Commit Graph

9 Commits

Author SHA1 Message Date
Chris Fallin
7b8854f803 egraphs: fix handling of effectful-but-idempotent ops and GVN. (#5800)
* Revert "egraphs: disable GVN of effectful idempotent ops (temporarily). (#5808)"

This reverts commit c7e2571866.

* egraphs: fix handling of effectful-but-idempotent ops and GVN.

This PR addresses #5796: currently, ops that are effectful, i.e., remain
in the side-effecting skeleton (which we keep in the `Layout` while the
egraph exists), but are idempotent and thus mergeable by a GVN pass, are
not handled properly.

GVN is still possible on effectful but idempotent ops precisely because
our GVN does not create partial redundancies: it removes an instruction
only when it is dominated by an identical instruction. An isntruction
will not be "hoisted" to a point where it could execute in the optimized
code but not in the original.

However, there are really two parts to the egraph implementation that
produce this effect: the deduplication on insertion into the egraph, and
the elaboration with a scoped hashmap. The deduplication lets us give a
single name (value ID) to all copies of an identical instruction, and
then elaboration will re-create duplicates if GVN should not hoist or
merge some of them.

Because deduplication need not worry about dominance or scopes, we use a
simple (non-scoped) hashmap to dedup/intern ops as "egraph nodes".

When we added support for GVN'ing effectful but idempotent ops (#5594),
we kept the use of this simple dedup'ing hashmap, but these ops do not
get elaborated; instead they stay in the side-effecting skeleton. Thus,
we inadvertently created potential for weird code-motion effects.

The proposal in #5796 would solve this in a clean way by treating these
ops as pure again, and keeping them out of the skeleton, instead putting
"force" pseudo-ops in the skeleton. However, this is a little more
complex than I would like, and I've realized that @jameysharp's earlier
suggestion is much simpler: we can keep an actual scoped hashmap
separately just for the effectful-but-idempotent ops, and use it to GVN
while we build the egraph. In effect, we're fusing a separate GVN pass
with the egraph pass (but letting it interact corecursively with
egraph rewrites. This is in principle similar to how we keep a separate
map for loads and fuse this pass with the egraph rewrite pass as well.

Note that we can use a `ScopedHashMap` here without the "context" (as
needed by `CtxHashMap`) because, as noted by @jameysharp, in practice
the ops we want to GVN have all their args inline. Equality on the
`InstructinoData` itself is conservative: two insts whose struct
contents compare shallowly equal are definitely identical, but identical
insts in a deep-equality sense may not compare shallowly equal, due to
list indirection. This is fine for GVN, because it is still sound to
skip any given GVN opportunity (and keep the original instructions).

Fixes #5796.

* Add comments from review.
2023-03-02 02:10:42 +00:00
Chris Fallin
c7e2571866 egraphs: disable GVN of effectful idempotent ops (temporarily). (#5808)
This is a short-term fix to the same bug that #5800 is addressing
(#5796), but with less risk: it simply turns off GVN'ing of effectful
but idempotent ops. Because we have an upcoming release, and this is a
miscompile (albeit to do with trapping behavior), we would like to make
the simplest possible fix that avoids the bug, and backport it. I will
then rebase #5800 on top of a revert of this followed by the more
complete fix.
2023-02-16 21:29:03 +00:00
Chris Fallin
704f5a5772 Cranelift/egraph mid-end: support merging effectful-but-idempotent ops (#5594)
* Support mergeable-but-side-effectful (idempotent) operations in general in the egraph's GVN.

This mirrors the similar change made in #5534.

* Add tests for egraph case.
2023-01-19 11:51:19 -08:00
Trevor Elliott
1e6c13d83e cranelift: Rework block instructions to use BlockCall (#5464)
Add a new type BlockCall that represents the pair of a block name with arguments to be passed to it. (The mnemonic here is that it looks a bit like a function call.) Rework the implementation of jump, brz, and brnz to use BlockCall instead of storing the block arguments as varargs in the instruction's ValueList.

To ensure that we're processing block arguments from BlockCall values in instructions, three new functions have been introduced on DataFlowGraph that both sets of arguments:

inst_values - returns an iterator that traverses values in the instruction and block arguments
map_inst_values - applies a function to each value in the instruction and block arguments
overwrite_inst_values - overwrite all values in an instruction and block arguments with values from the iterator

Co-authored-by: Jamey Sharp <jamey@minilop.net>
2023-01-17 16:31:15 -08:00
Trevor Elliott
25bf8e0e67 Make DataFlowGraph::insts public, but restricted (#5450)
We have some operations defined on DataFlowGraph purely to work around borrow-checker issues with InstructionData and other data on DataFlowGraph. Part of the problem is that indexing the DFG directly hides the fact that we're only indexing the insts field of the DFG.

This PR makes the insts field of the DFG public, but wraps it in a newtype that only allows indexing. This means that the borrow checker is better able to tell when operations on memory held by the DFG won't conflict, which comes up frequently when mutating ValueLists held by InstructionData.
2022-12-16 10:46:09 -08:00
Jamey Sharp
8726eeefb3 cranelift-isle: Add "partial" flag for constructors (#5392)
* cranelift-isle: Add "partial" flag for constructors

Instead of tying fallibility of constructors to whether they're either
internal or pure, this commit assumes all constructors are infallible
unless tagged otherwise with a "partial" flag.

Internal constructors without the "partial" flag are not allowed to use
constructors which have the "partial" flag on the right-hand side of any
rules, because they have no way to report last-minute match failures.

Multi-constructors should never be "partial"; they report match failures
with an empty iterator instead. In turn this means you can't use partial
constructors on the right-hand side of internal multi-constructor rules.
However, you can use the same constructors on the left-hand side with
`if` or `if-let` instead.

In many cases, ISLE can already trivially prove that an internal
constructor always returns `Some`. With this commit, those cases are
largely unchanged, except for removing all the `Option`s and `Some`s
from the generated code for those terms.

However, for internal non-partial constructors where ISLE could not
prove that, it now emits an `unreachable!` panic as the last-resort,
instead of returning `None` like it used to do. Among the existing
backends, here's how many constructors have these panic cases:

- x64: 14% (53/374)
- aarch64: 15% (41/277)
- riscv64: 23% (26/114)
- s390x: 47% (268/567)

It's often possible to rewrite rules so that ISLE can tell the panic can
never be hit. Just ensure that there's a lowest-priority rule which has
no constraints on the left-hand side.

But in many of these constructors, it's difficult to statically prove
the unhandled cases are unreachable because that's only down to
knowledge about how they're called or other preconditions.

So this commit does not try to enforce that all terms have a last-resort
fallback rule.

* Check term flags while translating expressions

Instead of doing it in a separate pass afterward.

This involved threading all the term flags (pure, multi, partial)
through the recursive `translate_expr` calls, so I extracted the flags
to a new struct so they can all be passed together.

* Validate multi-term usage

Now that I've threaded the flags through `translate_expr`, it's easy to
check this case too, so let's just do it.

* Extract `ReturnKind` to use in `ExternalSig`

There are only three legal states for the combination of `multi` and
`infallible`, so replace those fields of `ExternalSig` with a
three-state enum.

* Remove `Option` wrapper from multi-extractors too

If we'd had any external multi-constructors this would correct their
signatures as well.

* Update ISLE tests

* Tag prelude constructors as pure where appropriate

I believe the only reason these weren't marked `pure` before was because
that would have implied that they're also partial. Now that those two
states are specified separately we apply this flag more places.

* Fix my changes to aarch64 `lower_bmask` and `imm` terms
2022-12-07 17:16:03 -08:00
Chris Fallin
f980defe17 egraph support: rewrite to work in terms of CLIF data structures. (#5382)
* egraph support: rewrite to work in terms of CLIF data structures.

This work rewrites the "egraph"-based optimization framework in
Cranelift to operate on aegraphs (acyclic egraphs) represented in the
CLIF itself rather than as a separate data structure to which and from
which we translate the CLIF.

The basic idea is to add a new kind of value, a "union", that is like an
alias but refers to two other values rather than one.  This allows us to
represent an eclass of enodes (values) as a tree. The union node allows
for a value to have *multiple representations*: either constituent value
could be used, and (in well-formed CLIF produced by correct
optimization rules) they must be equivalent.

Like the old egraph infrastructure, we take advantage of acyclicity and
eager rule application to do optimization in a single pass. Like before,
we integrate GVN (during the optimization pass) and LICM (during
elaboration).

Unlike the old egraph infrastructure, everything stays in the
DataFlowGraph. "Pure" enodes are represented as instructions that have
values attached, but that are not placed into the function layout. When
entering "egraph" form, we remove them from the layout while optimizing.
When leaving "egraph" form, during elaboration, we can place an
instruction back into the layout the first time we elaborate the enode;
if we elaborate it more than once, we clone the instruction.

The implementation performs two passes overall:

- One, a forward pass in RPO (to see defs before uses), that (i) removes
  "pure" instructions from the layout and (ii) optimizes as it goes. As
  before, we eagerly optimize, so we form the entire union of optimized
  forms of a value before we see any uses of that value. This lets us
  rewrite uses to use the most "up-to-date" form of the value and
  canonicalize and optimize that form.

  The eager rewriting and acyclic representation make each other work
  (we could not eagerly rewrite if there were cycles; and acyclicity
  does not miss optimization opportunities only because the first time
  we introduce a value, we immediately produce its "best" form). This
  design choice is also what allows us to avoid the "parent pointers"
  and fixpoint loop of traditional egraphs.

  This forward optimization pass keeps a scoped hashmap to "intern"
  nodes (thus performing GVN), and also interleaves on a per-instruction
  level with alias analysis. The interleaving with alias analysis allows
  alias analysis to see the most optimized form of each address (so it
  can see equivalences), and allows the next value to see any
  equivalences (reuses of loads or stored values) that alias analysis
  uncovers.

- Two, a forward pass in domtree preorder, that "elaborates" pure enodes
  back into the layout, possibly in multiple places if needed. This
  tracks the loop nest and hoists nodes as needed, performing LICM as it
  goes. Note that by doing this in forward order, we avoid the
  "fixpoint" that traditional LICM needs: we hoist a def before its
  uses, so when we place a node, we place it in the right place the
  first time rather than moving later.

This PR replaces the old (a)egraph implementation. It removes both the
cranelift-egraph crate and the logic in cranelift-codegen that uses it.

On `spidermonkey.wasm` running a simple recursive Fibonacci
microbenchmark, this work shows 5.5% compile-time reduction and 7.7%
runtime improvement (speedup).

Most of this implementation was done in (very productive) pair
programming sessions with Jamey Sharp, thus:

Co-authored-by: Jamey Sharp <jsharp@fastly.com>

* Review feedback.

* Review feedback.

* Review feedback.

* Bugfix: cprop rule: `(x + k1) - k2` becomes `x - (k2 - k1)`, not `x - (k1 - k2)`.

Co-authored-by: Jamey Sharp <jsharp@fastly.com>
2022-12-06 14:58:57 -08:00
Chris Fallin
c392e461a3 egraphs: a few miscellaneous compile-time optimizations. (#5072)
* egraphs: a few miscellaneous compile-time optimizations.

These optimizations together are worth about a 2% compile-time
reduction, as measured on one core with spidermonkey.wasm as an input,
using `hyperfine` on `wasmtime compile`.

The changes included are:
- Some better pre-allocation (blockparams and side-effects concatenated
  list vecs);
- Avoiding the indirection of storing list-of-types for every Pure and
  Inst node, when almost all nodes produce only a single result;
  instead, store arity and single type if it exists, and allow result
  projection nodes to fill in types otherwise;
- Pack the `MemoryState` enum into one `u32` (this together with the
  above removal of the type slice allows `Node` to
  shrink from 48 bytes to 32 bytes);
- always-inline an accessor (`entry` on `CtxHash`) that wasn't
  (`always(inline)` appears to be load-bearing, rather than just
  `inline`);
- Split the update-analysis path into two hotpaths, one for the union
  case and one for the new-node case (and the former can avoid
  recomputing for the contained node when replacing a node with
  node-and-child eclass entry).

* Review feedback.

* Fix test build.

* Fix to lowering when unused output with invalid type is present.
2022-10-19 11:05:00 -07:00
Chris Fallin
2be12a5167 egraph-based midend: draw the rest of the owl (productionized). (#4953)
* egraph-based midend: draw the rest of the owl.

* Rename `egg` submodule of cranelift-codegen to `egraph`.

* Apply some feedback from @jsharp during code walkthrough.

* Remove recursion from find_best_node by doing a single pass.

Rather than recursively computing the lowest-cost node for a given
eclass and memoizing the answer at each eclass node, we can do a single
forward pass; because every eclass node refers only to earlier nodes,
this is sufficient. The behavior may slightly differ from the earlier
behavior because we cannot short-circuit costs to zero once a node is
elaborated; but in practice this should not matter.

* Make elaboration non-recursive.

Use an explicit stack instead (with `ElabStackEntry` entries,
alongside a result stack).

* Make elaboration traversal of the domtree non-recursive/stack-safe.

* Work analysis logic in Cranelift-side egraph glue into a general analysis framework in cranelift-egraph.

* Apply static recursion limit to rule application.

* Fix aarch64 wrt dynamic-vector support -- broken rebase.

* Topo-sort cranelift-egraph before cranelift-codegen in publish script, like the comment instructs me to!

* Fix multi-result call testcase.

* Include `cranelift-egraph` in `PUBLISHED_CRATES`.

* Fix atomic_rmw: not really a load.

* Remove now-unnecessary PartialOrd/Ord derivations.

* Address some code-review comments.

* Review feedback.

* Review feedback.

* No overlap in mid-end rules, because we are defining a multi-constructor.

* rustfmt

* Review feedback.

* Review feedback.

* Review feedback.

* Review feedback.

* Remove redundant `mut`.

* Add comment noting what rules can do.

* Review feedback.

* Clarify comment wording.

* Update `has_memory_fence_semantics`.

* Apply @jameysharp's improved loop-level computation.

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Fix suggestion commit.

* Fix off-by-one in new loop-nest analysis.

* Review feedback.

* Review feedback.

* Review feedback.

* Use `Default`, not `std::default::Default`, as per @fitzgen

Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>

* Apply @fitzgen's comment elaboration to a doc-comment.

Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>

* Add stat for hitting the rewrite-depth limit.

* Some code motion in split prelude to make the diff a little clearer wrt `main`.

* Take @jameysharp's suggested `try_into()` usage for blockparam indices.

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Take @jameysharp's suggestion to avoid double-match on load op.

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Fix suggestion (add import).

* Review feedback.

* Fix stack_load handling.

* Remove redundant can_store case.

* Take @jameysharp's suggested improvement to FuncEGraph::build() logic

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Tweaks to FuncEGraph::build() on top of suggestion.

* Take @jameysharp's suggested clarified condition

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Clean up after suggestion (unused variable).

* Fix loop analysis.

* loop level asserts

* Revert constant-space loop analysis -- edge cases were incorrect, so let's go with the simple thing for now.

* Take @jameysharp's suggestion re: result_tys

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Fix up after suggestion

* Take @jameysharp's suggestion to use fold rather than reduce

Co-authored-by: Jamey Sharp <jamey@minilop.net>

* Fixup after suggestion

* Take @jameysharp's suggestion to remove elaborate_eclass_use's return value.

* Clarifying comment in terminator insts.

Co-authored-by: Jamey Sharp <jamey@minilop.net>
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
2022-10-11 18:15:53 -07:00