This does a lot at once, since there was no clear way to split the three
commits:
- Instruction need to be passed an explicit InstructionFormat,
- InstructionFormat deduplication is checked once all entities have been
defined;
This avoids a lot of dereferences, and InstructionFormat are immutable
once they're created. It removes a lot of code that was keeping the
FormatRegistry around, just in case we needed the format. This is more
in line with the way we create Instructions, and make it easy to
reference InstructionFormats in general.
Previously, ConstantData was a type alias for `Vec<u8>` which prevented it from having an implementation; this meant that `V128Imm` and `&[u8; 16]` were used in places that otherwise could have accepted types of different byte lengths.
This avoids doing multiple unpacking of the InstructionData for a single
legalization, improving readability and reducing size of the generated
code. For instance, icmp had to unpack the format once per IntCC
condition code.
This adds a `DummyConstant` structure that is converted to something like `let const0 = pos.func.dfg.constants.insert(...)` in `gen_legalizer.rs`. This allows us to create constants during legalization with something like `let ones = constant(vec![0xff; 16])` and then use `ones` within a `def!` block, e.g.: `def!(a = vconst(ones))`. One unfortunate side-effect of this change is that, because the names of the constants in `ConstPool` are dynamic, the `VarPool` and `SymbolTable` structures that previously operated on `&'static str` types now must operate on `String` types; however, since this is a change to the meta code-generation, it should result in no runtime performance impact.
This change should make the code more clear (and less code) when adding encodings for instructions with specific immediates; e.g., a constant with a 0 immediate could be encoded as an XOR with something like `const.bind(...)` without explicitly creating the necessary predicates. It has several parts:
* Introduce Bindable trait to instructions
* Convert all instruction bindings to use Bindable::bind()
* Add ability to bind immediates to BoundInstruction
This is an attempt to reduce some of the issues in #955.
Instead of using MOVUPS to expensively load bits from memory, this change uses a predicate to optimize vconst without a memory access:
- when the 128-bit immediate is all zeroes in all bits, use PXOR to zero out an XMM register
- when the 128-bit immediate is all ones in all bits, use PCMPEQB to set an XMM register to all ones
This leaves the constant data in the constant pool, which may increase code size (TODO)
-Add resumable_trap, safepoint, isnull, and null instructions
-Add Stackmap struct and StackmapSink trait
Co-authored-by: Mir Ahmed <mirahmed753@gmail.com>
Co-authored-by: Dan Gohman <sunfish@mozilla.com>