Previously, `extractlane` results did not have the expected `uextend` because this work was completed by PEXTRB in x86. Since other architectures may eventually need this and since leaving the `uextend` out leaves the extracted values with the wrong type (`i16` instead of `i32`), the `uextend` is re-added. The duplicated zero-extension work (from PEXTRB and MOVZX) could be fixed by a later optimization.
The operands of these bitwise instructions could have different types and still be valid Wasm (i.e. `v128`). Because of this, we must tell Cranelift to cast both operands to the same type--the default type, in this case. This undoes the work merged in https://github.com/bytecodealliance/cranelift/pull/1233.
Because the smallest Wasm scalar type is i32, users of the `i8x16.replace_lane` and `i16x8.replace_lane` instructions will only be able to pass `i32` values as operands. These values must be reduced by dropping the upper bits (see https://github.com/WebAssembly/simd/blob/master/proposals/simd/SIMD.md#replace-lane-value) using Cranelift's `ireduce` instruction.
Because Wasm SIMD vectors store their type as `v128`, there is a mismatch between the more specific types Cranelift uses and Wasm SIMD. Because of this mismatch, Wasm SIMD translates to the default Cranelift type `I8X16`, causing issues when more specific type information is available (e.g. `I32x4`). To fix this, all incoming values to SIMD instructions are checked during translation (not runtime) and if necessary cast from `I8X16` to the appropriate type by functions like `optionally_bitcast_vector`, `pop1_with_bitcast` and `pop2_with_bitcast`. However, there are times when we must also cast to `I8X16` for outgoing values, as with `local.set` and `local.tee`.
There are other ways of resolving this (e.g., see adding a new vector type, https://github.com/bytecodealliance/cranelift/pull/1251) but we discussed staying with this casting approach in https://github.com/bytecodealliance/wasmtime/issues/1147.
This patch updates or removes all references to the Cranelift repository. It affects links in README documents, issues that were transferred to the Wasmtime repository, CI badges, and a small bunch of sundry items.
* Manually rename BasicBlock to BlockPredecessor
BasicBlock is a pair of (Ebb, Inst) that is used to represent the
basic block subcomponent of an Ebb that is a predecessor to an Ebb.
Eventually we will be able to remove this struct, but for now it
makes sense to give it a non-conflicting name so that we can start
to transition Ebb to represent a basic block.
I have not updated any comments that refer to BasicBlock, as
eventually we will remove BlockPredecessor and replace with Block,
which is a basic block, so the comments will become correct.
* Manually rename SSABuilder block types to avoid conflict
SSABuilder has its own Block and BlockData types. These along with
associated identifier will cause conflicts in a later commit, so
they are renamed to be more verbose here.
* Automatically rename 'Ebb' to 'Block' in *.rs
* Automatically rename 'EBB' to 'block' in *.rs
* Automatically rename 'ebb' to 'block' in *.rs
* Automatically rename 'extended basic block' to 'basic block' in *.rs
* Automatically rename 'an basic block' to 'a basic block' in *.rs
* Manually update comment for `Block`
`Block`'s wikipedia article required an update.
* Automatically rename 'an `Block`' to 'a `Block`' in *.rs
* Automatically rename 'extended_basic_block' to 'basic_block' in *.rs
* Automatically rename 'ebb' to 'block' in *.clif
* Manually rename clif constant that contains 'ebb' as substring to avoid conflict
* Automatically rename filecheck uses of 'EBB' to 'BB'
'regex: EBB' -> 'regex: BB'
'$EBB' -> '$BB'
* Automatically rename 'EBB' 'Ebb' to 'block' in *.clif
* Automatically rename 'an block' to 'a block' in *.clif
* Fix broken testcase when function name length increases
Test function names are limited to 16 characters. This causes
the new longer name to be truncated and fail a filecheck test. An
outdated comment was also fixed.
* All: Drop 'basic-blocks' feature
This makes it so that 'basic-blocks' cannot be disabled and we can
start assuming it everywhere.
* Tests: Replace non-bb filetests with bb version
* Tests: Adapt solver-fixedconflict filetests to use basic blocks
This commit aligns the representation of stackmaps to be the same
as Spidermonkey's by:
* Reversing the order of the bitmap from low addresses to high addresses
* Including incoming stack arguments
* Excluding outgoing stack arguments
Additionally, some accessor functions were added to allow Spidermonkey
to access the internals of the bitmap.
Spidermonkey will need to emit pre/post barriers for global.set/get to a
reference type. #1176 and #1299 plan to add a template concept that could
be used to implement this. Once that has been stabilized, we should be able
to remove this code in favor of templates easily.
This commit introduces environment functions to handle the translation of
reference type instructions, analogous to how bulk-memory was implemented.
Additionally, the bulk-memory instructions that operate on tables are extended
to support multiple table indices.
If/when Cranelift gains a `load_splat` instruction, the `load + splat` could be replaced with a single Cranelift `load_splat`. This change allows the `simd_load_splat.wast` spec test to pass.
* Use `is_wasm_parameter` in translating wasm calls
Added in #1329 it's now possible for multiple parameters to be non-wasm
parameters, so the previous `param_types` method is no longer suitable
for acquiring all wasm-related parameters, rather then `FuncEnvironment`
must be consulted. This removes usage of `param_types()` as a method
from the wasm translation and instead adds a custom method inline for
filtering the parameters based on `is_wasm_parameter`.
* Apply feedback
* Run rustfmt
* Don't require `mut`
* Run rustfmt
* Bitcast vectors immediately before a return
* Bitcast vectors immediately before a block end
* Use helper function for bitcasting arguments
* Add FuncTranslationState::peekn_mut; allows mutating of peeked values
* Bitcast values in place, avoiding an allocation
Also, retrieves the correct EBB header types for bitcasting on Operator::End.
* Bitcast values of a function with no explicit Wasm return instruction
* Add Signature::return_types method
This eliminates some duplicate code and avoids extra `use`s of `Vec`.
* Add Signature::param_types method; only collect normal parameters in both this and Signature::return_types
* Move normal_args to Signature::num_normal_params method
This matches the organization of the other Signature::num_*_params methods.
* Bitcast values of Operator::Call and Operator::CallIndirect
* Add DataFlowGraph::ebb_param_types
* Bitcast values of Operator::Br and Operator::BrIf
* Bitcast values of Operator::BrTable
Due to SIMD's v128 operations, vectors that may have had an explicit type (e.g. f32x4) before a v128 operation will subsequently have CLIF's v128 stand-in type: i8x16. In order for follow-on operations (that may be more stricly typed, e.g. f32x4.add) to avoid CLIF errors, we must bitcast them back to the operation type. The raw_bitcast operation used to do this emits no machine code but does incur some small compile-time cost; it would be nice to avoid this in the future.