This branch removes the trapif and trapff instructions, in favor of using an explicit comparison and trapnz. This moves us closer to removing iflags and fflags, but introduces the need to implement instructions like iadd_cout in the x64 and aarch64 backends.
Adds Bswap to the Cranelift IR. Implements the Bswap instruction
in the x64 and aarch64 codegen backends. Cranelift users can now:
```
builder.ins().bswap(value)
```
to get a native byteswap instruction.
* x64: implements the 32- and 64-bit bswap instruction, following
the pattern set by similar unary instrutions (Neg and Not) - it
only operates on a dst register, but is parameterized with both
a src and dst which are expected to be the same register.
As x64 bswap instruction is only for 32- or 64-bit registers,
the 16-bit swap is implemented as a rotate left by 8.
Updated x64 RexFlags type to support emitting for single-operand
instructions like bswap
* aarch64: Bswap gets emitted as aarch64 rev16, rev32,
or rev64 instruction as appropriate.
* s390x: Bswap was already supported in backend, just had to add
a bit of plumbing
* For completeness, added bswap to the interpreter as well.
* added filetests and runtests for each ISA
* added bswap to fuzzgen, thanks to afonso360 for the code there
* 128-bit swaps are not yet implemented, that can be done later
* aarch64: Fix incorrect masking for small types on bmask
`bmask` was accidentally relying on the uppermost bits of the register
for small types.
This was found by fuzzgen, when it generated a shift left followed by
a bmask, the shift left shifted the bits out of the range of the input
type (i8), however these are not automatically cleared since they
remained inside the 32 bits of the register.
That caused issues when the bmask tried to compare the whole register
instead of just the bottom bits. The solution here is to mask the upper
bits for small types.
* aarch64: Emit 32bit cmp on bmask
This fixes an issue where bmask was accidentally comparing the
upper bits of the register by always using a 64bit cmp.
* riscv: Mask high bits in bmask
* riscv: Add compile tests for br{z,nz}
* riscv: Use shifts to mask 32bit values
This produces less code than the AND since that version needs to
load an immediate constant from memory.
* cranelift: Update test input to hexadecimal values
This makes it a bit more clear what is being tested.
* riscv: Use addiw for masking 32 bit values
Co-authored-by: Trevor Elliott <telliott@fastly.com>
* aarch64: Update bmask rule priority
Co-authored-by: Trevor Elliott <telliott@fastly.com>
Add a new instruction uadd_overflow_trap, which is a fused version of iadd_ifcout and trapif. Adding this instruction removes a dependency on the iflags type, and would allow us to move closer to removing it entirely.
The instruction is defined for the i32 and i64 types only, and is currently only used in the legalization of heap_addr.
As discussed in the 2022/10/19 meeting, this PR removes many of the branch and select instructions that used iflags, in favor if using brz/brnz and select in their place. Additionally, it reworks selectif_spectre_guard to take an i8 input instead of an iflags input.
For reference, the removed instructions are: br_icmp, brif, brff, trueif, trueff, and selectif.
* cranelift: Remove iconst.i128
* bugpoint: Report Changed when only one instruction is mutated
* cranelift: Fix egraph bxor rule
* cranelift: Remove some simple_preopt opts for i128
Remove the boolean types from cranelift, and the associated instructions breduce, bextend, bconst, and bint. Standardize on using 1/0 for the return value from instructions that produce scalar boolean results, and -1/0 for boolean vector elements.
Fixes#3205
Co-authored-by: Afonso Bordado <afonso360@users.noreply.github.com>
Co-authored-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
Co-authored-by: Chris Fallin <chris@cfallin.org>
* Fix StructReturn handling: properly mark the clobber, and offset actual rets.
The legalization of `StructReturn` was causing issues in the new
call-handling code: the `StructReturn` ret was included in the `SigData` as
if it were an actual CLIF-level return value, but it is not.
Prior to using regalloc constraints for return values, we
unconditionally included rax (or the architecture's usual return
register) as a def, so it would be properly handled as "clobbered" by
the regalloc. With the new scheme, we include defs on the call only for
CLIF-level outputs. Callees with `StructReturn` args were thus not known
to clobber the return-value register, and values might be corrupted.
This PR updates the code to include a `StructReturn` ret as a clobber
rather than a returned value in the relevant spots. I observed it
causing saves/restores of rax in some CLIF that @bjorn3 provided me, but
I was having difficulty minimizing this into a test-case that I would be
comfortable including as a precise-output case (including the whole
thing verbatim would lock down a bunch of other irrelevant details and
cause test-update noise later). If we can find a more minimized example
I'm happy to include it as a filetest.
Fixes#5018.
* Port branches to ISLE (AArch64)
Ported the existing implementations of the following opcodes for AArch64
to ISLE:
- `Brz`
- `Brnz`
- `Brif`
- `Brff`
- `BrIcmp`
- `Jump`
- `BrTable`
Copyright (c) 2022 Arm Limited
* Remove dead code
Copyright (c) 2022 Arm Limited
Ported the existing implementations of the following opcodes for AArch64
to ISLE:
- `Trueif`
- `Trueff`
- `Trapif`
- `Trapff`
- `Select`
- `Selectif`
- `SelectifSpectreGuard`
Copyright (c) 2022 Arm Limited
Improved the instruction lowering for the following opcodes on AArch64,
and introduced support for converting to integers less than 32-bits wide
as per the docs:
- `FcvtToSintSat`
- `FcvtToUintSat`
Copyright (c) 2022 Arm Limited
* Cranelift: use regalloc2 constraints on caller side of ABI code.
This PR updates the shared ABI code and backends to use register-operand
constraints rather than explicit pinned-vreg moves for register
arguments and return values.
The s390x backend was not updated, because it has its own implementation
of ABI code. Ideally we could converge back to the code shared by x64
and aarch64 (which didn't exist when s390x ported calls to ISLE, so the
current situation is underestandable, to be clear!). I'll leave this for
future work.
This PR exposed several places where regalloc2 needed to be a bit more
flexible with constraints; it requires regalloc2#74 to be merged and
pulled in.
* Update to regalloc2 0.3.3.
In addition to version bump, this required removing two asserts as
`SpillSlot`s no longer carry their class (so we can't assert that they
have the correct class).
* Review comments.
* Filetest updates.
* Add cargo-vet audit for regalloc2 0.3.2 -> 0.3.3 upgrade.
* Update to regalloc2 0.4.0.
* Port `icmp` to ISLE (AArch64)
Ported the existing implementation of `icmp` (and, by extension, the
`lower_icmp` function) to ISLE for AArch64.
Copyright (c) 2022 Arm Limited
* Allow 'producer chains', eliminating `Nop0`s
Copyright (c) 2022 Arm Limited
* ABI: implement register arguments with constraints.
Currently, Cranelift's ABI code emits a sequence of moves from physical
registers into vregs at the top of the function body, one for every
register-carried argument.
For a number of reasons, we want to move to operand constraints instead,
and remove the use of explicitly-named "pinned vregs"; this allows for
better regalloc in theory, as it removes the need to "reverse-engineer"
the sequence of moves.
This PR alters the ABI code so that it generates a single "args"
pseudo-instruction as the first instruction in the function body. This
pseudo-inst defs all register arguments, and constrains them to the
appropriate registers at the def-point. Subsequently the regalloc can
move them wherever it needs to.
Some care was taken not to have this pseudo-inst show up in
post-regalloc disassemblies, but the change did cause a general regalloc
"shift" in many tests, so the precise-output updates are a bit noisy.
Sorry about that!
A subsequent PR will handle the other half of the ABI code, namely, the
callsite case, with a similar preg-to-constraint conversion.
* Update based on review feedback.
* Review feedback.
* Initial forward-edge CFI implementation
Give the user the option to start all basic blocks that are targets
of indirect branches with the BTI instruction introduced by the
Branch Target Identification extension to the Arm instruction set
architecture.
Copyright (c) 2022, Arm Limited.
* Refactor `from_artifacts` to avoid second `make_executable` (#1)
This involves "parsing" twice but this is parsing just the header of an
ELF file so it's not a very intensive operation and should be ok to do
twice.
* Address the code review feedback
Copyright (c) 2022, Arm Limited.
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
The previous implementation assumed that nothing had clobbered the
LR register since the current function had started executing, so
it would be incorrect for a non-leaf function, for example, that
contains the `get_return_address` operation right after a call.
The operation is valid only if the `preserve_frame_pointers` flag
is enabled, which implies that the presence of a frame record on
the stack is guaranteed.
Copyright (c) 2022, Arm Limited.
* cranelift: Remove of/nof overflow flags from icmp
Neither Wasmtime nor cg-clif use these flags under any circumstances.
From discussion on #3060 I see it's long been unclear what purpose these
flags served.
Fixes#3060, fixes#4406, and fixes #4875... by deleting all the code
that could have been buggy.
This changes the cranelift-fuzzgen input format by removing some IntCC
options, so I've gone ahead and enabled I128 icmp tests at the same
time. Since only the of/nof cases were failing before, I expect these to
work.
* Restore trapif tests
It's still useful to validate that iadd_ifcout's iflags result can be
forwarded correctly to trapif, and for that purpose it doesn't really
matter what condition code is checked.
This PR removes all uses of modify-operands in the aarch64 backend,
replacing them with reused-input operands instead. This has the nice
effect of removing a bunch of move instructions and more clearly
representing inputs and outputs.
This PR also removes the explicit use of pinned vregs in the aarch64
backend, instead using fixed-register constraints on the operands when
insts or pseudo-inst sequences require certain registers.
This is the second PR in the regalloc-semantics cleanup series; after
the remaining backend (s390x) and the ABI code are cleaned up as well,
we'll be able to simplify the regalloc2 frontend.
Ported the existing implementation of `fcmp` for AArch64 to ISLE.
This also ports the `lower_vector_comparison` method to ISLE.
Copyright (c) 2022 Arm Limited
This retains `lower_amode` in the handwritten code (@akirilov-arm
reports that there is an upcoming patch to port this), but tweaks it
slightly to take a `Value` rather than an `Inst`.
* Port `Fcopysign`..``FcvtToSintSat` to ISLE (AArch64)
Ported the existing implementations of the following opcodes to ISLE on
AArch64:
- `Fcopysign`
- Also introduced missing support for `fcopysign` on vector values, as
per the docs.
- This introduces the vector encoding for the `SLI` machine
instruction.
- `FcvtToUint`
- `FcvtToSint`
- `FcvtFromUint`
- `FcvtFromSint`
- `FcvtToUintSat`
- `FcvtToSintSat`
Copyright (c) 2022 Arm Limited
* Document helpers and abstract conversion checks
In order to keep the `ExternalName` enum small, the `TestcaseName`
struct was limited to 17 bytes: a 1 byte length and a 16 byte buffer.
Due to alignment, that made `ExternalName` 20 bytes.
That fixed-size buffer means that the names of functions in Cranelift
filetests are truncated to fit, which limits our ability to give tests
meaningful names. And I think meaningful names are important in tests.
This patch replaces the inline `TestcaseName` buffer with a
heap-allocated slice. We don't care about performance for test names, so
an indirection out to the heap is fine in that case. But we do care
somewhat about the size of `ExternalName` when it's used during
compiles.
On 64-bit systems, `Box<[u8]>` is 16 bytes, so `TestcaseName` gets one
byte smaller. Unfortunately, its alignment is 8 bytes, so `ExternalName`
grows from 20 to 24 bytes.
According to `valgrind --tool=dhat`, this change has very little effect
on compiler performance. Building wasmtime with `--no-default-features
--release`, and compiling the pulldown-cmark benchmark from Sightglass,
I measured these differences between `main` and this patch:
- total number of allocations didn't change (`ExternalName::TestCase` is
not used in normal compiles)
- 592 more bytes allocated over the process lifetime, out of 171.5MiB
- 320 more bytes allocated at peak heap size, out of 12MiB
- 0.24% more instructions executed
- 16,987 more bytes written
- 12,120 _fewer_ bytes read
Ported the existing implementations of the following opcodes for AArch64
to ISLE, and implemented support for 64-bit vectors (per the docs):
- `SwidenLow`
- `SwidenHigh`
- `UwidenLow`
- `UwidenHigh`
Also ported `WideningPairwiseDotProductS` as-is.
Copyright (c) 2022 Arm Limited
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime.
After the suggestion of Chris, `Function` has been split into mostly two parts:
- on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`.
- on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on.
Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache:
- most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set.
- user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`.
- some refactorings have been made for function names:
- `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name.
- The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with.
The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions.
A basic fuzz target has been introduced that tries to do the bare minimum:
- check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function.
- check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache.
- This last check is less efficient and less likely to happen, so probably should be rethought a bit.
Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip.
Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement.
Fixes#4155.
* Fix sret for AArch64
AArch64 requires the struct return address argument to be stored in the x8
register. This register is never used for regular arguments.
* Add extra sret tests for x86_64
Ported the existing implementations of the following opcodes on AArch64
to ISLE:
- `AvgRound`
- Also introduced support for `i64x2` vectors, as per the docs.
- `SqmulRoundSat`
Copyright (c) 2022 Arm Limited
* Convert `fma`, `valltrue` & `vanytrue` to ISLE (AArch64)
Ported the existing implementations of the following opcodes to ISLE on
AArch64:
- `fma`
- Introduced missing support for `fma` on vector values, as per the
docs.
- `valltrue`
- `vanytrue`
Also fixed `fcmp` on scalar values in the interpreter, and enabled
interpreter tests in `simd-fma.clif`.
This introduces the `FMLA` machine instruction.
Copyright (c) 2022 Arm Limited
* Add comments for `Fmla` and `Bsl`
Copyright (c) 2022 Arm Limited
This adds support for StructArgument on s390x. The ABI for this
platform requires that the address of the buffer holding the copy
of the struct argument is passed from caller to callee as hidden
pointer, using a register or overflow stack slot.
To implement this, I've added an optional "pointer" filed to
ABIArg::StructArg, and code to handle the pointer both in common
abi_impl code and the s390x back-end.
One notable change necessary to make this work involved the
"copy_to_arg_order" mechanism. Currently, for struct args
we only need to copy the data (and that need to happen before
setting up any other args), while for non-struct args we only
need to set up the appropriate registers or stack slots.
This order is ensured by sorting the arguments appropriately
into a "copy_to_arg_order" list.
However, for struct args with explicit pointers we need to *both*
copy the data (again, before everything else), *and* set up a
register or stack slot. Since we now need to touch the argument
twice, we cannot solve the ordering problem by a simple sort.
Instead, the abi_impl common code now provided *two* callbacks,
emit_copy_regs_to_buffer and emit_copy_regs_to_arg, and expects
the back end to first call copy..to_buffer for all args, and
then call copy.._to_arg for all args. This required updates
to all back ends.
In the s390x back end, in addition to the new ABI code, I'm now
adding code to actually copy the struct data, using the MVC
instruction (for small buffers) or a memcpy libcall (for larger
buffers). This also requires a bit of new infrastructure:
- MVC is the first memory-to-memory instruction we use, which
needed a bit of memory argument tweaking
- We also need to set up the infrastructure to emit libcalls.
(This implements the first half of issue #4565.)
Give the user the option to sign and to authenticate function
return addresses with the operations introduced by the Pointer
Authentication extension to the Arm instruction set architecture.
Copyright (c) 2021, Arm Limited.
* Cranelift: Add instructions for getting the current stack/frame pointers and return address
This is the initial part of https://github.com/bytecodealliance/wasmtime/issues/4535
* x64: Remove `Amode::RbpOffset` and use `Amode::ImmReg` instead
We just special case getting operands from `Amode`s now.
* Fix s390x `get_return_address`; require `preserve_frame_pointers=true`
* Assert that `Amode::ImmRegRegShift` doesn't use rbp/rsp
* Handle non-allocatable registers in Amode::with_allocs
* Use "stack" instead of "r15" on s390x
* r14 is an allocatable register on s390x, so it shouldn't be used with `MovPReg`
* Cranellift: remove Baldrdash support and related features.
As noted in Mozilla's bugzilla bug 1781425 [1], the SpiderMonkey team
has recently determined that their current form of integration with
Cranelift is too hard to maintain, and they have chosen to remove it
from their codebase. If and when they decide to build updated support
for Cranelift, they will adopt different approaches to several details
of the integration.
In the meantime, after discussion with the SpiderMonkey folks, they
agree that it makes sense to remove the bits of Cranelift that exist
to support the integration ("Baldrdash"), as they will not need
them. Many of these bits are difficult-to-maintain special cases that
are not actually tested in Cranelift proper: for example, the
Baldrdash integration required Cranelift to emit function bodies
without prologues/epilogues, and instead communicate very precise
information about the expected frame size and layout, then stitched
together something post-facto. This was brittle and caused a lot of
incidental complexity ("fallthrough returns", the resulting special
logic in block-ordering); this is just one example. As another
example, one particular Baldrdash ABI variant processed stack args in
reverse order, so our ABI code had to support both traversal
orders. We had a number of other Baldrdash-specific settings as well
that did various special things.
This PR removes Baldrdash ABI support, the `fallthrough_return`
instruction, and pulls some threads to remove now-unused bits as a
result of those two, with the understanding that the SpiderMonkey folks
will build new functionality as needed in the future and we can perhaps
find cleaner abstractions to make it all work.
[1] https://bugzilla.mozilla.org/show_bug.cgi?id=1781425
* Review feedback.
* Fix (?) DWARF debug tests: add `--disable-cache` to wasmtime invocations.
The debugger tests invoke `wasmtime` from within each test case under
the control of a debugger (gdb or lldb). Some of these tests started to
inexplicably fail in CI with unrelated changes, and the failures were
only inconsistently reproducible locally. It seems to be cache related:
if we disable cached compilation on the nested `wasmtime` invocations,
the tests consistently pass.
* Review feedback.
* cranelift: Reorganize test suite
Group some SIMD operations by instruction.
* cranelift: Deduplicate some shift tests
Also, new tests with the mod behaviour
* aarch64: Lower shifts with mod behaviour
* x64: Lower shifts with mod behaviour
* wasmtime: Don't mask SIMD shifts
* [AArch64] Port SIMD narrowing to ISLE
Fvdemote, snarrow, unarrow and uunarrow.
Also refactor the aarch64 instructions descriptions to parameterize
on ScalarSize instead of using different opcodes.
The zero_value pure constructor has been introduced and used by the
integer narrow operations and it replaces, and extends, the compare
zero patterns.
Copright (c) 2022, Arm Limited.
* use short 'if' patterns
* cranelift: Restrict `br_table` to `i32` indices
In #4498 it was proposed that we should only accept `i32` indices
to `br_table`. The rationale for this is that larger types lead the
users to a false sense of flexibility (since we don't support jump
tables larger than u32's), and narrower types are not well tested
paths that would be safer if we removed them.
* cranelift: Reduce directly from i128 to i32 in Switch
Converted the existing implementations for the following opcodes to ISLE
on AArch64:
- `sqrt`
- `fneg`
- `fabs`
- `fpromote`
- `fdemote`
- `ceil`
- `floor`
- `trunc`
- `nearest`
Copyright (c) 2022 Arm Limited
Preserving frame pointers -- even inside leaf functions -- makes it easy to
capture the stack of a running program, without requiring any side tables or
metadata (like `.eh_frame` sections). Many sampling profilers and similar tools
walk frame pointers to capture stacks. Enabling this option will play nice with
those tools.
Converted the existing implementations for the following Opcodes to ISLE on AArch64:
- `fadd`
- `fsub`
- `fmul`
- `fdiv`
- `fmin`
- `fmax`
- `fmin_pseudo`
- `fmax_pseudo`
Copyright (c) 2022 Arm Limited
* Implement `iabs` in ISLE (AArch64)
Converts the existing implementation of `iabs` for AArch64 into ISLE,
and fixes support for `iabs` on scalar values.
Copyright (c) 2022 Arm Limited.
* Improve scalar `iabs` implementation.
Also introduces `CSNeg` instruction.
Copyright (c) 2022 Arm Limited
* Convert `scalar_to_vector` to ISLE (AArch64)
Converted the exisiting implementation of `scalar_to_vector` for AArch64 to
ISLE.
Copyright (c) 2022 Arm Limited
* Add support for floats and fix FpuExtend
- Added rules to cover `f32 -> f32x4` and `f64 -> f64x2` for
`scalar_to_vector`
- Added tests for `scalar_to_vector` on floats.
- Corrected an invalid instruction emitted by `FpuExtend` on 64-bit
values.
Copyright (c) 2022 Arm Limited