Commit Graph

42 Commits

Author SHA1 Message Date
Andrew Brown
c3f8415ac7 fuzz: improve the spec interpreter (#4881)
* fuzz: improve the API of the `wasm-spec-interpreter` crate

This change addresses key parts of #4852 by improving the bindings to
the OCaml spec interpreter. The new API allows users to `instantiate` a
module, `interpret` named functions on that instance, and `export`
globals and memories from that instance. This currently leaves the
existing implementation ("instantiate and interpret the first function in
a module") present under a new name: `interpret_legacy`.

* fuzz: adapt the differential spec engine to the new API

This removes the legacy uses in the differential spec engine, replacing
them with the new `instantiate`-`interpret`-`export` API from the
`wasm-spec-interpreter` crate.

* fix: make instance access thread-safe

This changes the OCaml-side definition of the instance so that each
instance carries round a reference to a "global store" that's specific
to that instantiation. Because everything is updated by reference there
should be no visible behavioural change on the Rust side, apart from
everything suddenly being thread-safe (modulo the fact that access to
the OCaml runtime still needs to be locked). This fix will need to be
generalised slightly in future if we want to allow multiple modules to
be instantiated in the same store.

Co-authored-by: conrad-watt <cnrdwtt@gmail.com>
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
2022-09-12 14:23:03 -07:00
Alex Crichton
543a487939 Throw out fewer fuzz inputs with differential fuzzer (#4859)
* Throw out fewer fuzz inputs with differential fuzzer

Prior to this commit the differential fuzzer would generate a module and
then select an engine to execute the module against Wasmtime. This
meant, however, that the candidate list of engines were filtered against
the configuration used to generate the module to ensure that the
selected engine could run the generated module.

This commit inverts this logic and instead selects an engine first,
allowing the engine to then tweak the module configuration to ensure
that the generated module is compatible with the engine selected. This
means that fewer fuzz inputs are discarded because every fuzz input will
result in an engine being executed.

Internally the engine constructors have all been updated to update the
configuration to work instead of filtering the configuration. Some other
fixes were applied for the spec interpreter as well to work around #4852

* Fix tests
2022-09-06 12:41:23 -05:00
Alex Crichton
10dbb19983 Various improvements to differential fuzzing (#4845)
* Improve wasmi differential fuzzer

* Support modules with a `start` function
* Implement trap-matching to ensure that wasmi and Wasmtime both report
  the same flavor of trap.

* Support differential fuzzing where no engines match

Locally I was attempting to run against just one wasm engine with
`ALLOWED_ENGINES=wasmi` but the fuzzer quickly panicked because the
generated test case didn't match wasmi's configuration. This commit
updates engine-selection in the differential fuzzer to return `None` if
no engine is applicable, throwing out the test case. This won't be hit
at all with oss-fuzz-based runs but for local runs it'll be useful to
have.

* Improve proposal support in differential fuzzer

* De-prioritize unstable wasm proposals such as multi-memory and
  memory64 by making them more unlikely with `Unstructured::ratio`.
* Allow fuzzing multi-table (reference types) and multi-memory by
  avoiding setting their maximums to 1 in `set_differential_config`.
* Update selection of the pooling strategy to unconditionally support
  the selected module config rather than the other way around.

* Improve handling of traps in differential fuzzing

This commit fixes an issue found via local fuzzing where engines were
reporting different results but the underlying reason for this was that
one engine was hitting stack overflow before the other. To fix the
underlying issue I updated the execution to check for stack overflow
and, if hit, it discards the entire fuzz test case from then on.

The rationale behind this is that each engine can have unique limits for
stack overflow. One test case I was looking at for example would stack
overflow at less than 1000 frames with epoch interruption enabled but
would stack overflow at more than 1000 frames with it disabled. This
means that the state after the trap started to diverge and it looked
like the engines produced different results.

While I was at it I also improved the "function call returned a trap"
case to compare traps to make sure the same trap reason popped out.

* Fix fuzzer tests
2022-09-02 14:16:02 -05:00
Andrew Brown
d3c463aac0 [fuzz] Configure the differential target (#4773)
This change is a follow-on from #4515 to add the ability to configure
the `differential` fuzz target by limiting which engines and modules are
used for fuzzing. This is incredibly useful when troubleshooting, e.g.,
when an engine is more prone to failure, we can target that engine
exclusively. The effect of this configuration is visible in the
statistics now printed out from #4739.

Engines are configured using the `ALLOWED_ENGINES` environment variable.
We can either subtract from the set of allowed engines (e.g.,
`ALLOWED_ENGINES=-v8`) or build up a set of allowed engines (e.g.,
`ALLOWED_ENGINES=wasmi,spec`), but not both at the same time.
`ALLOWED_ENGINES` only configures the left-hand side engine; the
right-hand side is always Wasmtime. When omitted, `ALLOWED_ENGINES`
defaults to [`wasmtime`, `wasmi`, `spec`, `v8`].

The generated WebAssembly modules are configured using
`ALLOWED_MODULES`. This environment variables works the same as above
but the available options are: [`wasm-smith`, `single-inst`].
2022-08-24 15:49:48 -07:00
Alex Crichton
fd98814b96 Port v8 fuzzer to the new framework (#4739)
* Port v8 fuzzer to the new framework

This commit aims to improve the support for the new "meta" differential
fuzzer added in #4515 by ensuring that all existing differential fuzzing
is migrated to this new fuzzer. This PR includes features such as:

* The V8 differential execution is migrated to the new framework.
* `Config::set_differential_config` no longer force-disables wasm
  features, instead allowing them to be enabled as per the fuzz input.
* `DiffInstance::{hash, hash}` was replaced with
  `DiffInstance::get_{memory,global}` to allow more fine-grained
  assertions.
* Support for `FuncRef` and `ExternRef` have been added to `DiffValue`
  and `DiffValueType`. For now though generating an arbitrary
  `ExternRef` and `FuncRef` simply generates a null value.
* Arbitrary `DiffValue::{F32,F64}` values are guaranteed to use
  canonical NaN representations to fix an issue with v8 where with the
  v8 engine we can't communicate non-canonical NaN values through JS.
* `DiffEngine::evaluate` allows "successful failure" for cases where
  engines can't support that particular invocation, for example v8 can't
  support `v128` arguments or return values.
* Smoke tests were added for each engine to ensure that a simple wasm
  module works at PR-time.
* Statistics printed from the main fuzzer now include percentage-rates
  for chosen engines as well as percentage rates for styles-of-module.

There's also a few small refactorings here and there but mostly just
things I saw along the way.

* Update the fuzzing README
2022-08-19 19:19:00 +00:00
Andrew Brown
8b7fb19b1d [fuzz] Remove some differential fuzz targets (#4735)
* [fuzz] Remove some differential fuzz targets

The changes in #4515 do everything the `differential_spec` and
`differential_wasmi` fuzz target already do. These fuzz targets are now
redundant and this PR removes them. It also updates the fuzz
documentation slightly.
2022-08-19 09:50:35 -07:00
Andrew Brown
5ec92d59d2 [fuzz] Add a meta-differential fuzz target (#4515)
* [fuzz] Add `Module` enum, refactor `ModuleConfig`

This change adds a way to create either a single-instruction module or a
regular (big) `wasm-smith` module. It has some slight refactorings in
preparation for the use of this new code.

* [fuzz] Add `DiffValue` for differential evaluation

In order to evaluate functions with randomly-generated values, we needed
a common way to generate these values. Using the Wasmtime `Val` type is
not great because we would like to be able to implement various traits
on the new value type, e.g., to convert `Into` and `From` boxed values
of other engines we differentially fuzz against. This new type,
`DiffValue`, gives us a common ground for all the conversions and
comparisons between the other engine types.

* [fuzz] Add interface for differential engines

In order to randomly choose an engine to fuzz against, we expect all of
the engines to meet a common interface. The traits in this commit allow
us to instantiate a module from its binary form, evaluate exported
functions, and (possibly) hash the exported items of the instance.

This change has some missing pieces, though:
 - the `wasm-spec-interpreter` needs some work to be able to create
   instances, evaluate a function by name, and expose exported items
 - the `v8` engine is not implemented yet due to the complexity of its
   Rust lifetimes

* [fuzz] Use `ModuleFeatures` instead of existing configuration

When attempting to use both wasm-smith and single-instruction modules,
there is a mismatch in how we communicate what an engine must be able to
support. In the first case, we could use the `ModuleConfig`, a wrapper
for wasm-smith's `SwarmConfig`, but single-instruction modules do not
have a `SwarmConfig`--the many options simply don't apply. Here, we
instead add `ModuleFeatures` and adapt a `ModuleConfig` to that.
`ModuleFeatures` then becomes the way to communicate what features an
engine must support to evaluate functions in a module.

* [fuzz] Add a new fuzz target using the meta-differential oracle

This change adds the `differential_meta` target to the list of fuzz
targets. I expect that sometime soon this could replace the other
`differential*` targets, as it almost checks all the things those check.
The major missing piece is that currently it only chooses
single-instruction modules instead of also generating arbitrary modules
using `wasm-smith`.

Also, this change adds the concept of an ignorable error: some
differential engines will choke with certain inputs (e.g., `wasmi` might
have an old opcode mapping) which we do not want to flag as fuzz bugs.
Here we wrap those errors in `DiffIgnoreError` and then use a new helper
trait, `DiffIgnorable`, to downcast and inspect the `anyhow` error to
only panic on non-ignorable errors; the ignorable errors are converted
to one of the `arbitrary::Error` variants, which we already ignore.

* [fuzz] Compare `DiffValue` NaNs more leniently

Because arithmetic NaNs can contain arbitrary payload bits, checking
that two differential executions should produce the same result should
relax the comparison of the `F32` and `F64` types (and eventually `V128`
as well... TODO). This change adds several considerations, however, so
that in the future we make the comparison a bit stricter, e.g., re:
canonical NaNs. This change, however, just matches the current logic
used by other fuzz targets.

* review: allow hashing mutate the instance state

@alexcrichton requested that the interface be adapted to accommodate
Wasmtime's API, in which even reading from an instance could trigger
mutation of the store.

* review: refactor where configurations are made compatible

See @alexcrichton's
[suggestion](https://github.com/bytecodealliance/wasmtime/pull/4515#discussion_r928974376).

* review: convert `DiffValueType` using `TryFrom`

See @alexcrichton's
[comment](https://github.com/bytecodealliance/wasmtime/pull/4515#discussion_r928962394).

* review: adapt target implementation to Wasmtime-specific RHS

This change is joint work with @alexcrichton to adapt the structure of
the fuzz target to his comments
[here](https://github.com/bytecodealliance/wasmtime/pull/4515#pullrequestreview-1073247791).

This change:
- removes `ModuleFeatures` and the `Module` enum (for big and small
  modules)
- upgrades `SingleInstModule` to filter out cases that are not valid for
  a given `ModuleConfig`
- adds `DiffEngine::name()`
- constructs each `DiffEngine` using a `ModuleConfig`, eliminating
  `DiffIgnoreError` completely
- prints an execution rate to the `differential_meta` target

Still TODO:
- `get_exported_function_signatures` could be re-written in terms of the
  Wasmtime API instead `wasmparser`
- the fuzzer crashes eventually, we think due to the signal handler
  interference between OCaml and Wasmtime
- the spec interpreter has several cases that we skip for now but could
  be fuzzed with further work

Co-authored-by: Alex Crichton <alex@alexcrichton.com>

* fix: avoid SIGSEGV by explicitly initializing OCaml runtime first

* review: use Wasmtime's API to retrieve exported functions

Co-authored-by: Alex Crichton <alex@alexcrichton.com>
2022-08-18 19:22:58 -05:00
Andrew Brown
c3e31c9946 [fuzz] Document Wasm-JS conversions (#4683)
During differential execution against V8, Wasm values need to be
converted back and forth from JS values. This change documents the
location in the specification where this is defined.
2022-08-10 23:43:43 +00:00
Alex Crichton
05e6abf2f6 Fix the stacks fuzzer in the face of stack overflow (#4557)
When the `stacks` fuzzer hits a stack overflow the trace generated by
Wasmtime will have one more frame than the trace generated by the wasm
itself. This comes about due to the wasm not actually pushing the final
frame when it stack overflows. The host, however, will still see the
final frame that triggered the stack overflow.

In this situation the fuzzer asserts that the host has one extra frame
and then discards the frame.
2022-08-01 11:03:23 -05:00
Nick Fitzgerald
46782b18c2 wasmtime: Implement fast Wasm stack walking (#4431)
* Always preserve frame pointers in Wasmtime

This allows us to efficiently and simply capture Wasm stacks without maintaining
and synchronizing any safety-critical side tables between the compiler and the
runtime.

* wasmtime: Implement fast Wasm stack walking

Why do we want Wasm stack walking to be fast? Because we capture stacks whenever
there is a trap and traps actually happen fairly frequently with short-lived
programs and WASI's `exit`.

Previously, we would rely on generating the system unwind info (e.g.
`.eh_frame`) and using the system unwinder (via the `backtrace`crate) to walk
the full stack and filter out any non-Wasm stack frames. This can,
unfortunately, be slow for two primary reasons:

1. The system unwinder is doing `O(all-kinds-of-frames)` work rather than
`O(wasm-frames)` work.

2. System unwind info and the system unwinder need to be much more general than
a purpose-built stack walker for Wasm needs to be. It has to handle any kind of
stack frame that any compiler might emit where as our Wasm frames are emitted by
Cranelift and always have frame pointers. This translates into implementation
complexity and general overhead. There can also be unnecessary-for-our-use-cases
global synchronization and locks involved, further slowing down stack walking in
the presence of multiple threads trying to capture stacks in parallel.

This commit introduces a purpose-built stack walker for traversing just our Wasm
frames. To find all the sequences of Wasm-to-Wasm stack frames, and ignore
non-Wasm stack frames, we keep a linked list of `(entry stack pointer, exit
frame pointer)` pairs. This linked list is maintained via Wasm-to-host and
host-to-Wasm trampolines. Within a sequence of Wasm-to-Wasm calls, we can use
frame pointers (which Cranelift preserves) to find the next older Wasm frame on
the stack, and we keep doing this until we reach the entry stack pointer,
meaning that the next older frame will be a host frame.

The trampolines need to avoid a couple stumbling blocks. First, they need to be
compiled ahead of time, since we may not have access to a compiler at
runtime (e.g. if the `cranelift` feature is disabled) but still want to be able
to call functions that have already been compiled and get stack traces for those
functions. Usually this means we would compile the appropriate trampolines
inside `Module::new` and the compiled module object would hold the
trampolines. However, we *also* need to support calling host functions that are
wrapped into `wasmtime::Func`s and there doesn't exist *any* ahead-of-time
compiled module object to hold the appropriate trampolines:

```rust
// Define a host function.
let func_type = wasmtime::FuncType::new(
    vec![wasmtime::ValType::I32],
    vec![wasmtime::ValType::I32],
);
let func = Func::new(&mut store, func_type, |_, params, results| {
    // ...
    Ok(())
});

// Call that host function.
let mut results = vec![wasmtime::Val::I32(0)];
func.call(&[wasmtime::Val::I32(0)], &mut results)?;
```

Therefore, we define one host-to-Wasm trampoline and one Wasm-to-host trampoline
in assembly that work for all Wasm and host function signatures. These
trampolines are careful to only use volatile registers, avoid touching any
register that is an argument in the calling convention ABI, and tail call to the
target callee function. This allows forwarding any set of arguments and any
returns to and from the callee, while also allowing us to maintain our linked
list of Wasm stack and frame pointers before transferring control to the
callee. These trampolines are not used in Wasm-to-Wasm calls, only when crossing
the host-Wasm boundary, so they do not impose overhead on regular calls. (And if
using one trampoline for all host-Wasm boundary crossing ever breaks branch
prediction enough in the CPU to become any kind of bottleneck, we can do fun
things like have multiple copies of the same trampoline and choose a random copy
for each function, sharding the functions across branch predictor entries.)

Finally, this commit also ends the use of a synthetic `Module` and allocating a
stubbed out `VMContext` for host functions. Instead, we define a
`VMHostFuncContext` with its own magic value, similar to `VMComponentContext`,
specifically for host functions.

<h2>Benchmarks</h2>

<h3>Traps and Stack Traces</h3>

Large improvements to taking stack traces on traps, ranging from shaving off 64%
to 99.95% of the time it used to take.

<details>

```
multi-threaded-traps/0  time:   [2.5686 us 2.5808 us 2.5934 us]
                        thrpt:  [0.0000  elem/s 0.0000  elem/s 0.0000  elem/s]
                 change:
                        time:   [-85.419% -85.153% -84.869%] (p = 0.00 < 0.05)
                        thrpt:  [+560.90% +573.56% +585.84%]
                        Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
  4 (4.00%) high mild
  4 (4.00%) high severe
multi-threaded-traps/1  time:   [2.9021 us 2.9167 us 2.9322 us]
                        thrpt:  [341.04 Kelem/s 342.86 Kelem/s 344.58 Kelem/s]
                 change:
                        time:   [-91.455% -91.294% -91.096%] (p = 0.00 < 0.05)
                        thrpt:  [+1023.1% +1048.6% +1070.3%]
                        Performance has improved.
Found 6 outliers among 100 measurements (6.00%)
  1 (1.00%) high mild
  5 (5.00%) high severe
multi-threaded-traps/2  time:   [2.9996 us 3.0145 us 3.0295 us]
                        thrpt:  [660.18 Kelem/s 663.47 Kelem/s 666.76 Kelem/s]
                 change:
                        time:   [-94.040% -93.910% -93.762%] (p = 0.00 < 0.05)
                        thrpt:  [+1503.1% +1542.0% +1578.0%]
                        Performance has improved.
Found 5 outliers among 100 measurements (5.00%)
  5 (5.00%) high severe
multi-threaded-traps/4  time:   [5.5768 us 5.6052 us 5.6364 us]
                        thrpt:  [709.68 Kelem/s 713.63 Kelem/s 717.25 Kelem/s]
                 change:
                        time:   [-93.193% -93.121% -93.052%] (p = 0.00 < 0.05)
                        thrpt:  [+1339.2% +1353.6% +1369.1%]
                        Performance has improved.
multi-threaded-traps/8  time:   [8.6408 us 9.1212 us 9.5438 us]
                        thrpt:  [838.24 Kelem/s 877.08 Kelem/s 925.84 Kelem/s]
                 change:
                        time:   [-94.754% -94.473% -94.202%] (p = 0.00 < 0.05)
                        thrpt:  [+1624.7% +1709.2% +1806.1%]
                        Performance has improved.
multi-threaded-traps/16 time:   [10.152 us 10.840 us 11.545 us]
                        thrpt:  [1.3858 Melem/s 1.4760 Melem/s 1.5761 Melem/s]
                 change:
                        time:   [-97.042% -96.823% -96.577%] (p = 0.00 < 0.05)
                        thrpt:  [+2821.5% +3048.1% +3281.1%]
                        Performance has improved.
Found 1 outliers among 100 measurements (1.00%)
  1 (1.00%) high mild

many-modules-registered-traps/1
                        time:   [2.6278 us 2.6361 us 2.6447 us]
                        thrpt:  [378.11 Kelem/s 379.35 Kelem/s 380.55 Kelem/s]
                 change:
                        time:   [-85.311% -85.108% -84.909%] (p = 0.00 < 0.05)
                        thrpt:  [+562.65% +571.51% +580.76%]
                        Performance has improved.
Found 9 outliers among 100 measurements (9.00%)
  3 (3.00%) high mild
  6 (6.00%) high severe
many-modules-registered-traps/8
                        time:   [2.6294 us 2.6460 us 2.6623 us]
                        thrpt:  [3.0049 Melem/s 3.0235 Melem/s 3.0425 Melem/s]
                 change:
                        time:   [-85.895% -85.485% -85.022%] (p = 0.00 < 0.05)
                        thrpt:  [+567.63% +588.95% +608.95%]
                        Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
  3 (3.00%) high mild
  5 (5.00%) high severe
many-modules-registered-traps/64
                        time:   [2.6218 us 2.6329 us 2.6452 us]
                        thrpt:  [24.195 Melem/s 24.308 Melem/s 24.411 Melem/s]
                 change:
                        time:   [-93.629% -93.551% -93.470%] (p = 0.00 < 0.05)
                        thrpt:  [+1431.4% +1450.6% +1469.5%]
                        Performance has improved.
Found 3 outliers among 100 measurements (3.00%)
  3 (3.00%) high mild
many-modules-registered-traps/512
                        time:   [2.6569 us 2.6737 us 2.6923 us]
                        thrpt:  [190.17 Melem/s 191.50 Melem/s 192.71 Melem/s]
                 change:
                        time:   [-99.277% -99.268% -99.260%] (p = 0.00 < 0.05)
                        thrpt:  [+13417% +13566% +13731%]
                        Performance has improved.
Found 4 outliers among 100 measurements (4.00%)
  4 (4.00%) high mild
many-modules-registered-traps/4096
                        time:   [2.7258 us 2.7390 us 2.7535 us]
                        thrpt:  [1.4876 Gelem/s 1.4955 Gelem/s 1.5027 Gelem/s]
                 change:
                        time:   [-99.956% -99.955% -99.955%] (p = 0.00 < 0.05)
                        thrpt:  [+221417% +223380% +224881%]
                        Performance has improved.
Found 2 outliers among 100 measurements (2.00%)
  1 (1.00%) high mild
  1 (1.00%) high severe

many-stack-frames-traps/1
                        time:   [1.4658 us 1.4719 us 1.4784 us]
                        thrpt:  [676.39 Kelem/s 679.38 Kelem/s 682.21 Kelem/s]
                 change:
                        time:   [-90.368% -89.947% -89.586%] (p = 0.00 < 0.05)
                        thrpt:  [+860.23% +894.72% +938.21%]
                        Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
  5 (5.00%) high mild
  3 (3.00%) high severe
many-stack-frames-traps/8
                        time:   [2.4772 us 2.4870 us 2.4973 us]
                        thrpt:  [3.2034 Melem/s 3.2167 Melem/s 3.2294 Melem/s]
                 change:
                        time:   [-85.550% -85.370% -85.199%] (p = 0.00 < 0.05)
                        thrpt:  [+575.65% +583.51% +592.03%]
                        Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
  4 (4.00%) high mild
  4 (4.00%) high severe
many-stack-frames-traps/64
                        time:   [10.109 us 10.171 us 10.236 us]
                        thrpt:  [6.2525 Melem/s 6.2925 Melem/s 6.3309 Melem/s]
                 change:
                        time:   [-78.144% -77.797% -77.336%] (p = 0.00 < 0.05)
                        thrpt:  [+341.22% +350.38% +357.55%]
                        Performance has improved.
Found 7 outliers among 100 measurements (7.00%)
  5 (5.00%) high mild
  2 (2.00%) high severe
many-stack-frames-traps/512
                        time:   [126.16 us 126.54 us 126.96 us]
                        thrpt:  [4.0329 Melem/s 4.0461 Melem/s 4.0583 Melem/s]
                 change:
                        time:   [-65.364% -64.933% -64.453%] (p = 0.00 < 0.05)
                        thrpt:  [+181.32% +185.17% +188.71%]
                        Performance has improved.
Found 4 outliers among 100 measurements (4.00%)
  4 (4.00%) high severe
```

</details>

<h3>Calls</h3>

There is, however, a small regression in raw Wasm-to-host and host-to-Wasm call
performance due the new trampolines. It seems to be on the order of about 2-10
nanoseconds per call, depending on the benchmark.

I believe this regression is ultimately acceptable because

1. this overhead will be vastly dominated by whatever work a non-nop callee
actually does,

2. we will need these trampolines, or something like them, when implementing the
Wasm exceptions proposal to do things like translate Wasm's exceptions into
Rust's `Result`s,

3. and because the performance improvements to trapping and capturing stack
traces are of such a larger magnitude than this call regressions.

<details>

```
sync/no-hook/host-to-wasm - typed - nop
                        time:   [28.683 ns 28.757 ns 28.844 ns]
                        change: [+16.472% +17.183% +17.904%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
  1 (1.00%) low mild
  4 (4.00%) high mild
  5 (5.00%) high severe
sync/no-hook/host-to-wasm - untyped - nop
                        time:   [42.515 ns 42.652 ns 42.841 ns]
                        change: [+12.371% +14.614% +17.462%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
  1 (1.00%) high mild
  10 (10.00%) high severe
sync/no-hook/host-to-wasm - unchecked - nop
                        time:   [33.936 ns 34.052 ns 34.179 ns]
                        change: [+25.478% +26.938% +28.369%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
  7 (7.00%) high mild
  2 (2.00%) high severe
sync/no-hook/host-to-wasm - typed - nop-params-and-results
                        time:   [34.290 ns 34.388 ns 34.502 ns]
                        change: [+40.802% +42.706% +44.526%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
  5 (5.00%) high mild
  8 (8.00%) high severe
sync/no-hook/host-to-wasm - untyped - nop-params-and-results
                        time:   [62.546 ns 62.721 ns 62.919 ns]
                        change: [+2.5014% +3.6319% +4.8078%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
  2 (2.00%) high mild
  10 (10.00%) high severe
sync/no-hook/host-to-wasm - unchecked - nop-params-and-results
                        time:   [42.609 ns 42.710 ns 42.831 ns]
                        change: [+20.966% +22.282% +23.475%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
  4 (4.00%) high mild
  7 (7.00%) high severe

sync/hook-sync/host-to-wasm - typed - nop
                        time:   [29.546 ns 29.675 ns 29.818 ns]
                        change: [+20.693% +21.794% +22.836%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 5 outliers among 100 measurements (5.00%)
  3 (3.00%) high mild
  2 (2.00%) high severe
sync/hook-sync/host-to-wasm - untyped - nop
                        time:   [45.448 ns 45.699 ns 45.961 ns]
                        change: [+17.204% +18.514% +19.590%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
  4 (4.00%) high mild
  10 (10.00%) high severe
sync/hook-sync/host-to-wasm - unchecked - nop
                        time:   [34.334 ns 34.437 ns 34.558 ns]
                        change: [+23.225% +24.477% +25.886%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
  5 (5.00%) high mild
  7 (7.00%) high severe
sync/hook-sync/host-to-wasm - typed - nop-params-and-results
                        time:   [36.594 ns 36.763 ns 36.974 ns]
                        change: [+41.967% +47.261% +52.086%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
  3 (3.00%) high mild
  9 (9.00%) high severe
sync/hook-sync/host-to-wasm - untyped - nop-params-and-results
                        time:   [63.541 ns 63.831 ns 64.194 ns]
                        change: [-4.4337% -0.6855% +2.7134%] (p = 0.73 > 0.05)
                        No change in performance detected.
Found 8 outliers among 100 measurements (8.00%)
  6 (6.00%) high mild
  2 (2.00%) high severe
sync/hook-sync/host-to-wasm - unchecked - nop-params-and-results
                        time:   [43.968 ns 44.169 ns 44.437 ns]
                        change: [+18.772% +21.802% +24.623%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 15 outliers among 100 measurements (15.00%)
  3 (3.00%) high mild
  12 (12.00%) high severe

async/no-hook/host-to-wasm - typed - nop
                        time:   [4.9612 us 4.9743 us 4.9889 us]
                        change: [+9.9493% +11.911% +13.502%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
  6 (6.00%) high mild
  4 (4.00%) high severe
async/no-hook/host-to-wasm - untyped - nop
                        time:   [5.0030 us 5.0211 us 5.0439 us]
                        change: [+10.841% +11.873% +12.977%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
  3 (3.00%) high mild
  7 (7.00%) high severe
async/no-hook/host-to-wasm - typed - nop-params-and-results
                        time:   [4.9273 us 4.9468 us 4.9700 us]
                        change: [+4.7381% +6.8445% +8.8238%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
  5 (5.00%) high mild
  9 (9.00%) high severe
async/no-hook/host-to-wasm - untyped - nop-params-and-results
                        time:   [5.1151 us 5.1338 us 5.1555 us]
                        change: [+9.5335% +11.290% +13.044%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
  3 (3.00%) high mild
  13 (13.00%) high severe

async/hook-sync/host-to-wasm - typed - nop
                        time:   [4.9330 us 4.9394 us 4.9467 us]
                        change: [+10.046% +11.038% +12.035%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
  5 (5.00%) high mild
  7 (7.00%) high severe
async/hook-sync/host-to-wasm - untyped - nop
                        time:   [5.0073 us 5.0183 us 5.0310 us]
                        change: [+9.3828% +10.565% +11.752%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
  3 (3.00%) high mild
  5 (5.00%) high severe
async/hook-sync/host-to-wasm - typed - nop-params-and-results
                        time:   [4.9610 us 4.9839 us 5.0097 us]
                        change: [+9.0857% +11.513% +14.359%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
  7 (7.00%) high mild
  6 (6.00%) high severe
async/hook-sync/host-to-wasm - untyped - nop-params-and-results
                        time:   [5.0995 us 5.1272 us 5.1617 us]
                        change: [+9.3600% +11.506% +13.809%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
  6 (6.00%) high mild
  4 (4.00%) high severe

async-pool/no-hook/host-to-wasm - typed - nop
                        time:   [2.4242 us 2.4316 us 2.4396 us]
                        change: [+7.8756% +8.8803% +9.8346%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
  5 (5.00%) high mild
  3 (3.00%) high severe
async-pool/no-hook/host-to-wasm - untyped - nop
                        time:   [2.5102 us 2.5155 us 2.5210 us]
                        change: [+12.130% +13.194% +14.270%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
  4 (4.00%) high mild
  8 (8.00%) high severe
async-pool/no-hook/host-to-wasm - typed - nop-params-and-results
                        time:   [2.4203 us 2.4310 us 2.4440 us]
                        change: [+4.0380% +6.3623% +8.7534%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
  5 (5.00%) high mild
  9 (9.00%) high severe
async-pool/no-hook/host-to-wasm - untyped - nop-params-and-results
                        time:   [2.5501 us 2.5593 us 2.5700 us]
                        change: [+8.8802% +10.976% +12.937%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
  5 (5.00%) high mild
  11 (11.00%) high severe

async-pool/hook-sync/host-to-wasm - typed - nop
                        time:   [2.4135 us 2.4190 us 2.4254 us]
                        change: [+8.3640% +9.3774% +10.435%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
  6 (6.00%) high mild
  5 (5.00%) high severe
async-pool/hook-sync/host-to-wasm - untyped - nop
                        time:   [2.5172 us 2.5248 us 2.5357 us]
                        change: [+11.543% +12.750% +13.982%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
  1 (1.00%) high mild
  7 (7.00%) high severe
async-pool/hook-sync/host-to-wasm - typed - nop-params-and-results
                        time:   [2.4214 us 2.4353 us 2.4532 us]
                        change: [+1.5158% +5.0872% +8.6765%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 15 outliers among 100 measurements (15.00%)
  2 (2.00%) high mild
  13 (13.00%) high severe
async-pool/hook-sync/host-to-wasm - untyped - nop-params-and-results
                        time:   [2.5499 us 2.5607 us 2.5748 us]
                        change: [+10.146% +12.459% +14.919%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 18 outliers among 100 measurements (18.00%)
  3 (3.00%) high mild
  15 (15.00%) high severe

sync/no-hook/wasm-to-host - nop - typed
                        time:   [6.6135 ns 6.6288 ns 6.6452 ns]
                        change: [+37.927% +38.837% +39.869%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 7 outliers among 100 measurements (7.00%)
  2 (2.00%) high mild
  5 (5.00%) high severe
sync/no-hook/wasm-to-host - nop-params-and-results - typed
                        time:   [15.930 ns 15.993 ns 16.067 ns]
                        change: [+3.9583% +5.6286% +7.2430%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
  11 (11.00%) high mild
  1 (1.00%) high severe
sync/no-hook/wasm-to-host - nop - untyped
                        time:   [20.596 ns 20.640 ns 20.690 ns]
                        change: [+4.3293% +5.2047% +6.0935%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
  5 (5.00%) high mild
  5 (5.00%) high severe
sync/no-hook/wasm-to-host - nop-params-and-results - untyped
                        time:   [42.659 ns 42.882 ns 43.159 ns]
                        change: [-2.1466% -0.5079% +1.2554%] (p = 0.58 > 0.05)
                        No change in performance detected.
Found 15 outliers among 100 measurements (15.00%)
  1 (1.00%) high mild
  14 (14.00%) high severe
sync/no-hook/wasm-to-host - nop - unchecked
                        time:   [10.671 ns 10.691 ns 10.713 ns]
                        change: [+83.911% +87.620% +92.062%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
  2 (2.00%) high mild
  7 (7.00%) high severe
sync/no-hook/wasm-to-host - nop-params-and-results - unchecked
                        time:   [11.136 ns 11.190 ns 11.263 ns]
                        change: [-29.719% -28.446% -27.029%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
  4 (4.00%) high mild
  10 (10.00%) high severe

sync/hook-sync/wasm-to-host - nop - typed
                        time:   [6.7964 ns 6.8087 ns 6.8226 ns]
                        change: [+21.531% +24.206% +27.331%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
  4 (4.00%) high mild
  10 (10.00%) high severe
sync/hook-sync/wasm-to-host - nop-params-and-results - typed
                        time:   [15.865 ns 15.921 ns 15.985 ns]
                        change: [+4.8466% +6.3330% +7.8317%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
  3 (3.00%) high mild
  13 (13.00%) high severe
sync/hook-sync/wasm-to-host - nop - untyped
                        time:   [21.505 ns 21.587 ns 21.677 ns]
                        change: [+8.0908% +9.1943% +10.254%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
  4 (4.00%) high mild
  4 (4.00%) high severe
sync/hook-sync/wasm-to-host - nop-params-and-results - untyped
                        time:   [44.018 ns 44.128 ns 44.261 ns]
                        change: [-1.4671% -0.0458% +1.2443%] (p = 0.94 > 0.05)
                        No change in performance detected.
Found 14 outliers among 100 measurements (14.00%)
  5 (5.00%) high mild
  9 (9.00%) high severe
sync/hook-sync/wasm-to-host - nop - unchecked
                        time:   [11.264 ns 11.326 ns 11.387 ns]
                        change: [+80.225% +81.659% +83.068%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 6 outliers among 100 measurements (6.00%)
  3 (3.00%) high mild
  3 (3.00%) high severe
sync/hook-sync/wasm-to-host - nop-params-and-results - unchecked
                        time:   [11.816 ns 11.865 ns 11.920 ns]
                        change: [-29.152% -28.040% -26.957%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
  8 (8.00%) high mild
  6 (6.00%) high severe

async/no-hook/wasm-to-host - nop - typed
                        time:   [6.6221 ns 6.6385 ns 6.6569 ns]
                        change: [+43.618% +44.755% +45.965%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
  6 (6.00%) high mild
  7 (7.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - typed
                        time:   [15.884 ns 15.929 ns 15.983 ns]
                        change: [+3.5987% +5.2053% +6.7846%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
  3 (3.00%) high mild
  13 (13.00%) high severe
async/no-hook/wasm-to-host - nop - untyped
                        time:   [20.615 ns 20.702 ns 20.821 ns]
                        change: [+6.9799% +8.1212% +9.2819%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
  2 (2.00%) high mild
  8 (8.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - untyped
                        time:   [41.956 ns 42.207 ns 42.521 ns]
                        change: [-4.3057% -2.7730% -1.2428%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
  3 (3.00%) high mild
  11 (11.00%) high severe
async/no-hook/wasm-to-host - nop - unchecked
                        time:   [10.440 ns 10.474 ns 10.513 ns]
                        change: [+83.959% +85.826% +87.541%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
  5 (5.00%) high mild
  6 (6.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - unchecked
                        time:   [11.476 ns 11.512 ns 11.554 ns]
                        change: [-29.857% -28.383% -26.978%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 12 outliers among 100 measurements (12.00%)
  1 (1.00%) low mild
  6 (6.00%) high mild
  5 (5.00%) high severe
async/no-hook/wasm-to-host - nop - async-typed
                        time:   [26.427 ns 26.478 ns 26.532 ns]
                        change: [+6.5730% +7.4676% +8.3983%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
  2 (2.00%) high mild
  7 (7.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - async-typed
                        time:   [28.557 ns 28.693 ns 28.880 ns]
                        change: [+1.9099% +3.7332% +5.9731%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 15 outliers among 100 measurements (15.00%)
  1 (1.00%) high mild
  14 (14.00%) high severe

async/hook-sync/wasm-to-host - nop - typed
                        time:   [6.7488 ns 6.7630 ns 6.7784 ns]
                        change: [+19.935% +22.080% +23.683%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
  4 (4.00%) high mild
  5 (5.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - typed
                        time:   [15.928 ns 16.031 ns 16.149 ns]
                        change: [+5.5188% +6.9567% +8.3839%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
  9 (9.00%) high mild
  2 (2.00%) high severe
async/hook-sync/wasm-to-host - nop - untyped
                        time:   [21.930 ns 22.114 ns 22.296 ns]
                        change: [+4.6674% +7.7588% +10.375%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 4 outliers among 100 measurements (4.00%)
  3 (3.00%) high mild
  1 (1.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - untyped
                        time:   [42.684 ns 42.858 ns 43.081 ns]
                        change: [-5.2957% -3.4693% -1.6217%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
  2 (2.00%) high mild
  12 (12.00%) high severe
async/hook-sync/wasm-to-host - nop - unchecked
                        time:   [11.026 ns 11.053 ns 11.086 ns]
                        change: [+70.751% +72.378% +73.961%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
  5 (5.00%) high mild
  5 (5.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - unchecked
                        time:   [11.840 ns 11.900 ns 11.982 ns]
                        change: [-27.977% -26.584% -24.887%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 18 outliers among 100 measurements (18.00%)
  3 (3.00%) high mild
  15 (15.00%) high severe
async/hook-sync/wasm-to-host - nop - async-typed
                        time:   [27.601 ns 27.709 ns 27.882 ns]
                        change: [+8.1781% +9.1102% +10.030%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
  2 (2.00%) low mild
  3 (3.00%) high mild
  6 (6.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - async-typed
                        time:   [28.955 ns 29.174 ns 29.413 ns]
                        change: [+1.1226% +3.0366% +5.1126%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
  7 (7.00%) high mild
  6 (6.00%) high severe

async-pool/no-hook/wasm-to-host - nop - typed
                        time:   [6.5626 ns 6.5733 ns 6.5851 ns]
                        change: [+40.561% +42.307% +44.514%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
  5 (5.00%) high mild
  4 (4.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - typed
                        time:   [15.820 ns 15.886 ns 15.969 ns]
                        change: [+4.1044% +5.7928% +7.7122%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 17 outliers among 100 measurements (17.00%)
  4 (4.00%) high mild
  13 (13.00%) high severe
async-pool/no-hook/wasm-to-host - nop - untyped
                        time:   [20.481 ns 20.521 ns 20.566 ns]
                        change: [+6.7962% +7.6950% +8.7612%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
  6 (6.00%) high mild
  5 (5.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - untyped
                        time:   [41.834 ns 41.998 ns 42.189 ns]
                        change: [-3.8185% -2.2687% -0.7541%] (p = 0.01 < 0.05)
                        Change within noise threshold.
Found 13 outliers among 100 measurements (13.00%)
  3 (3.00%) high mild
  10 (10.00%) high severe
async-pool/no-hook/wasm-to-host - nop - unchecked
                        time:   [10.353 ns 10.380 ns 10.414 ns]
                        change: [+82.042% +84.591% +87.205%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 7 outliers among 100 measurements (7.00%)
  4 (4.00%) high mild
  3 (3.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - unchecked
                        time:   [11.123 ns 11.168 ns 11.228 ns]
                        change: [-30.813% -29.285% -27.874%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 12 outliers among 100 measurements (12.00%)
  11 (11.00%) high mild
  1 (1.00%) high severe
async-pool/no-hook/wasm-to-host - nop - async-typed
                        time:   [27.442 ns 27.528 ns 27.638 ns]
                        change: [+7.5215% +9.9795% +12.266%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 18 outliers among 100 measurements (18.00%)
  3 (3.00%) high mild
  15 (15.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - async-typed
                        time:   [29.014 ns 29.148 ns 29.312 ns]
                        change: [+2.0227% +3.4722% +4.9047%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 7 outliers among 100 measurements (7.00%)
  6 (6.00%) high mild
  1 (1.00%) high severe

async-pool/hook-sync/wasm-to-host - nop - typed
                        time:   [6.7916 ns 6.8116 ns 6.8325 ns]
                        change: [+20.937% +22.050% +23.281%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
  5 (5.00%) high mild
  6 (6.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - typed
                        time:   [15.917 ns 15.975 ns 16.051 ns]
                        change: [+4.6404% +6.4217% +8.3075%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
  5 (5.00%) high mild
  11 (11.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - untyped
                        time:   [21.558 ns 21.612 ns 21.679 ns]
                        change: [+8.1158% +9.1409% +10.217%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
  2 (2.00%) high mild
  7 (7.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - untyped
                        time:   [42.475 ns 42.614 ns 42.775 ns]
                        change: [-6.3613% -4.4709% -2.7647%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 18 outliers among 100 measurements (18.00%)
  3 (3.00%) high mild
  15 (15.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - unchecked
                        time:   [11.150 ns 11.195 ns 11.247 ns]
                        change: [+74.424% +77.056% +79.811%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
  3 (3.00%) high mild
  11 (11.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - unchecked
                        time:   [11.639 ns 11.695 ns 11.760 ns]
                        change: [-30.212% -29.023% -27.954%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 15 outliers among 100 measurements (15.00%)
  7 (7.00%) high mild
  8 (8.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - async-typed
                        time:   [27.480 ns 27.712 ns 27.984 ns]
                        change: [+2.9764% +6.5061% +9.8914%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
  6 (6.00%) high mild
  2 (2.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - async-typed
                        time:   [29.218 ns 29.380 ns 29.600 ns]
                        change: [+5.2283% +7.7247% +10.822%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
  2 (2.00%) high mild
  14 (14.00%) high severe
```

</details>

* Add s390x support for frame pointer-based stack walking

* wasmtime: Allow `Caller::get_export` to get all exports

* fuzzing: Add a fuzz target to check that our stack traces are correct

We generate Wasm modules that keep track of their own stack as they call and
return between functions, and then we periodically check that if the host
captures a backtrace, it matches what the Wasm module has recorded.

* Remove VM offsets for `VMHostFuncContext` since it isn't used by JIT code

* Add doc comment with stack walking implementation notes

* Document the extra state that can be passed to `wasmtime_runtime::Backtrace` methods

* Add extensive comments for stack walking function

* Factor architecture-specific bits of stack walking out into modules

* Initialize store-related fields in a vmctx to null when there is no store yet

Rather than leaving them as uninitialized data.

* Use `set_callee` instead of manually setting the vmctx field

* Use a more informative compile error message for unsupported architectures

* Document unsafety of `prepare_host_to_wasm_trampoline`

* Use `bti c` instead of `hint #34` in inline aarch64 assembly

* Remove outdated TODO comment

* Remove setting of `last_wasm_exit_fp` in `set_jit_trap`

This is no longer needed as the value is plumbed through to the backtrace code
directly now.

* Only set the stack limit once, in the face of re-entrancy into Wasm

* Add comments for s390x-specific stack walking bits

* Use the helper macro for all libcalls

If we forget to use it, and then trigger a GC from the libcall, that means we
could miss stack frames when walking the stack, fail to find live GC refs, and
then get use after free bugs. Much less risky to always use the helper macro
that takes care of all of that for us.

* Use the `asm_sym!` macro in Wasm-to-libcall trampolines

This macro handles the macOS-specific underscore prefix stuff for us.

* wasmtime: add size and align to `externref` assertion error message

* Extend the `stacks` fuzzer to have host frames in between Wasm frames

This way we get one or more contiguous sequences of Wasm frames on the stack,
instead of exactly one.

* Add documentation for aarch64-specific backtrace helpers

* Clarify that we only support little-endian aarch64 in trampoline comment

* Use `.machine z13` in s390x assembly file

Since apparently our CI machines have pretty old assemblers that don't have
`.machine z14`. This should be fine though since these trampolines don't make
use of anything that is introduced in z14.

* Fix aarch64 build

* Fix macOS build

* Document the `asm_sym!` macro

* Add windows support to the `wasmtime-asm-macros` crate

* Add windows support to host<--->Wasm trampolines

* Fix trap handler build on windows

* Run `rustfmt` on s390x trampoline source file

* Temporarily disable some assertions about a trap's backtrace in the component model tests

Follow up to re-enable this and fix the associated issue:
https://github.com/bytecodealliance/wasmtime/issues/4535

* Refactor libcall definitions with less macros

This refactors the `libcall!` macro to use the
`foreach_builtin_function!` macro to define all of the trampolines.
Additionally the macro surrounding each libcall itself is no longer
necessary and helps avoid too many macros.

* Use `VMOpaqueContext::from_vm_host_func_context` in `VMHostFuncContext::new`

* Move `backtrace` module to be submodule of `traphandlers`

This avoids making some things `pub(crate)` in `traphandlers` that really
shouldn't be.

* Fix macOS aarch64 build

* Use "i64" instead of "word" in aarch64-specific file

* Save/restore entry SP and exit FP/return pointer in the face of panicking imported host functions

Also clean up assertions surrounding our saved entry/exit registers.

* Put "typed" vs "untyped" in the same position of call benchmark names

Regardless if we are doing wasm-to-host or host-to-wasm

* Fix stacks test case generator build for new `wasm-encoder`

* Fix build for s390x

* Expand libcalls in s390x asm

* Disable more parts of component tests now that backtrace assertions are a bit tighter

* Remove assertion that can maybe fail on s390x

Co-authored-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
2022-07-28 15:46:14 -07:00
Alex Crichton
76b82910c9 Remove the module linking implementation in Wasmtime (#3958)
* Remove the module linking implementation in Wasmtime

This commit removes the experimental implementation of the module
linking WebAssembly proposal from Wasmtime. The module linking is no
longer intended for core WebAssembly but is instead incorporated into
the component model now at this point. This means that very large parts
of Wasmtime's implementation of module linking are no longer applicable
and would change greatly with an implementation of the component model.

The main purpose of this is to remove Wasmtime's reliance on the support
for module-linking in `wasmparser` and tooling crates. With this
reliance removed we can move over to the `component-model` branch of
`wasmparser` and use the updated support for the component model.
Additionally given the trajectory of the component model proposal the
embedding API of Wasmtime will not look like what it looks like today
for WebAssembly. For example the core wasm `Instance` will not change
and instead a `Component` is likely to be added instead.

Some more rationale for this is in #3941, but the basic idea is that I
feel that it's not going to be viable to develop support for the
component model on a non-`main` branch of Wasmtime. Additionaly I don't
think it's viable, for the same reasons as `wasm-tools`, to support the
old module linking proposal and the new component model at the same
time.

This commit takes a moment to not only delete the existing module
linking implementation but some abstractions are also simplified. For
example module serialization is a bit simpler that there's only one
module. Additionally instantiation is much simpler since the only
initializer we have to deal with are imports and nothing else.

Closes #3941

* Fix doc link

* Update comments
2022-03-23 14:57:34 -05:00
Peter Huene
6ffcd4ead9 Improve stability for fuzz targets. (#3804)
This commit improves the stability of the fuzz targets by ensuring the
generated configs and modules are congruent, especially when the pooling
allocator is being used.

For the `differential` target, this means both configurations must use the same
allocation strategy for now as one side generates the module that might not be
compatible with another arbitrary config now that we fuzz the pooling
allocator.

These changes also ensure that constraints put on the config are more
consistently applied, especially when using a fuel-based timeout.
2022-02-15 12:59:04 -08:00
Alex Crichton
ab1d845ac1 Refactor fuzzing configuration and sometimes disable debug verifier. (#3664)
* fuzz: Refactor Wasmtime's fuzz targets

A recent fuzz bug found is related to timing out when compiling a
module. This timeout, however, is predominately because Cranelift's
debug verifier is enabled and taking up over half the compilation time.
I wanted to fix this by disabling the verifier when input modules might
have a lot of functions, but this was pretty difficult to implement.

Over time we've grown a number of various fuzzers. Most are
`wasm-smith`-based at this point but there's various entry points for
configuring the wasm-smith module, the wasmtime configuration, etc. I've
historically gotten quite lost in trying to change defaults and feeling
like I have to touch a lot of different places. This is the motivation
for this commit, simplifying fuzzer default configuration.

This commit removes the ability to create a default `Config` for
fuzzing, instead only supporting generating a configuration via
`Arbitrary`. This then involved refactoring all targets and fuzzers to
ensure that configuration is generated through `Arbitrary`. This should
actually expand the coverage of some existing fuzz targets since
`Arbitrary for Config` will tweak options that don't affect runtime,
such as memory configuration or jump veneers.

All existing fuzz targets are refactored to use this new method of
configuration. Some fuzz targets were also shuffled around or
reimplemented:

* `compile` - this now directly calls `Module::new` to skip all the
  fuzzing infrastructure. This is mostly done because this fuzz target
  isn't too interesting and is largely just seeing what happens when
  things are thrown at the wall for Wasmtime.

* `instantiate-maybe-invalid` - this fuzz target now skips instantiation
  and instead simply goes into `Module::new` like the `compile` target.
  The rationale behind this is that most modules won't instantiate
  anyway and this fuzz target is primarily fuzzing the compiler. This
  skips having to generate arbitrary configuration since
  wasm-smith-generated-modules (or valid ones at least) aren't used
  here.

* `instantiate` - this fuzz target was removed. In general this fuzz
  target isn't too interesting in isolation. Almost everything it deals
  with likely won't pass compilation and is covered by the `compile`
  fuzz target, and otherwise interesting modules being instantiated can
  all theoretically be created by `wasm-smith` anyway.

* `instantiate-wasm-smith` and `instantiate-swarm` - these were both merged
  into a new `instantiate` target (replacing the old one from above).
  There wasn't really much need to keep these separate since they really
  only differed at this point in methods of timeout. Otherwise we much
  more heavily use `SwarmConfig` than wasm-smith's built-in options.

The intention is that we should still have basically the same coverage
of fuzzing as before, if not better because configuration is now
possible on some targets. Additionally there is one centralized point of
configuration for fuzzing for wasmtime, `Arbitrary for ModuleConfig`.
This internally creates an arbitrary `SwarmConfig` from `wasm-smith` and
then further tweaks it for Wasmtime's needs, such as enabling various
wasm proposals by default. In the future enabling a wasm proposal on
fuzzing should largely just be modifying this one trait implementation.

* fuzz: Sometimes disable the cranelift debug verifier

This commit disables the cranelift debug verifier if the input wasm
module might be "large" for the definition of "more than 10 functions".
While fuzzing we disable threads (set them to 1) and enable the
cranelift debug verifier. Coupled with a 20-30x slowdown this means that
a module with the maximum number of functions, 100, gives:

    60x / 100 functions / 30x slowdown = 20ms

With only 20 milliseconds per function this is even further halved by
the `differential` fuzz target compiling a module twice, which means
that, when compiling with a normal release mode Wasmtime, if any
function takes more than 10ms to compile then it's a candidate for
timing out while fuzzing. Given that the cranelift debug verifier can
more than double compilation time in fuzzing mode this actually means
that the real time budget for function compilation is more like 4ms.

The `wasm-smith` crate can pretty easily generate a large function that
takes 4ms to compile, and then when that function is multiplied 100x in
the `differential` fuzz target we trivially time out the fuzz target.

The hope of this commit is to buy back half our budget by disabling the
debug verifier for modules that may have many functions. Further
refinements can be implemented in the future such as limiting functions
for just the differential target as well.

* Fix the single-function-module fuzz configuration

* Tweak how features work in differential fuzzing

* Disable everything for baseline differential fuzzing
* Enable selectively for each engine afterwards
* Also forcibly enable reference types and bulk memory for spec tests

* Log wasms when compiling

* Add reference types support to v8 fuzzer

* Fix timeouts via fuel

The default store has "infinite" fuel so that needs to be consumed
before fuel is added back in.

* Remove fuzzing-specific tests

These no longer compile and also haven't been added to in a long time.
Most of the time a reduced form of original the fuzz test case is added
when a fuzz bug is fixed.
2022-01-07 15:12:25 -06:00
Alex Crichton
9a27fdad86 Update v8 used during fuzzing (#3493)
This commit updates the crate name from `rusty_v8` to `v8` as well since
the upstream bindings have sinced moved. I originally wanted to do this
to see if a fix for one of our fuzz bugs was pulled in but I don't think
the fix has been pulled in yet. Despite that it seems reasonable to go
ahead and update.
2021-11-01 09:18:11 -05:00
Alex Crichton
476d0bee96 Allow another trap mismatch with v8
If Wasmtime thinks a module stack-overflows and v8 says that it does
something else that's ok. This means that the limits on v8 and Wasmtime
are different which is expected and not something we want fuzz-bugs
about.
2021-09-23 08:48:11 -07:00
Alex Crichton
bcf3544924 Optimize Func::call and its C API (#3319)
* Optimize `Func::call` and its C API

This commit is an alternative to #3298 which achieves effectively the
same goal of optimizing the `Func::call` API as well as its C API
sibling of `wasmtime_func_call`. The strategy taken here is different
than #3298 though where a new API isn't created, rather a small tweak to
an existing API is done. Specifically this commit handles the major
sources of slowness with `Func::call` with:

* Looking up the type of a function, to typecheck the arguments with and
  use to guide how the results should be loaded, no longer hits the
  rwlock in the `Engine` but instead each `Func` contains its own
  `FuncType`. This can be an unnecessary allocation for funcs not used
  with `Func::call`, so this is a downside of this implementation
  relative to #3298. A mitigating factor, though, is that instance
  exports are loaded lazily into the `Store` and in theory not too many
  funcs are active in the store as `Func` objects.

* Temporary storage is amortized with a long-lived `Vec` in the `Store`
  rather than allocating a new vector on each call. This is basically
  the same strategy as #3294 only applied to different types in
  different places. Specifically `wasmtime::Store` now retains a
  `Vec<u128>` for `Func::call`, and the C API retains a `Vec<Val>` for
  calling `Func::call`.

* Finally, an API breaking change is made to `Func::call` and its type
  signature (as well as `Func::call_async`). Instead of returning
  `Box<[Val]>` as it did before this function now takes a
  `results: &mut [Val]` parameter. This allows the caller to manage the
  allocation and we can amortize-remove it in `wasmtime_func_call` by
  using space after the parameters in the `Vec<Val>` we're passing in.
  This change is naturally a breaking change and we'll want to consider
  it carefully, but mitigating factors are that most embeddings are
  likely using `TypedFunc::call` instead and this signature taking a
  mutable slice better aligns with `Func::new` which receives a mutable
  slice for the results.

Overall this change, in the benchmark of "call a nop function from the C
API" is not quite as good as #3298. It's still a bit slower, on the
order of 15ns, because there's lots of capacity checks around vectors
and the type checks are slightly less optimized than before. Overall
though this is still significantly better than today because allocations
and the rwlock to acquire the type information are both avoided. I
personally feel that this change is the best to do because it has less
of an API impact than #3298.

* Rebase issues
2021-09-21 14:07:05 -05:00
Alex Crichton
b759514124 Allow wasmtime/v8 to differ on errors slightly (#3348)
I'm not sure why when run repeatedly v8 has different limits on
call-stack-size but it's not particularly interesting to assert exact
matches here, so this should fix a fuzz-bug-failure found on oss-fuzz.
2021-09-14 10:40:24 -05:00
Alex Crichton
4376cf2609 Add differential fuzzing against V8 (#3264)
* Add differential fuzzing against V8

This commit adds a differential fuzzing target to Wasmtime along the
lines of the wasmi and spec interpreters we already have, but with V8
instead. The intention here is that wasmi is unlikely to receive updates
over time (e.g. for SIMD), and the spec interpreter is not suitable for
fuzzing against in general due to its performance characteristics. The
hope is that V8 is indeed appropriate to fuzz against because it's
naturally receiving updates and it also is expected to have good
performance.

Here the `rusty_v8` crate is used which provides bindings to V8 as well
as precompiled binaries by default. This matches exactly the use case we
need and at least for now I think the `rusty_v8` crate will be
maintained by the Deno folks as they continue to develop it. If it
becomes an issue though maintaining we can evaluate other options to
have differential fuzzing against.

For now this commit enables the SIMD and bulk-memory feature of
fuzz-target-generation which should enable them to get
differentially-fuzzed with V8 in addition to the compilation fuzzing
we're already getting.

* Use weak linkage for GDB jit helpers

This should help us deduplicate our symbol with other JIT runtimes, if
any. For now this leans on some C helpers to define the weak linkage
since Rust doesn't support that on stable yet.

* Don't use rusty_v8 on MinGW

They don't have precompiled libraries there.

* Fix msvc build

* Comment about execution
2021-08-31 09:34:55 -05:00
Alex Crichton
e68aa99588 Implement the memory64 proposal in Wasmtime (#3153)
* Implement the memory64 proposal in Wasmtime

This commit implements the WebAssembly [memory64 proposal][proposal] in
both Wasmtime and Cranelift. In terms of work done Cranelift ended up
needing very little work here since most of it was already prepared for
64-bit memories at one point or another. Most of the work in Wasmtime is
largely refactoring, changing a bunch of `u32` values to something else.

A number of internal and public interfaces are changing as a result of
this commit, for example:

* Acessors on `wasmtime::Memory` that work with pages now all return
  `u64` unconditionally rather than `u32`. This makes it possible to
  accommodate 64-bit memories with this API, but we may also want to
  consider `usize` here at some point since the host can't grow past
  `usize`-limited pages anyway.

* The `wasmtime::Limits` structure is removed in favor of
  minimum/maximum methods on table/memory types.

* Many libcall intrinsics called by jit code now unconditionally take
  `u64` arguments instead of `u32`. Return values are `usize`, however,
  since the return value, if successful, is always bounded by host
  memory while arguments can come from any guest.

* The `heap_addr` clif instruction now takes a 64-bit offset argument
  instead of a 32-bit one. It turns out that the legalization of
  `heap_addr` already worked with 64-bit offsets, so this change was
  fairly trivial to make.

* The runtime implementation of mmap-based linear memories has changed
  to largely work in `usize` quantities in its API and in bytes instead
  of pages. This simplifies various aspects and reflects that
  mmap-memories are always bound by `usize` since that's what the host
  is using to address things, and additionally most calculations care
  about bytes rather than pages except for the very edge where we're
  going to/from wasm.

Overall I've tried to minimize the amount of `as` casts as possible,
using checked `try_from` and checked arithemtic with either error
handling or explicit `unwrap()` calls to tell us about bugs in the
future. Most locations have relatively obvious things to do with various
implications on various hosts, and I think they should all be roughly of
the right shape but time will tell. I mostly relied on the compiler
complaining that various types weren't aligned to figure out
type-casting, and I manually audited some of the more obvious locations.
I suspect we have a number of hidden locations that will panic on 32-bit
hosts if 64-bit modules try to run there, but otherwise I think we
should be generally ok (famous last words). In any case I wouldn't want
to enable this by default naturally until we've fuzzed it for some time.

In terms of the actual underlying implementation, no one should expect
memory64 to be all that fast. Right now it's implemented with
"dynamic" heaps which have a few consequences:

* All memory accesses are bounds-checked. I'm not sure how aggressively
  Cranelift tries to optimize out bounds checks, but I suspect not a ton
  since we haven't stressed this much historically.

* Heaps are always precisely sized. This means that every call to
  `memory.grow` will incur a `memcpy` of memory from the old heap to the
  new. We probably want to at least look into `mremap` on Linux and
  otherwise try to implement schemes where dynamic heaps have some
  reserved pages to grow into to help amortize the cost of
  `memory.grow`.

The memory64 spec test suite is scheduled to now run on CI, but as with
all the other spec test suites it's really not all that comprehensive.
I've tried adding more tests for basic things as I've had to implement
guards for them, but I wouldn't really consider the testing adequate
from just this PR itself. I did try to take care in one test to actually
allocate a 4gb+ heap and then avoid running that in the pooling
allocator or in emulation because otherwise that may fail or take
excessively long.

[proposal]: https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md

* Fix some tests

* More test fixes

* Fix wasmtime tests

* Fix doctests

* Revert to 32-bit immediate offsets in `heap_addr`

This commit updates the generation of addresses in wasm code to always
use 32-bit offsets for `heap_addr`, and if the calculated offset is
bigger than 32-bits we emit a manual add with an overflow check.

* Disable memory64 for spectest fuzzing

* Fix wrong offset being added to heap addr

* More comments!

* Clarify bytes/pages
2021-08-12 09:40:20 -05:00
Alex Crichton
bb85366a3b Enable simd fuzzing on oss-fuzz (#3152)
* Enable simd fuzzing on oss-fuzz

This commit generally enables the simd feature while fuzzing, which
should affect almost all fuzzers. For fuzzers that just throw random
data at the wall and see what sticks, this means that they'll now be
able to throw simd-shaped data at the wall and have it stick. For
wasm-smith-based fuzzers this commit also updates wasm-smith to 0.6.0
which allows further configuring the `SwarmConfig` after generation,
notably allowing `instantiate-swarm` to generate modules using simd
using `wasm-smith`. This should much more reliably feed simd-related
things into the fuzzers.

Finally, this commit updates wasmtime to avoid usage of the general
`wasm_smith::Module` generator to instead use a Wasmtime-specific custom
default configuration which enables various features we have
implemented.

* Allow dummy table creation to fail

Tables might creation for imports may exceed the memory limit on the
store, which we'll want to gracefully recover from and not fail the
fuzzers.
2021-08-05 16:24:42 -05:00
Alex Crichton
214c5f862d fuzz: Implement finer memory limits per-store (#3149)
* fuzz: Implement finer memory limits per-store

This commit implements a custom resource limiter for fuzzing. Locally I
was seeing a lot of ooms while fuzzing and I believe it was generally
caused from not actually having any runtime limits for wasm modules. I'm
actually surprised that this hasn't come up more on oss-fuzz more in
reality, but with a custom store limiter I think this'll get the job
done where we have an easier knob to turn for controlling the memory
usage of fuzz-generated modules.

For now I figure a 2gb limit should be good enough for limiting fuzzer
execution. Additionally the "out of resources" check if instantiation
fails now looks for the `oom` flag to be set instead of pattern matching
on some error messages about resources.

* Fix tests
2021-08-05 15:07:33 -05:00
Alex Crichton
1047c4e156 Fix fuzzers requesting 4gb memories (#3029)
Wasmtime was updated to reject creation of memories exactly 4gb in size
in #3013, but the fuzzers still had the assumption that any request to
create a host object for a particular wasm type would succeed.
Unfortunately now, though, a request to create a 4gb memory fails. This
is an expected failure, though, so the fix here was to catch the error
and allow it.
2021-06-24 14:53:18 -05:00
Pat Hickey
8b4bdf92e2 make ResourceLimiter operate on Store data; add hooks for entering and exiting native code (#2952)
* wasmtime_runtime: move ResourceLimiter defaults into this crate

In preparation of changing wasmtime::ResourceLimiter to be a re-export
of this definition, because translating between two traits was causing
problems elsewhere.

* wasmtime: make ResourceLimiter a re-export of wasmtime_runtime::ResourceLimiter

* refactor Store internals to support ResourceLimiter as part of store's data

* add hooks for entering and exiting native code to Store

* wasmtime-wast, fuzz: changes to adapt ResourceLimiter API

* fix tests

* wrap calls into wasm with entering/exiting exit hooks as well

* the most trivial test found a bug, lets write some more

* store: mark some methods as #[inline] on Store, StoreInner, StoreInnerMost

Co-authored-By: Alex Crichton <alex@alexcrichton.com>

* improve tests for the entering/exiting native hooks

Co-authored-by: Alex Crichton <alex@alexcrichton.com>
2021-06-08 09:37:00 -05:00
Alex Crichton
7a1b7cdf92 Implement RFC 11: Redesigning Wasmtime's APIs (#2897)
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.
2021-06-03 09:10:53 -05:00
Peter Huene
f12b4c467c Add resource limiting to the Wasmtime API. (#2736)
* Add resource limiting to the Wasmtime API.

This commit adds a `ResourceLimiter` trait to the Wasmtime API.

When used in conjunction with `Store::new_with_limiter`, this can be used to
monitor and prevent WebAssembly code from growing linear memories and tables.

This is particularly useful when hosts need to take into account host resource
usage to determine if WebAssembly code can consume more resources.

A simple `StaticResourceLimiter` is also included with these changes that will
simply limit the size of linear memories or tables for all instances created in
the store based on static values.

* Code review feedback.

* Implemented `StoreLimits` and `StoreLimitsBuilder`.
* Moved `max_instances`, `max_memories`, `max_tables` out of `Config` and into
  `StoreLimits`.
* Moved storage of the limiter in the runtime into `Memory` and `Table`.
* Made `InstanceAllocationRequest` use a reference to the limiter.
* Updated docs.
* Made `ResourceLimiterProxy` generic to remove a level of indirection.
* Fixed the limiter not being used for `wasmtime::Memory` and
  `wasmtime::Table`.

* Code review feedback and bug fix.

* `Memory::new` now returns `Result<Self>` so that an error can be returned if
  the initial requested memory exceeds any limits placed on the store.

* Changed an `Arc` to `Rc` as the `Arc` wasn't necessary.

* Removed `Store` from the `ResourceLimiter` callbacks. Custom resource limiter
  implementations are free to capture any context they want, so no need to
  unnecessarily store a weak reference to `Store` from the proxy type.

* Fixed a bug in the pooling instance allocator where an instance would be
  leaked from the pool. Previously, this would only have happened if the OS was
  unable to make the necessary linear memory available for the instance. With
  these changes, however, the instance might not be created due to limits
  placed on the store. We now properly deallocate the instance on error.

* Added more tests, including one that covers the fix mentioned above.

* Code review feedback.

* Add another memory to `test_pooling_allocator_initial_limits_exceeded` to
  ensure a partially created instance is successfully deallocated.
* Update some doc comments for better documentation of `Store` and
  `ResourceLimiter`.
2021-04-19 09:19:20 -05:00
Alex Crichton
516a97b3f3 A few more small fuzzing fixes (#2770)
* Increase allowances for values when fuzzing

The wasm-smith limits for generating modules are a bit higher than what
we specify, so sync those up to avoid getting too many false positives
with limits getting blown.

* Ensure fuzzing `*.wat` files are in sync

I keep looking at `*.wat` files that are actually stale, so remove stale
files if we write out a `*.wasm` file and can't disassemble it.

* Enable shadowing in dummy_linker

Fixes an issues where the same name is imported twice and we generated
two values for that. We don't mind the error here, we just want to
ignore the shadowing errors.
2021-03-25 18:44:04 -05:00
Alex Crichton
9476581ae6 Instantiate fewer instances when fuzzing (#2768)
This commit fixes an issue where when module linking was enabled for
fuzzing (which it is) import types of modules show as imports of
instances. In an attempt to satisfy the dummy values of such imports the
fuzzing integration would create instances for each import. This would,
however, count towards instance limits and isn't always desired.

This commit refactors the creation of dummy import values to decompose
imports of instances into imports of each individual item. This should
retain the pre-module-linking behavior of dummy imports for various
fuzzers.
2021-03-25 13:35:38 -05:00
Peter Huene
54c07d8f16 Implement shared host functions. (#2625)
* Implement defining host functions at the Config level.

This commit introduces defining host functions at the `Config` rather than with
`Func` tied to a `Store`.

The intention here is to enable a host to define all of the functions once
with a `Config` and then use a `Linker` (or directly with
`Store::get_host_func`) to use the functions when instantiating a module.

This should help improve the performance of use cases where a `Store` is
short-lived and redefining the functions at every module instantiation is a
noticeable performance hit.

This commit adds `add_to_config` to the code generation for Wasmtime's `Wasi`
type.

The new method adds the WASI functions to the given config as host functions.

This commit adds context functions to `Store`: `get` to get a context of a
particular type and `set` to set the context on the store.

For safety, `set` cannot replace an existing context value of the same type.

`Wasi::set_context` was added to set the WASI context for a `Store` when using
`Wasi::add_to_config`.

* Add `Config::define_host_func_async`.

* Make config "async" rather than store.

This commit moves the concept of "async-ness" to `Config` rather than `Store`.

Note: this is a breaking API change for anyone that's already adopted the new
async support in Wasmtime.

Now `Config::new_async` is used to create an "async" config and any `Store`
associated with that config is inherently "async".

This is needed for async shared host functions to have some sanity check during their
execution (async host functions, like "async" `Func`, need to be called with
the "async" variants).

* Update async function tests to smoke async shared host functions.

This commit updates the async function tests to also smoke the shared host
functions, plus `Func::wrap0_async`.

This also changes the "wrap async" method names on `Config` to
`wrap$N_host_func_async` to slightly better match what is on `Func`.

* Move the instance allocator into `Engine`.

This commit moves the instantiated instance allocator from `Config` into
`Engine`.

This makes certain settings in `Config` no longer order-dependent, which is how
`Config` should ideally be.

This also removes the confusing concept of the "default" instance allocator,
instead opting to construct the on-demand instance allocator when needed.

This does alter the semantics of the instance allocator as now each `Engine`
gets its own instance allocator rather than sharing a single one between all
engines created from a configuration.

* Make `Engine::new` return `Result`.

This is a breaking API change for anyone using `Engine::new`.

As creating the pooling instance allocator may fail (likely cause is not enough
memory for the provided limits), instead of panicking when creating an
`Engine`, `Engine::new` now returns a `Result`.

* Remove `Config::new_async`.

This commit removes `Config::new_async` in favor of treating "async support" as
any other setting on `Config`.

The setting is `Config::async_support`.

* Remove order dependency when defining async host functions in `Config`.

This commit removes the order dependency where async support must be enabled on
the `Config` prior to defining async host functions.

The check is now delayed to when an `Engine` is created from the config.

* Update WASI example to use shared `Wasi::add_to_config`.

This commit updates the WASI example to use `Wasi::add_to_config`.

As only a single store and instance are used in the example, it has no semantic
difference from the previous example, but the intention is to steer users
towards defining WASI on the config and only using `Wasi::add_to_linker` when
more explicit scoping of the WASI context is required.
2021-03-11 10:14:03 -06:00
Nick Fitzgerald
c7c6e76f9b fuzzing: Add tests for dummy import generation (#2604) 2021-01-26 09:11:24 -06:00
Alex Crichton
25000afe69 Enable fuzzing the module linking implementation
This commit updates all the wasm-tools crates that we use and enables
fuzzing of the module linking proposal in our various fuzz targets. This
also refactors some of the dummy value generation logic to not be
fallible and to always succeed, the thinking being that we don't want to
accidentally hide errors while fuzzing. Additionally instantiation is
only allowed to fail with a `Trap`, other failure reasons are unwrapped.
2020-12-11 08:36:52 -08:00
Alex Crichton
73cda83548 Propagate module-linking types to wasmtime (#2115)
This commit adds lots of plumbing to get the type section from the
module linking proposal plumbed all the way through to the `wasmtime`
crate and the `wasmtime-c-api` crate. This isn't all that useful right
now because Wasmtime doesn't support imported/exported
modules/instances, but this is all necessary groundwork to getting that
exported at some point. I've added some light tests but I suspect the
bulk of the testing will come in a future commit.

One major change in this commit is that `SignatureIndex` no longer
follows type type index space in a wasm module. Instead a new
`TypeIndex` type is used to track that. Function signatures, still
indexed by `SignatureIndex`, are then packed together tightly.
2020-11-06 14:48:09 -06:00
Alex Crichton
a277cf5ee4 Store WasmFuncType in FuncType (#2365)
This commit updates `wasmtime::FuncType` to exactly store an internal
`WasmFuncType` from the cranelift crates. This allows us to remove a
translation layer when we are given a `FuncType` and want to get an
internal cranelift type out as a result.

The other major change from this commit was changing the constructor and
accessors of `FuncType` to be iterator-based instead of exposing
implementation details.
2020-11-05 08:49:03 -06:00
Nick Fitzgerald
f28b3738ee Rename anyref to externref across the board 2020-05-20 11:58:55 -07:00
Dan Gohman
9364eb1d98 Refactor (#1524)
* Compute instance exports on demand.

Instead having instances eagerly compute a Vec of Externs, and bumping
the refcount for each Extern, compute Externs on demand.

This also enables `Instance::get_export` to avoid doing a linear search.

This also means that the closure returned by `get0` and friends now
holds an `InstanceHandle` to dynamically hold the instance live rather
than being scoped to a lifetime.

* Compute module imports and exports on demand too.

And compute Extern::ty on demand too.

* Add a utility function for computing an ExternType.

* Add a utility function for looking up a function's signature.

* Add a utility function for computing the ValType of a Global.

* Rename wasmtime_environ::Export to EntityIndex.

This helps differentiate it from other Export types in the tree, and
describes what it is.

* Fix a typo in a comment.

* Simplify module imports and exports.

* Make `Instance::exports` return the export names.

This significantly simplifies the public API, as it's relatively common
to need the names, and this avoids the need to do a zip with
`Module::exports`.

This also changes `ImportType` and `ExportType` to have public members
instead of private members and accessors, as I find that simplifies the
usage particularly in cases where there are temporary instances.

* Remove `Instance::module`.

This doesn't quite remove `Instance`'s `module` member, it gets a step
closer.

* Use a InstanceHandle utility function.

* Don't consume self in the `Func::get*` methods.

Instead, just create a closure containing the instance handle and the
export for them to call.

* Use `ExactSizeIterator` to avoid needing separate `num_*` methods.

* Rename `Extern::func()` etc. to `into_func()` etc.

* Revise examples to avoid using `nth`.

* Add convenience methods to instance for getting specific extern types.

* Use the convenience functions in more tests and examples.

* Avoid cloning strings for `ImportType` and `ExportType`.

* Remove more obviated clone() calls.

* Simplify `Func`'s closure state.

* Make wasmtime::Export's fields private.

This makes them more consistent with ExportType.

* Fix compilation error.

* Make a lifetime parameter explicit, and use better lifetime names.

Instead of 'me, use 'instance and 'module to make it clear what the
lifetime is.

* More lifetime cleanups.
2020-04-20 15:55:33 -05:00
Alex Crichton
afd980b4f6 Refactor the internals of Func to remove layers of indirection (#1363)
* Remove `WrappedCallable` indirection

At this point `Func` has evolved quite a bit since inception and the
`WrappedCallable` trait I don't believe is needed any longer. This
should help clean up a few entry points by having fewer traits in play.

* Remove the `Callable` trait

This commit removes the `wasmtime::Callable` trait, changing the
signature of `Func::new` to take an appropriately typed `Fn`.
Additionally the function now always takes `&Caller` like `Func::wrap`
optionally can, to empower `Func::new` to have the same capabilities of
`Func::wrap`.

* Add a test for an already-fixed issue

Closes #849

* rustfmt

* Update more locations for `Callable`

* rustfmt

* Remove a stray leading borrow

* Review feedback

* Remove unneeded `wasmtime_call_trampoline` shim
2020-03-19 14:21:45 -05:00
Nick Fitzgerald
1bf8de35f3 Add initial differential fuzzing
Part of #611
2020-01-17 16:17:04 -08:00
Alex Crichton
0bee67a852 Document and update the API of the externals.rs module (#812)
* Document and update the API of the `externals.rs` module

This commit ensures that all public methods and items are documented in
the `externals.rs` module, notably all external values that can be
imported and exported in WebAssembly. Along the way this also tidies up
the API and fixes a few bugs:

* `Global::new` now returns a `Result` and fails if the provided value
  does not match the type of the global.
* `Global::set` now returns a `Result` and fails if the global is either
  immutable or the provided value doesn't match the type of the global.
* `Table::new` now fails if the provided initializer does not match the
  element type.
* `Table::get` now returns `Option<Val>` instead of implicitly returning
  null.
* `Table::set` now returns `Result<()>`, returning an error on out of
  bounds or if the input type is of the wrong type.
* `Table::grow` now returns `Result<u32>`, returning the previous number
  of table elements if succesful or an error if the maximum is reached
  or the initializer value is of the wrong type. Additionally a bug was
  fixed here where if the wrong initializer was provided the table would
  be grown still, but initialization would fail.
* `Memory::data` was renamed to `Memory::data_unchecked_mut`.
  Additionally `Memory::data_unchecked` was added. Lots of caveats were
  written down about how using the method can go wrong.
* `Memory::grow` now returns `Result<u32>`, returning an error if growth
  fails or the number of pages previous the growth if successful.

* Run rustfmt

* Fix another test

* Update crates/api/src/externals.rs

Co-Authored-By: Sergei Pepyakin <s.pepyakin@gmail.com>

Co-authored-by: Sergei Pepyakin <s.pepyakin@gmail.com>
2020-01-17 09:43:35 -06:00
Alex Crichton
6571fb8f4f Remove HostRef from the wasmtime public API (#788)
* Remove `HostRef` from the `wasmtime` public API

This commit removes all remaining usages of `HostRef` in the public API
of the `wasmtime` crate. This involved a number of API decisions such
as:

* None of `Func`, `Global`, `Table`, or `Memory` are wrapped in `HostRef`
* All of `Func`, `Global`, `Table`, and `Memory` implement `Clone` now.
* Methods called `type` are renamed to `ty` to avoid typing `r#type`.
* Methods requiring mutability for external items now no longer require
  mutability. The mutable reference here is sort of a lie anyway since
  the internals are aliased by the underlying module anyway. This
  affects:
  * `Table::set`
  * `Table::grow`
  * `Memory::grow`
  * `Instance::set_signal_handler`
* The `Val::FuncRef` type is now no longer automatically coerced to
  `AnyRef`. This is technically a breaking change which is pretty bad,
  but I'm hoping that we can live with this interim state while we sort
  out the `AnyRef` story in general.
* The implementation of the C API was refactored and updated in a few
  locations to account for these changes:
  * Accessing the exports of an instance are now cached to ensure we
    always hand out the same `HostRef` values.
  * `wasm_*_t` for external values no longer have internal cache,
    instead they all wrap `wasm_external_t` and have an unchecked
    accessor for the underlying variant (since the type is proof that
    it's there). This makes casting back and forth much more trivial.

This is all related to #708 and while there's still more work to be done
in terms of documentation, this is the major bulk of the rest of the
implementation work on #708 I believe.

* More API updates

* Run rustfmt

* Fix a doc test

* More test updates
2020-01-10 10:42:14 -06:00
Alex Crichton
045d6a7310 Remove the need for HostRef<Store> (#771)
* Remove the need for `HostRef<Store>`

This commit goes through the public API of the `wasmtime` crate and
removes the need for `HostRef<Store>`, as discussed in #708. This commit
is accompanied with a few changes:

* The `Store` type now also implements `Default`, creating a new
  `Engine` with default settings and returning that.

* The `Store` type now implements `Clone`, and is documented as being a
  "cheap clone" aka being reference counted. As before there is no
  supported way to create a deep clone of a `Store`.

* All APIs take/return `&Store` or `Store` instead of `HostRef<Store>`,
  and `HostRef<T>` is left as purely a detail of the C API.

* The `global_exports` function is tagged as `#[doc(hidden)]` for now
  while we await its removal.

* The `Store` type is not yet `Send` nor `Sync` due to the usage of
  `global_exports`, but it is intended to become so eventually.

* Touch up comments on some examples

* Run rustfmt
2020-01-07 16:29:44 -06:00
Yury Delendik
681445b18b Fail with Trap in Instance::new() instead of Error (#683) 2019-12-30 16:25:16 -06:00
Alex Crichton
e134505b90 Refactor the types.rs types and structures (#681)
* Refactor the `types.rs` types and structures

A few changes applied along the way:

* Documentation added to most methods and types.
* Limits are now stored with the maximum as optional rather than a
  sentinel u32 value for `None`.
* The `Name` type was removed in favor of just using a bare `String`.
* The `Extern` prefix in the varaints of `ExternType` has been removed
  since it was redundant.
* Accessors of `ExternType` variants no longer panic, and unwrapping
  versions were added with "unwrap" in the name.
* Fields and methods named `r#type` were renamed to `ty` to avoid
  requiring a raw identifier to use them.

* Remove `fail-fast: false`

This was left around since the development of GitHub Actions for
wasmtime, but they're no longer needed!

* Fix compilation of the test-programs code

* Fix compilation of wasmtime-py package

* Run rustfmt
2019-12-06 16:19:55 -06:00
Nick Fitzgerald
5429a9391d fuzzing: Provide dummy imports for instantion oracle 2019-12-03 11:39:46 -08:00