* Reimplement how unwind information is stored
This commit is a major refactoring of how unwind information is stored
after compilation of a function has finished. Previously we would store
the raw `UnwindInfo` as a result of compilation and this would get
serialized/deserialized alongside the rest of the ELF object that
compilation creates. Whenever functions were registered with
`CodeMemory` this would also result in registering unwinding information
dynamically at runtime, which in the case of Unix, for example, would
dynamically created FDE/CIE entries on-the-fly.
Eventually I'd like to support compiling Wasmtime without Cranelift, but
this means that `UnwindInfo` wouldn't be easily available to decode into
and create unwinding information from. To solve this I've changed the
ELF object created to have the unwinding information encoded into it
ahead-of-time so loading code into memory no longer needs to create
unwinding tables. This change has two different implementations for
Windows/Unix:
* On Windows the implementation was much easier. The unwinding
information on Windows is already stored after the function itself in
the text section. This was actually slightly duplicated in object
building and in code memory allocation. Now the object building
continues to do the same, recording unwinding information after
functions, and code memory no longer manually tracks this.
Additionally Wasmtime will emit a special custom section in the object
file with unwinding information which is the list of
`RUNTIME_FUNCTION` structures that `RtlAddFunctionTable` expects. This
means that the object file has all the information precompiled into it
and registration at runtime is simply passing a few pointers around to
the runtime.
* Unix was a little bit more difficult than Windows. Today a `.eh_frame`
section is created on-the-fly with offsets in FDEs specified as the
absolute address that functions are loaded at. This absolute
address hindered the ability to precompile the FDE into the object
file itself. I've switched how addresses are encoded, though, to using
`DW_EH_PE_pcrel` which means that FDE addresses are now specified
relative to the FDE itself. This means that we can maintain a fixed
offset between the `.eh_frame` loaded in memory and the beginning of
code memory. When doing so this enables precompiling the `.eh_frame`
section into the object file and at runtime when loading an object no
further construction of unwinding information is needed.
The overall result of this commit is that unwinding information is no
longer stored in its cranelift-data-structure form on disk. This means
that this unwinding information format is only present during
compilation, which will make it that much easier to compile out
cranelift in the future.
This commit also significantly refactors `CodeMemory` since the way
unwinding information is handled is not much different from before.
Previously `CodeMemory` was suitable for incrementally adding more and
more functions to it, but nowadays a `CodeMemory` either lives per
module (in which case all functions are known up front) or it's created
once-per-`Func::new` with two trampolines. In both cases we know all
functions up front so the functionality of incrementally adding more and
more segments is no longer needed. This commit removes the ability to
add a function-at-a-time in `CodeMemory` and instead it can now only
load objects in their entirety. A small helper function is added to
build a small object file for trampolines in `Func::new` to handle
allocation there.
Finally, this commit also folds the `wasmtime-obj` crate directly into
the `wasmtime-cranelift` crate and its builder structure to be more
amenable to this strategy of managing unwinding tables.
It is not intentional to have any real functional change as a result of
this commit. This might accelerate loading a module from cache slightly
since less work is needed to manage the unwinding information, but
that's just a side benefit from the main goal of this commit which is to
remove the dependence on cranelift unwinding information being available
at runtime.
* Remove isa reexport from wasmtime-environ
* Trim down reexports of `cranelift-codegen`
Remove everything non-essential so that only the bits which will need to
be refactored out of cranelift remain.
* Fix debug tests
* Review comments
* wasi-nn: turn it on by default
This change makes the wasi-nn Cargo feature a default feature. Previously, a wasi-nn user would have to build a separate Wasmtime binary (e.g. `cargo build --features wasi-nn ...`) to use wasi-nn and the resulting binary would require OpenVINO shared libraries to be present in the environment in order to run (otherwise it would fail immediately with linking errors). With recent changes to the `openvino` crate, the wasi-nn implementation can defer the loading of the OpenVINO shared libraries until runtime (i.e., when the user Wasm program calls `wasi_ephemeral_nn::load`) and display a user-level error if anything goes wrong (e.g., the OpenVINO libraries are not present on the system). This runtime-linking addition allows the wasi-nn feature to be turned on by default and shipped with upcoming releases of Wasmtime. This change should be transparent for users who do not use wasi-nn: the `openvino` crate is small and the newly-available wasi-nn imports only affect programs in which they are used.
For those interested in reviewing the runtime linking approach added to the `openvino` crate, see https://github.com/intel/openvino-rs/pull/19.
* wasi-nn spec path: don't use canonicalize
* Allow dependencies using the ISC license
The ISC license should be [just as permissive](https://choosealicense.com/licenses/isc) as MIT, e.g., with no additional limitations.
* Add a `--wasi-modules` flag
This flag controls which WASI modules are made available to the Wasm program. This initial commit enables `wasi-common` by default (equivalent to `--wasi-modules=all`) and allows `wasi-nn` and `wasi-crypto` to be added in either individually (e.g., `--wasi-modules=wasi-nn`) or as a group (e.g., `--wasi-modules=all-experimental`).
* wasi-crypto: fix unused dependency
Co-authored-by: Pat Hickey <pat@moreproductive.org>
This commit hides the existing WebAssembly feature CLI options (e.g.
`--enable-simd`) and adds a `--wasm-features` flag that enables multiple
(or all) WebAssembly features.
Features can be disabled by prefixing the value with `-`, e.g.
`--wasm-features=-simd`.
* Remove `Config::for_target` in favor of setter `Config::target`.
* Remove explicit setting of Cranelift flags in `Config::new` in favor of
calling the `Config` methods that do the same thing.
* Serialize the package version independently of the data when serializing a
module.
* Use struct deconstructing in module serialization to ensure tunables and
features aren't missed.
* Move common log initialization in the CLI into `CommonOptions`.
This commit adds a `compile` command to the Wasmtime CLI.
The command can be used to Ahead-Of-Time (AOT) compile WebAssembly modules.
With the `all-arch` feature enabled, AOT compilation can be performed for
non-native architectures (i.e. cross-compilation).
The `Module::compile` method has been added to perform AOT compilation.
A few of the CLI flags relating to "on by default" Wasm features have been
changed to be "--disable-XYZ" flags.
A simple example of using the `wasmtime compile` command:
```text
$ wasmtime compile input.wasm
$ wasmtime input.cwasm
```
* move caching to the CompilationArtifacts
* mv cache_config from Compiler to CompiledModule
* hash isa flags
* no cache for wasm2obj
* mv caching to wasmtime crate
* account each Compiler field when hash
* wasmtime: Pass around more contexts instead of fields
This commit refactors some wasmtime internals to pass around more
context-style structures rather than individual fields of each
structure. The intention here is to make the addition of fields to a
structure easier to plumb throughout the internals of wasmtime.
Currently you need to edit lots of functions to pass lots of parameters,
but ideally after this you'll only need to edit one or two struct fields
and then relevant locations have access to the information already.
Updates in this commit are:
* `debug_info` configuration is now folded into `Tunables`. Additionally
a `wasmtime::Config` now holds a `Tunables` directly and is passed
into an internal `Compiler`. Eventually this should allow for direct
configuration of the `Tunables` attributes from the `wasmtime` API,
but no new configuration is exposed at this time.
* `ModuleTranslation` is now passed around as a whole rather than
passing individual components to allow access to all the fields,
including `Tunables`.
This was motivated by investigating what it would take to optionally
allow loops and such to get interrupted, but that sort of codegen
setting was currently relatively difficult to plumb all the way through
and now it's hoped to be largely just an addition to `Tunables`.
* Fix lightbeam compile
Change the default from file-per-thread-logger to pretty-env-logger,
which is more common in Rust projects, and change the option from `-d`
to `--log-to-files`.
* Optimize generated code via the CLI by default
This commit updates the behavior of the CLI and adds a new flag. It
first enables the `--optimize` flag by default, ensuring that usage of
the `wasmtime` CLI will enable cranelift optimizations by default. Next
it also adds a `--opt-level` flag which is similar to Rust's
`-Copt-level` where it takes a string argument of how to optimize. This
is updates to support 0/1/2/s, where 1 is currently the same as 2 but
added for consistency with other compilers. The default setting is
`--opt-level=2`.
When the `-O` flag is not passed the `--opt-level` flag is used,
otherwise `-O` takes precedent in the sense that it implies
`--opt-level=2` which is the highest optimization level. The thinking is
that these flags will in general select the highest optimization level
specified as the final optimization level.
* Add inline docs
* fix a test
* Remove all global state from the caching system
This commit is a continuation of an effort to remove usages of
`lazy_static!` and similar global state macros which can otherwise be
accomodated with passing objects around. Previously there was a global
cache system initialized per-process, but it was initialized in a bit of
a roundabout way and wasn't actually reachable from the `wasmtime` crate
itself. The changes here remove all global state, refactor many of the
internals in the cache system, and makes configuration possible through
the `wasmtime` crate.
Specifically some changes here are:
* Usage of `lazy_static!` and many `static` items in the cache module
have all been removed.
* Global `cache_config()`, `worker()`, and `init()` functions have all
been removed. Instead a `CacheConfig` is a "root object" which
internally owns its worker and passing around the `CacheConfig` is
required for cache usage.
* The `wasmtime::Config` structure has grown options to load and parse
cache files at runtime. Currently only loading files is supported,
although we can likely eventually support programmatically configuring
APIs as well.
* Usage of the `spin` crate has been removed and the dependency is removed.
* The internal `errors` field of `CacheConfig` is removed, instead
changing all relevant methods to return a `Result<()>` instead of
storing errors internally.
* Tests have all been updated with the new interfaces and APIs.
Functionally no real change is intended here. Usage of the `wasmtime`
CLI, for example, should still enable the cache by default.
* Fix lightbeam compilation
This commit refactors the Wasmtime CLI tools to use `structopt` instead of
`docopt`.
The `wasmtime` tool now has the following subcommands:
* `config new` - creates a new Wasmtime configuration file.
* `run` - runs a WebAssembly module.
* `wasm2obj` - translates a Wasm module to native object file.
* `wast` - runs a test script file.
If no subcommand is specified, the `run` subcommand is used. Thus,
`wasmtime foo.wasm` should continue to function as expected.
The `wasm2obj` and `wast` tools still exist, but delegate to the same
implementation as the `wasmtime` subcommands. The standalone `wasm2obj` and
`wast` tools may be removed in the future in favor of simply using `wasmtime`.
Included in this commit is a breaking change to the default Wasmtime
configuration file: it has been renamed from `wasmtime-cache-config.toml` to
simply `config.toml`. The new name is less specific which will allow for
additional (non-cache-related) settings in the future.
There are some breaking changes to improve command line UX:
* The `--cache-config` option has been renamed to `--config`.
* The `--create-config-file` option has moved to the `config new` subcommand.
As a result, the `wasm2obj` and `wast` tools cannot be used to create a new
config file.
* The short form of the `--optimize` option has changed from
`-o` to `-O` for consistency.
* The `wasm2obj` command takes the output object file as a
required positional argument rather than the former required output *option*
(e.g. `wasmtime wasm2obj foo.wasm foo.obj`).