feedback.

* Review feedback.

* Review feedback.

* Remove redundant `mut`.

* Add comment noting what rules can do.

* Review feedback.

* Clarify comment wording.

* Update `has_memory_fence_semantics`.

* Apply @jameysharp's improved loop-level computation.

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Fix suggestion commit.

* Fix off-by-one in new loop-nest analysis.

* Review feedback.

* Review feedback.

* Review feedback.

* Use `Default`, not `std::default::Default`, as per @fitzgen

Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>

* Apply @fitzgen's comment elaboration to a doc-comment.

Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>

* Add stat for hitting the rewrite-depth limit.

* Some code motion in split prelude to make the diff a little clearer wrt `main`.

* Take @jameysharp's suggested `try_into()` usage for blockparam indices.

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Take @jameysharp's suggestion to avoid double-match on load op.

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Fix suggestion (add import).

* Review feedback.

* Fix stack_load handling.

* Remove redundant can_store case.

* Take @jameysharp's suggested improvement to FuncEGraph::build() logic

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Tweaks to FuncEGraph::build() on top of suggestion.

* Take @jameysharp's suggested clarified condition

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Clean up after suggestion (unused variable).

* Fix loop analysis.

* loop level asserts

* Revert constant-space loop analysis -- edge cases were incorrect, so let's go with the simple thing for now.

* Take @jameysharp's suggestion re: result_tys

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Fix up after suggestion

* Take @jameysharp's suggestion to use fold rather than reduce

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Fixup after suggestion

* Take @jameysharp's suggestion to remove elaborate_eclass_use's return value.

* Clarifying comment in terminator insts.

Co-authored-by: Jamey Sharp <jamey@minilop.net>
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
2022-10-11 18:15:53 -07:00
Jamey Sharp
04b30acad9 Misc cleanups (#5014)
* Replace resize+copy_from_slice with extend_from_slice

Vec::resize initializes the new space, which is wasted effort if we're
just going to call `copy_from_slice` on it immediately afterward. Using
`extend_from_slice` is simpler, and very slightly faster.

If the new size were bigger than the buffer we're copying from, then it
would make sense to initialize the excess. But it isn't: it's always
exactly the same size.

* Move helpers from Context to CompiledCode

These methods only use information from Context::compiled_code, so they
should live on CompiledCode instead.

* Remove an unnecessary #[cfg_attr]

There are other uses of `#[allow(clippy::too_many_arguments)]` in this
file, so apparently it doesn't need to be guarded by the "cargo-clippy"
feature.

* Fix a few comments

Two of these were wrong/misleading:

- `FunctionBuilder::new` does not clear the provided func_ctx. It does
  debug-assert that the context is already clear, but I don't think
  that's worth a comment.

- `switch_to_block` does not "create values for the arguments." That's
  done by the combination of `append_block_params_for_function_params`
  and `declare_wasm_parameters`.

* wasmtime-cranelift: Misc cleanups

The main change is to use the `CompiledCode` reference we already had
instead of getting it out of `Context` repeatedly. This removes a bunch
of `unwrap()` calls.

* wasmtime-cranelift: Factor out uncached compile
2022-10-05 10:35:59 -07:00
Benjamin Bouvier
8a9b1a9025 Implement an incremental compilation cache for Cranelift (#4551)
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime. 

After the suggestion of Chris, `Function` has been split into mostly two parts:

- on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`.
- on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on.

Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache:

- most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set.
- user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`.
- some refactorings have been made for function names:
  - `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name.
  - The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with.

The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions.

A basic fuzz target has been introduced that tries to do the bare minimum:

- check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function.
- check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache.
  - This last check is less efficient and less likely to happen, so probably should be rethought a bit.

Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip.

Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement. 

Fixes #4155.
2022-08-12 16:47:43 +00:00
Benjamin Bouvier
ff37c9d8a4 [cranelift] Rejigger the compile API (#4540)
* Move `emit_to_memory` to `MachCompileResult`

This small refactoring makes it clearer to me that emitting to memory
doesn't require anything else from the compilation `Context`. While it's
a trivial change, it's a small public API change that shouldn't cause
too much trouble, and doesn't seem RFC-worthy. Happy to hear different
opinions about this, though!

* hide the MachCompileResult behind a method

* Add a `CompileError` wrapper type that references a `Function`

* Rename MachCompileResult to CompiledCode

* Additionally remove the last unsafe API in cranelift-codegen
2022-08-02 12:05:40 -07:00
Nick Fitzgerald
b24c561ceb cranelift: Don't log CLIF and assembly at debug level (#4503)
Too verbose. Only log them at trace level.
2022-07-21 15:31:05 -07:00
Chris Fallin
2034c8aa45 Cranelift: add a config option for alias analysis and redundant-load elimination. (#4349)
This allows for experiments as in here [1] and also generally gives an
option to anyone who is concerned that the extra optimization may be
counterproductive or take too much time. The optimization remains
enabled by default.

[1]
https://github.com/bytecodealliance/wasmtime/pull/4163#issuecomment-1169303683
2022-06-28 15:25:47 -07:00
Chris Fallin
0824abbae4 Add a basic alias analysis with redundant-load elim and store-to-load fowarding opts. (#4163)
This PR adds a basic *alias analysis*, and optimizations that use it.
This is a "mid-end optimization": it operates on CLIF, the
machine-independent IR, before lowering occurs.

The alias analysis (or maybe more properly, a sort of memory-value
analysis) determines when it can prove a particular memory
location is equal to a given SSA value, and when it can, it replaces any
loads of that location.

This subsumes two common optimizations:

* Redundant load elimination: when the same memory address is loaded two
  times, and it can be proven that no intervening operations will write
  to that memory, then the second load is *redundant* and its result
  must be the same as the first. We can use the first load's result and
  remove the second load.

* Store-to-load forwarding: when a load can be proven to access exactly
  the memory written by a preceding store, we can replace the load's
  result with the store's data operand, and remove the load.

Both of these optimizations rely on a "last store" analysis that is a
sort of coloring mechanism, split across disjoint categories of abstract
state. The basic idea is that every memory-accessing operation is put
into one of N disjoint categories; it is disallowed for memory to ever
be accessed by an op in one category and later accessed by an op in
another category. (The frontend must ensure this.)

Then, given this, we scan the code and determine, for each
memory-accessing op, when a single prior instruction is a store to the
same category. This "colors" the instruction: it is, in a sense, a
static name for that version of memory.

This analysis provides an important invariant: if two operations access
memory with the same last-store, then *no other store can alias* in the
time between that last store and these operations. This must-not-alias
property, together with a check that the accessed address is *exactly
the same* (same SSA value and offset), and other attributes of the
access (type, extension mode) are the same, let us prove that the
results are the same.

Given last-store info, we scan the instructions and build a table from
"memory location" key (last store, address, offset, type, extension) to
known SSA value stored in that location. A store inserts a new mapping.
A load may also insert a new mapping, if we didn't already have one.
Then when a load occurs and an entry already exists for its "location",
we can reuse the value. This will be either RLE or St-to-Ld depending on
where the value came from.

Note that this *does* work across basic blocks: the last-store analysis
is a full iterative dataflow pass, and we are careful to check dominance
of a previously-defined value before aliasing to it at a potentially
redundant load. So we will do the right thing if we only have a
"partially redundant" load (loaded already but only in one predecessor
block), but we will also correctly reuse a value if there is a store or
load above a loop and a redundant load of that value within the loop, as
long as no potentially-aliasing stores happen within the loop.
2022-05-20 13:19:32 -07:00
Nikita Baksalyar
f9cf4fe640 Fix documentation for codegen::Context::compile (#4019)
The function docs incorrectly referred to an argument that's no longer there.
2022-04-12 13:01:00 -07:00
bjorn3
b803514d55 Remove sink arguments from compile_and_emit
The data can be accessed after the fact using context.mach_compile_result
2022-01-11 18:17:29 +01:00
bjorn3
55d722db05 Remove CodeSink 2022-01-11 17:10:37 +01:00
bjorn3
a48a60f958 Remove reloc_external from CodeSink
And introduce MachBufferFinalized::relocs() in the place.
2022-01-11 16:54:27 +01:00
bjorn3
63e2360346 Remove trap from CodeSink
And introduce MachBufferFinalized::traps() in the place.
2022-01-11 16:42:52 +01:00
bjorn3
37598ad170 Remove end_codegen method from CodeSink 2022-01-11 14:52:04 +01:00
bjorn3
03dc74d8e7 Add emit_unwind_info method to TargetIsa 2022-01-06 14:39:50 +01:00
bjorn3
9eba87a6c8 Add compile_function method to TargetIsa 2022-01-06 14:39:50 +01:00
bjorn3
e98a85e1e2 Make get_mach_backend non-optional 2022-01-04 15:48:19 +01:00
bjorn3
b3aa692a44 Don't return CodeInfo from Context::compile_and_emit
It is already available through ctx.mach_compile_result and rarely
needed.
2022-01-04 15:48:05 +01:00
Benjamin Bouvier
772176dbfb Cranelift: remove unused EncCursor 2021-10-04 19:11:52 +02:00
Benjamin Bouvier
43a86f14d5 Remove more old backend ISA concepts (#3402)
This also paves the way for unifying TargetIsa and MachBackend, since now they map one to one. In theory the two traits could be merged, which would be nice to limit the number of total concepts. Also they have quite different responsibilities, so it might be fine to keep them separate.

Interestingly, this PR started as removing RegInfo from the TargetIsa trait since the adapter returned a dummy value there. From the fallout, noticed that all Display implementations didn't needed an ISA anymore (since these were only used to render ISA specific registers). Also the whole family of RegInfo / ValueLoc / RegUnit was exclusively used for the old backend, and these could be removed. Notably, some IR instructions needed to be removed, because they were using RegUnit too: this was the oddball of regfill / regmove / regspill / copy_special, which were IR instructions inserted by the old regalloc. Fare thee well!
2021-10-04 10:36:12 +02:00
Benjamin Bouvier
bae4ec6427 Remove ancient register allocation (#3401) 2021-09-30 21:27:23 +02:00
Nick Fitzgerald
4283d2116d cranelift: Move most debug-level logs to the trace level
Cranelift crates have historically been much more verbose with debug-level
logging than most other crates in the Rust ecosystem. We log things like how
many parameters a basic block has, the color of virtual registers during
regalloc, etc. Even for Cranelift hackers, these things are largely only useful
when hacking specifically on Cranelift and looking at a particular test case,
not even when using some Cranelift embedding (such as Wasmtime).

Most of the time, when people want logging for their Rust programs, they do
something like:

    RUST_LOG=debug cargo run

This means that they get all that mostly not useful debug logging out of
Cranelift. So they might want to disable logging for Cranelift, or change it to
a higher log level:

    RUST_LOG=debug,cranelift=info cargo run

The problem is that this is already more annoying to type that `RUST_LOG=debug`,
and that Cranelift isn't one single crate, so you actually have to play
whack-a-mole with naming all the Cranelift crates off the top of your head,
something more like this:

    RUST_LOG=debug,cranelift=info,cranelift_codegen=info,cranelift_wasm=info,...

Therefore, we're changing most of the `debug!` logs into `trace!` logs: anything
that is very Cranelift-internal, unlikely to be useful/meaningful to the
"average" Cranelift embedder, or prints a message for each instruction visited
during a pass. On the other hand, things that just report a one line statistic
for a whole pass, for example, are left as `debug!`. The more verbose the log
messages are, the higher the bar they must clear to be `debug!` rather than
`trace!`.
2021-07-26 11:50:16 -07:00
Chris Fallin
11a2ef01e7 Provide BB layout info externally in terms of code offsets.
This is sometimes useful when performing analyses on the generated
machine code: for example, some kinds of code verifiers will want to do
a control-flow analysis, and it is much easier to do this if one does
not have to recover the CFG from the machine code (doing so requires
heavyweight analysis when indirect branches are involved). If one trusts
the control-flow lowering and only needs to verify other properties of
the code, this can be very useful.
2021-05-24 09:18:06 -07:00
Alex Crichton
195bf0e29a Fully support multiple returns in Wasmtime (#2806)
* Fully support multiple returns in Wasmtime

For quite some time now Wasmtime has "supported" multiple return values,
but only in the mose bare bones ways. Up until recently you couldn't get
a typed version of functions with multiple return values, and never have
you been able to use `Func::wrap` with functions that return multiple
values. Even recently where `Func::typed` can call functions that return
multiple values it uses a double-indirection by calling a trampoline
which calls the real function.

The underlying reason for this lack of support is that cranelift's ABI
for returning multiple values is not possible to write in Rust. For
example if a wasm function returns two `i32` values there is no Rust (or
C!) function you can write to correspond to that. This commit, however
fixes that.

This commit adds two new ABIs to Cranelift: `WasmtimeSystemV` and
`WasmtimeFastcall`. The intention is that these Wasmtime-specific ABIs
match their corresponding ABI (e.g. `SystemV` or `WindowsFastcall`) for
everything *except* how multiple values are returned. For multiple
return values we simply define our own version of the ABI which Wasmtime
implements, which is that for N return values the first is returned as
if the function only returned that and the latter N-1 return values are
returned via an out-ptr that's the last parameter to the function.

These custom ABIs provides the ability for Wasmtime to bind these in
Rust meaning that `Func::wrap` can now wrap functions that return
multiple values and `Func::typed` no longer uses trampolines when
calling functions that return multiple values. Although there's lots of
internal changes there's no actual changes in the API surface area of
Wasmtime, just a few more impls of more public traits which means that
more types are supported in more places!

Another change made with this PR is a consolidation of how the ABI of
each function in a wasm module is selected. The native `SystemV` ABI,
for example, is more efficient at returning multiple values than the
wasmtime version of the ABI (since more things are in more registers).
To continue to take advantage of this Wasmtime will now classify some
functions in a wasm module with the "fast" ABI. Only functions that are
not reachable externally from the module are classified with the fast
ABI (e.g. those not exported, used in tables, or used with `ref.func`).
This should enable purely internal functions of modules to have a faster
calling convention than those which might be exposed to Wasmtime itself.

Closes #1178

* Tweak some names and add docs

* "fix" lightbeam compile

* Fix TODO with dummy environ

* Unwind info is a property of the target, not the ABI

* Remove lightbeam unused imports

* Attempt to fix arm64

* Document new ABIs aren't stable

* Fix filetests to use the right target

* Don't always do 64-bit stores with cranelift

This was overwriting upper bits when 32-bit registers were being stored
into return values, so fix the code inline to do a sized store instead
of one-size-fits-all store.

* At least get tests passing on the old backend

* Fix a typo

* Add some filetests with mixed abi calls

* Get `multi` example working

* Fix doctests on old x86 backend

* Add a mixture of wasmtime/system_v tests
2021-04-07 12:34:26 -05:00
Chris Fallin
c84d6be6f4 Detailed debug-info (DWARF) support in new backends (initially x64).
This PR propagates "value labels" all the way from CLIF to DWARF
metadata on the emitted machine code. The key idea is as follows:

- Translate value-label metadata on the input into "value_label"
  pseudo-instructions when lowering into VCode. These
  pseudo-instructions take a register as input, denote a value label,
  and semantically are like a "move into value label" -- i.e., they
  update the current value (as seen by debugging tools) of the given
  local. These pseudo-instructions emit no machine code.

- Perform a dataflow analysis *at the machine-code level*, tracking
  value-labels that propagate into registers and into [SP+constant]
  stack storage. This is a forward dataflow fixpoint analysis where each
  storage location can contain a *set* of value labels, and each value
  label can reside in a *set* of storage locations. (Meet function is
  pairwise intersection by storage location.)

  This analysis traces value labels symbolically through loads and
  stores and reg-to-reg moves, so it will naturally handle spills and
  reloads without knowing anything special about them.

- When this analysis converges, we have, at each machine-code offset, a
  mapping from value labels to some number of storage locations; for
  each offset for each label, we choose the best location (prefer
  registers). Note that we can choose any location, as the symbolic
  dataflow analysis is sound and guarantees that the value at the
  value_label instruction propagates to all of the named locations.

- Then we can convert this mapping into a format that the DWARF
  generation code (wasmtime's debug crate) can use.

This PR also adds the new-backend variant to the gdb tests on CI.
2021-01-21 15:59:49 -08:00
Chris Fallin
01b60e81b0 Fix and enable GC on new x64 backend.
One critical bit of plumbing was missing: the `StackMapSink` passed to
`compile_and_emit` was not actually receiving stackmaps. This seemingly
very basic issue was not caught because the other major user of reftype
support, SpiderMonkey, extracts stackmaps with a lower-level API. The
SM integration was built this way to avoid an awkward API quirk when
passing stackmaps through a `CodeSink` that proxies them to a
`StackMapSink`: the `CodeSink` wants `Value`s for each reference slot,
while the actual `StackMapSink` does not require these. This PR tweaks
the plumbing in a slightly different way to make `wasmtime` GC tests,
and presumably other consumers of stack-map info from the top-level
Cranelift interface, happy.
2020-11-12 16:55:18 -08:00
Yury Delendik
f60c0f3ec3 cranelift: refactor unwind logic to accommodate multiple backends (#2357)
*    Make cranelift_codegen::isa::unwind::input public
*    Move UnwindCode's common offset field out of the structure
*    Make MachCompileResult::unwind_info more generic
*    Record initial stack pointer offset
2020-11-05 16:57:40 -06:00
Yury Delendik
de4af90af6 machinst x64: New backend unwind (#2266)
Addresses unwind for experimental x64 backend. The preliminary code enables backtrace on SystemV call convension.
2020-10-23 15:19:41 -05:00
Nick Fitzgerald
e1c8878b33 cranelift_codegen::souper_harvest: Move preopt out of Context, into clif-util
This allows for more flexibility of when/where to harvest LHS candidates. For
example, we could choose to harvest candidates that overlap with and supercede
our current preopt peepholes.

This commit also makes sure that we compute the CFG before running preopt, when
harvesting LHS candidates via `clif-util souper-harvest`.
2020-09-14 16:27:47 -07:00
Nick Fitzgerald
3a6dd832c0 Harvest left-hand side superoptimization candidates.
Given a clif function, harvest all its integer subexpressions, so that they can
be fed into [Souper](https://github.com/google/souper) as candidates for
superoptimization. For some of these candidates, Souper will successfully
synthesize a right-hand side that is equivalent but has lower cost than the
left-hand side. Then, we can combine these left- and right-hand sides into a
complete optimization, and add it to our peephole passes.

To harvest the expression that produced a given value `x`, we do a post-order
traversal of the dataflow graph starting from `x`. As we do this traversal, we
maintain a map from clif values to their translated Souper values. We stop
traversing when we reach anything that can't be translated into Souper IR: a
memory load, a float-to-int conversion, a block parameter, etc. For values
produced by these instructions, we create a Souper `var`, which is an input
variable to the optimization. For instructions that have a direct mapping into
Souper IR, we get the Souper version of each of its operands and then create the
Souper version of the instruction itself. It should now be clear why we do a
post-order traversal: we need an instruction's translated operands in order to
translate the instruction itself. Once this instruction is translated, we update
the clif-to-souper map with this new translation so that any other instruction
that uses this result as an operand has access to the translated value. When the
traversal is complete we return the translation of `x` as the root of left-hand
side candidate.
2020-09-14 16:27:47 -07:00
Nick Fitzgerald
05bf9ea3f3 Rename "Stackmap" to "StackMap"
And "stackmap" to "stack_map".

This commit is purely mechanical.
2020-08-07 10:08:44 -07:00
Chris Fallin
72e6be9342 Rework of MachInst isel, branch fixups and lowering, and block ordering.
This patch includes:

- A complete rework of the way that CLIF blocks and edge blocks are
  lowered into VCode blocks. The new mechanism in `BlockLoweringOrder`
  computes RPO over the CFG, but with a twist: it merges edge blocks intto
  heads or tails of original CLIF blocks wherever possible, and it does
  this without ever actually materializing the full nodes-plus-edges
  graph first. The backend driver lowers blocks in final order so
  there's no need to reshuffle later.

- A new `MachBuffer` that replaces the `MachSection`. This is a special
  version of a code-sink that is far more than a humble `Vec<u8>`. In
  particular, it keeps a record of label definitions and label uses,
  with a machine-pluggable `LabelUse` trait that defines various types
  of fixups (basically internal relocations).

  Importantly, it implements some simple peephole-style branch rewrites
  *inline in the emission pass*, without any separate traversals over
  the code to use fallthroughs, swap taken/not-taken arms, etc. It
  tracks branches at the tail of the buffer and can (i) remove blocks
  that are just unconditional branches (by redirecting the label), (ii)
  understand a conditional/unconditional pair and swap the conditional
  polarity when it's helpful; and (iii) remove branches that branch to
  the fallthrough PC.

  The `MachBuffer` also implements branch-island support. On
  architectures like AArch64, this is needed to allow conditional
  branches within plausibly-attainable ranges (+/- 1MB on AArch64
  specifically). It also does this inline while streaming through the
  emission, without any sort of fixpoint algorithm or later moving of
  code, by simply tracking outstanding references and "deadlines" and
  emitting an island just-in-time when we're in danger of going out of
  range.

- A rework of the instruction selector driver. This is largely following
  the same algorithm as before, but is cleaned up significantly, in
  particular in the API: the machine backend can ask for an input arg
  and get any of three forms (constant, register, producing
  instruction), indicating it needs the register or can merge the
  constant or producing instruction as appropriate. This new driver
  takes special care to emit constants right at use-sites (and at phi
  inputs), minimizing their live-ranges, and also special-cases the
  "pinned register" to avoid superfluous moves.

Overall, on `bz2.wasm`, the results are:

    wasmtime full run (compile + runtime) of bz2:

    baseline:   9774M insns, 9742M cycles, 3.918s
    w/ changes: 7012M insns, 6888M cycles, 2.958s  (24.5% faster, 28.3% fewer insns)

    clif-util wasm compile bz2:

    baseline:   2633M insns, 3278M cycles, 1.034s
    w/ changes: 2366M insns, 2920M cycles, 0.923s  (10.7% faster, 10.1% fewer insns)

    All numbers are averages of two runs on an Ampere eMAG.
2020-05-16 23:08:22 -07:00
Julian Seward
0bc0503f3f Add a transformation pass which removes phi nodes to which it can demonstrate
that only one value ever flows.  Has been observed to improve generated code
run times by up to 8%.  Compilation cost increases by about 0.6%, but up to 7%
total cost has been observed to be saved; iow it can be a significant win in
terms of compilation time, overall.
2020-05-08 09:41:16 +02:00
Benjamin Bouvier
d50e956974 Remove an unnecessary mutable qualifier when passing a function to compile; 2020-04-21 12:12:56 +02:00
Peter Huene
f7e9f86ba9 Refactor unwind generation in Cranelift.
This commit makes the following changes to unwind information generation in
Cranelift:

* Remove frame layout change implementation in favor of processing the prologue
  and epilogue instructions when unwind information is requested.  This also
  means this work is no longer performed for Windows, which didn't utilize it.
  It also helps simplify the prologue and epilogue generation code.

* Remove the unwind sink implementation that required each unwind information
  to be represented in final form. For FDEs, this meant writing a
  complete frame table per function, which wastes 20 bytes or so for each
  function with duplicate CIEs.  This also enables Cranelift users to collect the
  unwind information and write it as a single frame table.

* For System V calling convention, the unwind information is no longer stored
  in code memory (it's only a requirement for Windows ABI to do so).  This allows
  for more compact code memory for modules with a lot of functions.

* Deletes some duplicate code relating to frame table generation.  Users can
  now simply use gimli to create a frame table from each function's unwind
  information.

Fixes #1181.
2020-04-16 11:15:32 -07:00
Chris Fallin
7da6101732 Merge pull request #1494 from cfallin/arm64-merge
Add new `MachInst` backend and ARM64 support.
2020-04-16 10:02:02 -07:00
Chris Fallin
48cf2c2f50 Address review comments:
- Undo temporary changes to default features (`all-arch`) and a
  signal-handler test.
- Remove `SIGTRAP` handler: no longer needed now that we've found an
  "undefined opcode" option on ARM64.
- Rename pp.rs to pretty_print.rs in machinst/.
- Only use empty stack-probe on non-x86. As per a comment in
  rust-lang/compiler-builtins [1], LLVM only supports stack probes on
  x86 and x86-64. Thus, on any other CPU architecture, we cannot refer
  to `__rust_probestack`, because it does not exist.
- Rename arm64 to aarch64.
- Use `target` directive in vcode filetests.
- Run the flags verifier, but without encinfo, when using new backends.
- Clean up warning overrides.
- Fix up use of casts: use u32::from(x) and siblings when possible,
  u32::try_from(x).unwrap() when not, to avoid silent truncation.
- Take immutable `Function` borrows as input; we don't actually
  mutate the input IR.
- Lots of other miscellaneous cleanups.

[1] cae3e6ea23/src/probestack.rs (L39)
2020-04-15 17:21:28 -07:00
Chris Fallin
60990aeaae ARM64 backend, part 8 / 11: integration.
This patch ties together the new backend infrastructure with the
existing Cranelift codegen APIs.

With all patches in this series up to this patch applied, the ARM64
compiler is now functional and can be used. Two uses of this
functionality -- filecheck-based tests and integration into wasmtime --
will come in subsequent patches.
2020-04-11 17:52:37 -07:00
iximeow
4cca510085 Windows FPRs preservation (#1216)
Preserve FPRs as required by the Windows fastcall calling convention.

This exposes an implementation limit due to Cranelift's approach to stack layout, which conflicts with expectations Windows makes in SEH layout - functions where the Cranelift user desires fastcall unwind information, that require preservation of an ABI-reserved FPR, that have a stack frame 240 bytes or larger, now produce an error when compiled. Several wasm spectests were disabled because they would trip this limit. This is a temporary constraint that should be fixed promptly.

Co-authored-by: bjorn3 <bjorn3@users.noreply.github.com>
2020-04-10 13:27:20 -07:00
Yury Delendik
bd88155483 Refactor unwind; add FDE support. (#1320)
* Refactor unwind

* add FDE support

* use sink directly in emit functions

* pref off all unwinding generation with feature
2020-01-13 10:32:55 -06:00
llogiq
0d8f8bc71f Fix some clippy warnings (#1277) 2019-12-07 09:47:43 -08:00
Peter Huene
8923bac7e8 Implement emitting Windows unwind information for fastcall functions. (#1155)
* Implement emitting Windows unwind information for fastcall functions.

This commit implements emitting Windows unwind information for x64 fastcall
calling convention functions.

The unwind information can be used to construct a Windows function table at
runtime for JIT'd code, enabling stack walking and unwinding by the operating
system.

* Address code review feedback.

This commit addresses code review feedback:

* Remove unnecessary unsafe code.
* Emit the unwind information always as little endian.
* Fix comments.

A dependency from cranelift-codegen to the byteorder crate was added.
The byteorder crate is a no-dependencies crate with a reasonable
abstraction for writing binary data for a specific endianness.

* Address code review feedback.

* Disable default features for the `byteorder` crate.
* Add a comment regarding the Windows ABI unwind code numerical values.
* Panic if we encounter a Windows function with a prologue greater than 256
  bytes in size.
2019-11-05 13:14:30 -08:00
bjorn3
bb8fa40ef0 Rustfmt 2019-10-02 11:50:44 -07:00
bjorn3
10e226f9ff Always use extern crate std in cranelift-codegen 2019-10-02 11:50:44 -07:00
julian-seward1
9e088e4164 Reorganise optimisation level settings, and make the insn shrink pass optional (#1044)
This patch:

* removes the "default" opt level, on the basis that it has no definition and
  is referred to nowhere in the compiler.

* renames the "fastest" level to "none".  The resulting set of transformations
  is unchanged.

* renames the "best" level to "speed_and_size".  The resulting set of
  transformations is unchanged.

* adds a new level, "speed".  This is the same as "speed_and_size" except that
  it omits transformations aimed only at reducing code size.  Currently it
  omits only the insn shrinking pass.
2019-09-19 18:51:25 +02:00
Benjamin Bouvier
cad2074587 [codegen] Don't simplify an operation if it would result in unnecessary legalization;
Converting something like iadd.i64 on a 32-bits architecture into a
iadd_imm.i64 will result in the instruction being legalized back to an
iadd.i64 later on, creating unnecessary churn.

This commit implements avoid doing so, and changes the target ISA to a
64-bits platform for tests than ran into this, as well as making sure
this won't happen on 32-bits platforms.
2019-09-10 19:50:34 +02:00