This PR fixes#4066: it modifies the Cranelift `build.rs` workflow to
invoke the ISLE DSL compiler on every compilation, rather than only
when the user specifies a special "rebuild ISLE" feature.
The main benefit of this change is that it vastly simplifies the mental
model required of developers, and removes a bunch of failure modes
we have tried to work around in other ways. There is now just one
"source of truth", the ISLE source itself, in the repository, and so there
is no need to understand a special "rebuild" step and how to handle
merge errors. There is no special process needed to develop the compiler
when modifying the DSL. And there is no "noise" in the git history produced
by constantly-regenerated files.
The two main downsides we discussed in #4066 are:
- Compile time could increase, by adding more to the "meta" step before the main build;
- It becomes less obvious where the source definitions are (everything becomes
more "magic"), which makes exploration and debugging harder.
This PR addresses each of these concerns:
1. To maintain reasonable compile time, it includes work to cut down the
dependencies of the `cranelift-isle` crate to *nothing* (only the Rust stdlib),
in the default build. It does this by putting the error-reporting bits
(`miette` crate) under an optional feature, and the logging (`log` crate) under
a feature-controlled macro, and manually writing an `Error` impl rather than
using `thiserror`. This completely avoids proc macros and the `syn` build slowness.
The user can still get nice errors out of `miette`: this is enabled by specifying
a Cargo feature `--features isle-errors`.
2. To allow the user to optionally inspect the generated source, which nominally
lives in a hard-to-find path inside `target/` now, this PR adds a feature `isle-in-source-tree`
that, as implied by the name, moves the target for ISLE generated source into
the source tree, at `cranelift/codegen/isle_generated_source/`. It seems reasonable
to do this when an explicit feature (opt-in) is specified because this is how ISLE regeneration
currently works as well. To prevent surprises, if the feature is *not* specified, the
build fails if this directory exists.
On the build side, this commit introduces two things:
1. The automatic generation of various ISLE definitions for working with
CLIF. Specifically, it generates extern type definitions for clif opcodes and
the clif instruction data `enum`, as well as extractors for matching each clif
instructions. This happens inside the `cranelift-codegen-meta` crate.
2. The compilation of ISLE DSL sources to Rust code, that can be included in the
main `cranelift-codegen` compilation.
Next, this commit introduces the integration glue code required to get
ISLE-generated Rust code hooked up in clif-to-x64 lowering. When lowering a clif
instruction, we first try to use the ISLE code path. If it succeeds, then we are
done lowering this instruction. If it fails, then we proceed along the existing
hand-written code path for lowering.
Finally, this commit ports many lowering rules over from hand-written,
open-coded Rust to ISLE.
In the process of supporting ISLE, this commit also makes the x64 `Inst` capable
of expressing SSA by supporting 3-operand forms for all of the existing
instructions that only have a 2-operand form encoding:
dst = src1 op src2
Rather than only the typical x86-64 2-operand form:
dst = dst op src
This allows `MachInst` to be in SSA form, since `dst` and `src1` are
disentangled.
("3-operand" and "2-operand" are a little bit of a misnomer since not all
operations are binary operations, but we do the same thing for, e.g., unary
operations by disentangling the sole operand from the result.)
There are two motivations for this change:
1. To allow ISLE lowering code to have value-equivalence semantics. We want ISLE
lowering to translate a CLIF expression that evaluates to some value into a
`MachInst` expression that evaluates to the same value. We want both the
lowering itself and the resulting `MachInst` to be pure and referentially
transparent. This is both a nice paradigm for compiler writers that are
authoring and maintaining lowering rules and is a prerequisite to any sort of
formal verification of our lowering rules in the future.
2. Better align `MachInst` with `regalloc2`'s API, which requires that the input
be in SSA form.
This adds support for the IBM z/Architecture (s390x-ibm-linux).
The status of the s390x backend in its current form is:
- Wasmtime is fully functional and passes all tests on s390x.
- All back-end features supported, with the exception of SIMD.
- There is still a lot of potential for performance improvements.
- Currently the only supported processor type is z15.
Before this patch, running the x64 new backend would require both
compiling with --features experimental_x64 and running with
`use_new_backend`.
This patches changes this behavior so that the runtime flag is not
needed anymore: using the feature flag will enforce usage of the new
backend everywhere, making using and testing it much simpler:
cargo run --features experimental_x64 ;; other CLI options/flags
This also gives a hint at what the meta language generation would look
like after switching to the new backend.
Compiling only with the x64 codegen flag gives a nice compile time speedup.
This does a lot at once, since there was no clear way to split the three
commits:
- Instruction need to be passed an explicit InstructionFormat,
- InstructionFormat deduplication is checked once all entities have been
defined;
This avoids a lot of dereferences, and InstructionFormat are immutable
once they're created. It removes a lot of code that was keeping the
FormatRegistry around, just in case we needed the format. This is more
in line with the way we create Instructions, and make it easy to
reference InstructionFormats in general.