* Verify that a recomputed dominator tree is identical to the existing one.
* The verifier now typechecks instruction results and arguments.
* The verifier now typechecks instruction results and arguments.
* The verifier now typechecks instruction results and arguments.
* Added `inst_{fixed,variable}_args` accessor functions.
* Improved error messages in verifier.
* Type check return statements against the function signature.
These low-level functions allow us to build up a list of instruction
results incrementally. They are equivalent to the existing
attach_ebb_arg and append_ebb_arg.
Instead, just return the first of the detached values, and provide a
next_secondary_result() method for traversing the list.
This is equivalent to how detach_ebb_args() works, and it allows the
data flow graph to be modified while traversing the list of results.
Add a new kind of instruction format that keeps all of its value
arguments in a value list. These value lists are all allocated out of
the dfg.value_lists memory pool.
Instruction formats with the value_list property set store *all* of
their value arguments in a single value list. There is no distinction
between fixed arguments and variable arguments.
Change the Call instruction format to use the value list representation
for its arguments.
This change is only the beginning. The intent is to eliminate the
boxed_storage instruction formats completely. Value lists use less
memory, and when the transition is complete, InstructionData will have a
trivial Drop implementation.
These two methods can be use to rewrite the argument values to an EBB.
In particular, we need to rewrite the arguments to the entry block to be
compatible with a legalized function signature.
Reuse the put_ebb_arg() method in the implementation of
append_ebb_arg().
- Remove NO_VALUE and ExpandedValue::None.
- Remove the Default implelmentation for Value.
- InstructionData::second_result() returns an Option<Value>.
- InstructionData::second_result() returns a reference to the packed
option.
This was only used for the comment rewrite mechanism, and we can just
predict the next allocated instruction number instead. See the other
uses of next_key() for gather_comments().
When the extended_values table is empty, the value to resolve is
definitely not an alias, but we still need as least one trip in the loop
to determine that.
A extended value can now be changed to a third form: An alias of another
value. This is like a copy instruction, but implicit in the value table.
Value aliases are used in lieu of use-def chains which would be used to
implement replace-all-uses-with.
Added new DFG methods:
- change_to_alias() changes an existing extended value into an alias.
Primay values can't be changed, replace their definition with a copy
instruction instead.
- resolve_aliases() find the original non-alias value.
- resolve_copies() like resolve_aliases(), but also sees through
copy/spill/fill instructions.
The DataFlowGraph::replace(inst) method returns an instruction builder
that will replace an instruction in-place.
This will be used when transforming instructions, replacing an old
instruction with a new (legal) way of computing its primary value. Since
primary result values are essentially instruction pointers, this is the
only way of replacing the definition of a value.
If secondary result values match the old instruction in both number and
types, they can be reused. If not, added a detach_secondary_results()
method for detaching old secondary values.
The make_inst_results() method now understands direct and indirect
calls, and can allocate result values matching the return types of the
function call.
These two tables are used to keep track of type signatures of function
calls as well as external function references used in direct function
calls.
Also add an ExtFuncData struct representing an external function that
can be called directly.
Give these crates each a more standard directory layout with sources in
a 'src' sub-sirectory and Cargo.toml in the top lib/foo directory.
Add license and description fields to each.
The build script for the cretonne crate now lives in
'lib/cretonne/build.rs' separating it from the normal library sources
under 'lib/cretonne/src'.