Commit Graph

179 Commits

Author SHA1 Message Date
Alex Crichton
1a5fa3ed3f Enable stable wasm features for spectest fuzzing (#3454)
These are now required for the general suite of spec tests we're running
by default.
2021-10-15 10:40:42 -05:00
Alex Crichton
9c6884e28d Update the spec reference testsuite submodule (#3450)
* Update the spec reference testsuite submodule

This commit brings in recent updates to the spec test suite. Most of the
changes here were already fixed in `wasmparser` with some tweaks to
esoteric modules, but Wasmtime also gets a bug fix where where import
matching for the size of tables/memories is based on the current runtime
size of the table/memory rather than the original type of the
table/memory. This means that during type matching the actual value is
consulted for its size rather than using the minimum size listed in its
type.

* Fix now-missing directories in build script
2021-10-13 16:14:12 -05:00
Alex Crichton
91482f39d0 Disable module linking in compilation fuzzer (#3416)
Module linking is otherwise covered by other fuzzers and by enabling
module linking it rejects more modules than necessary due to
restrictions on import strings.
2021-10-05 09:12:11 -05:00
Alex Crichton
25d3fa4d7b Remove spec interpreter fuzz target temporarily (#3399)
This commit removes the `differential_spec` fuzz target for now,
although this removal is intended to be temporary. We have #3251 to
track re-enabling the spec interpreter in a way that it won't time out,
and additionally the spec interpreter is also failing to build with
ocaml on oss-fuzz so that will also need to be investigated when
re-enabling.
2021-09-30 13:09:19 -05:00
Alex Crichton
1ee2af0098 Remove the lightbeam backend (#3390)
This commit removes the Lightbeam backend from Wasmtime as per [RFC 14].
This backend hasn't received maintenance in quite some time, and as [RFC
14] indicates this doesn't meet the threshold for keeping the code
in-tree, so this commit removes it.

A fast "baseline" compiler may still be added in the future. The
addition of such a backend should be in line with [RFC 14], though, with
the principles we now have for stable releases of Wasmtime. I'll close
out Lightbeam-related issues once this is merged.

[RFC 14]: https://github.com/bytecodealliance/rfcs/pull/14
2021-09-27 12:27:19 -05:00
Alex Crichton
476d0bee96 Allow another trap mismatch with v8
If Wasmtime thinks a module stack-overflows and v8 says that it does
something else that's ok. This means that the limits on v8 and Wasmtime
are different which is expected and not something we want fuzz-bugs
about.
2021-09-23 08:48:11 -07:00
Alex Crichton
bcf3544924 Optimize Func::call and its C API (#3319)
* Optimize `Func::call` and its C API

This commit is an alternative to #3298 which achieves effectively the
same goal of optimizing the `Func::call` API as well as its C API
sibling of `wasmtime_func_call`. The strategy taken here is different
than #3298 though where a new API isn't created, rather a small tweak to
an existing API is done. Specifically this commit handles the major
sources of slowness with `Func::call` with:

* Looking up the type of a function, to typecheck the arguments with and
  use to guide how the results should be loaded, no longer hits the
  rwlock in the `Engine` but instead each `Func` contains its own
  `FuncType`. This can be an unnecessary allocation for funcs not used
  with `Func::call`, so this is a downside of this implementation
  relative to #3298. A mitigating factor, though, is that instance
  exports are loaded lazily into the `Store` and in theory not too many
  funcs are active in the store as `Func` objects.

* Temporary storage is amortized with a long-lived `Vec` in the `Store`
  rather than allocating a new vector on each call. This is basically
  the same strategy as #3294 only applied to different types in
  different places. Specifically `wasmtime::Store` now retains a
  `Vec<u128>` for `Func::call`, and the C API retains a `Vec<Val>` for
  calling `Func::call`.

* Finally, an API breaking change is made to `Func::call` and its type
  signature (as well as `Func::call_async`). Instead of returning
  `Box<[Val]>` as it did before this function now takes a
  `results: &mut [Val]` parameter. This allows the caller to manage the
  allocation and we can amortize-remove it in `wasmtime_func_call` by
  using space after the parameters in the `Vec<Val>` we're passing in.
  This change is naturally a breaking change and we'll want to consider
  it carefully, but mitigating factors are that most embeddings are
  likely using `TypedFunc::call` instead and this signature taking a
  mutable slice better aligns with `Func::new` which receives a mutable
  slice for the results.

Overall this change, in the benchmark of "call a nop function from the C
API" is not quite as good as #3298. It's still a bit slower, on the
order of 15ns, because there's lots of capacity checks around vectors
and the type checks are slightly less optimized than before. Overall
though this is still significantly better than today because allocations
and the rwlock to acquire the type information are both avoided. I
personally feel that this change is the best to do because it has less
of an API impact than #3298.

* Rebase issues
2021-09-21 14:07:05 -05:00
Alex Crichton
fc6328ae06 Temporarily disable SIMD fuzzing on CI (#3376)
We've got a large crop of fuzz-bugs from fuzzing with enabled-with-SIMD
on oss-fuzz but at this point the fuzz stats from oss-fuzz say that the
fuzzers like v8 are spending less than 50% of its time actually fuzzing
and presumably mostly hitting crashes and such. While we fix the other
issues this disables simd for fuzzing with v8 so we can try to see if we
can weed out other issues.
2021-09-20 14:17:19 -05:00
Ulrich Weigand
51131a3acc Fix s390x regressions (#3330)
- Add relocation handling needed after PR #3275
- Fix incorrect handling of signed constants detected by PR #3056 test
- Fix LabelUse max pos/neg ranges; fix overflow in buffers.rs
- Disable fuzzing tests that require pre-built v8 binaries
- Disable cranelift test that depends on i128
- Temporarily disable memory64 tests
2021-09-20 09:12:36 -05:00
Nick Fitzgerald
b32130d0aa Fix table_ops fuzz generator test's expected results 2021-09-17 11:07:56 -07:00
Nick Fitzgerald
101998733b Merge pull request from GHSA-v4cp-h94r-m7xf
Fix a use-after-free bug when passing `ExternRef`s to Wasm
2021-09-17 10:27:29 -07:00
Nick Fitzgerald
d2ce1ac753 Fix a use-after-free bug when passing ExternRefs to Wasm
We _must not_ trigger a GC when moving refs from host code into
Wasm (e.g. returned from a host function or passed as arguments to a Wasm
function). After insertion into the table, this reference is no longer
rooted. If multiple references are being sent from the host into Wasm and we
allowed GCs during insertion, then the following events could happen:

* Reference A is inserted into the activations table. This does not trigger a
  GC, but does fill the table to capacity.

* The caller's reference to A is removed. Now the only reference to A is from
  the activations table.

* Reference B is inserted into the activations table. Because the table is at
  capacity, a GC is triggered.

* A is reclaimed because the only reference keeping it alive was the activation
  table's reference (it isn't inside any Wasm frames on the stack yet, so stack
  scanning and stack maps don't increment its reference count).

* We transfer control to Wasm, giving it A and B. Wasm uses A. That's a use
  after free.

To prevent uses after free, we cannot GC when moving refs into the
`VMExternRefActivationsTable` because we are passing them from the host to Wasm.

On the other hand, when we are *cloning* -- as opposed to moving -- refs from
the host to Wasm, then it is fine to GC while inserting into the activations
table, because the original referent that we are cloning from is still alive and
rooting the ref.
2021-09-14 14:23:42 -07:00
Alex Crichton
b759514124 Allow wasmtime/v8 to differ on errors slightly (#3348)
I'm not sure why when run repeatedly v8 has different limits on
call-stack-size but it's not particularly interesting to assert exact
matches here, so this should fix a fuzz-bug-failure found on oss-fuzz.
2021-09-14 10:40:24 -05:00
Alex Crichton
1532516a36 Use relative call instructions between wasm functions (#3275)
* Use relative `call` instructions between wasm functions

This commit is a relatively major change to the way that Wasmtime
generates code for Wasm modules and how functions call each other.
Prior to this commit all function calls between functions, even if they
were defined in the same module, were done indirectly through a
register. To implement this the backend would emit an absolute 8-byte
relocation near all function calls, load that address into a register,
and then call it. While this technique is simple to implement and easy
to get right, it has two primary downsides associated with it:

* Function calls are always indirect which means they are more difficult
  to predict, resulting in worse performance.

* Generating a relocation-per-function call requires expensive
  relocation resolution at module-load time, which can be a large
  contributing factor to how long it takes to load a precompiled module.

To fix these issues, while also somewhat compromising on the previously
simple implementation technique, this commit switches wasm calls within
a module to using the `colocated` flag enabled in Cranelift-speak, which
basically means that a relative call instruction is used with a
relocation that's resolved relative to the pc of the call instruction
itself.

When switching the `colocated` flag to `true` this commit is also then
able to move much of the relocation resolution from `wasmtime_jit::link`
into `wasmtime_cranelift::obj` during object-construction time. This
frontloads all relocation work which means that there's actually no
relocations related to function calls in the final image, solving both
of our points above.

The main gotcha in implementing this technique is that there are
hardware limitations to relative function calls which mean we can't
simply blindly use them. AArch64, for example, can only go +/- 64 MB
from the `bl` instruction to the target, which means that if the
function we're calling is a greater distance away then we would fail to
resolve that relocation. On x86_64 the limits are +/- 2GB which are much
larger, but theoretically still feasible to hit. Consequently the main
increase in implementation complexity is fixing this issue.

This issue is actually already present in Cranelift itself, and is
internally one of the invariants handled by the `MachBuffer` type. When
generating a function relative jumps between basic blocks have similar
restrictions. This commit adds new methods for the `MachBackend` trait
and updates the implementation of `MachBuffer` to account for all these
new branches. Specifically the changes to `MachBuffer` are:

* For AAarch64 the `LabelUse::Branch26` value now supports veneers, and
  AArch64 calls use this to resolve relocations.

* The `emit_island` function has been rewritten internally to handle
  some cases which previously didn't come up before, such as:

  * When emitting an island the deadline is now recalculated, where
    previously it was always set to infinitely in the future. This was ok
    prior since only a `Branch19` supported veneers and once it was
    promoted no veneers were supported, so without multiple layers of
    promotion the lack of a new deadline was ok.

  * When emitting an island all pending fixups had veneers forced if
    their branch target wasn't known yet. This was generally ok for
    19-bit fixups since the only kind getting a veneer was a 19-bit
    fixup, but with mixed kinds it's a bit odd to force veneers for a
    26-bit fixup just because a nearby 19-bit fixup needed a veneer.
    Instead fixups are now re-enqueued unless they're known to be
    out-of-bounds. This may run the risk of generating more islands for
    19-bit branches but it should also reduce the number of islands for
    between-function calls.

  * Otherwise the internal logic was tweaked to ideally be a bit more
    simple, but that's a pretty subjective criteria in compilers...

I've added some simple testing of this for now. A synthetic compiler
option was create to simply add padded 0s between functions and test
cases implement various forms of calls that at least need veneers. A
test is also included for x86_64, but it is unfortunately pretty slow
because it requires generating 2GB of output. I'm hoping for now it's
not too bad, but we can disable the test if it's prohibitive and
otherwise just comment the necessary portions to be sure to run the
ignored test if these parts of the code have changed.

The final end-result of this commit is that for a large module I'm
working with the number of relocations dropped to zero, meaning that
nothing actually needs to be done to the text section when it's loaded
into memory (yay!). I haven't run final benchmarks yet but this is the
last remaining source of significant slowdown when loading modules,
after I land a number of other PRs both active and ones that I only have
locally for now.

* Fix arm32

* Review comments
2021-09-01 13:27:38 -05:00
Alex Crichton
4376cf2609 Add differential fuzzing against V8 (#3264)
* Add differential fuzzing against V8

This commit adds a differential fuzzing target to Wasmtime along the
lines of the wasmi and spec interpreters we already have, but with V8
instead. The intention here is that wasmi is unlikely to receive updates
over time (e.g. for SIMD), and the spec interpreter is not suitable for
fuzzing against in general due to its performance characteristics. The
hope is that V8 is indeed appropriate to fuzz against because it's
naturally receiving updates and it also is expected to have good
performance.

Here the `rusty_v8` crate is used which provides bindings to V8 as well
as precompiled binaries by default. This matches exactly the use case we
need and at least for now I think the `rusty_v8` crate will be
maintained by the Deno folks as they continue to develop it. If it
becomes an issue though maintaining we can evaluate other options to
have differential fuzzing against.

For now this commit enables the SIMD and bulk-memory feature of
fuzz-target-generation which should enable them to get
differentially-fuzzed with V8 in addition to the compilation fuzzing
we're already getting.

* Use weak linkage for GDB jit helpers

This should help us deduplicate our symbol with other JIT runtimes, if
any. For now this leans on some C helpers to define the weak linkage
since Rust doesn't support that on stable yet.

* Don't use rusty_v8 on MinGW

They don't have precompiled libraries there.

* Fix msvc build

* Comment about execution
2021-08-31 09:34:55 -05:00
Chris Fallin
b2bcdd13ec Spec-interpreter fuzzing: check out fuzzing branch of our mirror. (#3222)
In #3186, we found an issue that requires patching the spec interpreter
for now. Our plan is to have a `fuzzing` branch in our spec-repo mirror
that lets us make these fixes locally before they are upstreamed.
This PR updates the build script for the spec-interpreter wrapper
crate to clone this particular `fuzzing` branch instead of the main
branch.
2021-08-20 12:54:52 -05:00
Alex Crichton
0642e62f16 Use wasm-smith to canonicalize NaN in differential fuzzing (#3195)
* Update wasm-smith to 0.7.0

* Canonicalize NaN with wasm-smith for differential fuzzing

This then also enables floating point executing in wasmi in addition to
the spec interpreter. With NaN canonicalization at the wasm level this
means that we should be producing deterministic results between Wasmtime
and these alternative implementations.
2021-08-17 11:42:22 -05:00
Alex Crichton
e68aa99588 Implement the memory64 proposal in Wasmtime (#3153)
* Implement the memory64 proposal in Wasmtime

This commit implements the WebAssembly [memory64 proposal][proposal] in
both Wasmtime and Cranelift. In terms of work done Cranelift ended up
needing very little work here since most of it was already prepared for
64-bit memories at one point or another. Most of the work in Wasmtime is
largely refactoring, changing a bunch of `u32` values to something else.

A number of internal and public interfaces are changing as a result of
this commit, for example:

* Acessors on `wasmtime::Memory` that work with pages now all return
  `u64` unconditionally rather than `u32`. This makes it possible to
  accommodate 64-bit memories with this API, but we may also want to
  consider `usize` here at some point since the host can't grow past
  `usize`-limited pages anyway.

* The `wasmtime::Limits` structure is removed in favor of
  minimum/maximum methods on table/memory types.

* Many libcall intrinsics called by jit code now unconditionally take
  `u64` arguments instead of `u32`. Return values are `usize`, however,
  since the return value, if successful, is always bounded by host
  memory while arguments can come from any guest.

* The `heap_addr` clif instruction now takes a 64-bit offset argument
  instead of a 32-bit one. It turns out that the legalization of
  `heap_addr` already worked with 64-bit offsets, so this change was
  fairly trivial to make.

* The runtime implementation of mmap-based linear memories has changed
  to largely work in `usize` quantities in its API and in bytes instead
  of pages. This simplifies various aspects and reflects that
  mmap-memories are always bound by `usize` since that's what the host
  is using to address things, and additionally most calculations care
  about bytes rather than pages except for the very edge where we're
  going to/from wasm.

Overall I've tried to minimize the amount of `as` casts as possible,
using checked `try_from` and checked arithemtic with either error
handling or explicit `unwrap()` calls to tell us about bugs in the
future. Most locations have relatively obvious things to do with various
implications on various hosts, and I think they should all be roughly of
the right shape but time will tell. I mostly relied on the compiler
complaining that various types weren't aligned to figure out
type-casting, and I manually audited some of the more obvious locations.
I suspect we have a number of hidden locations that will panic on 32-bit
hosts if 64-bit modules try to run there, but otherwise I think we
should be generally ok (famous last words). In any case I wouldn't want
to enable this by default naturally until we've fuzzed it for some time.

In terms of the actual underlying implementation, no one should expect
memory64 to be all that fast. Right now it's implemented with
"dynamic" heaps which have a few consequences:

* All memory accesses are bounds-checked. I'm not sure how aggressively
  Cranelift tries to optimize out bounds checks, but I suspect not a ton
  since we haven't stressed this much historically.

* Heaps are always precisely sized. This means that every call to
  `memory.grow` will incur a `memcpy` of memory from the old heap to the
  new. We probably want to at least look into `mremap` on Linux and
  otherwise try to implement schemes where dynamic heaps have some
  reserved pages to grow into to help amortize the cost of
  `memory.grow`.

The memory64 spec test suite is scheduled to now run on CI, but as with
all the other spec test suites it's really not all that comprehensive.
I've tried adding more tests for basic things as I've had to implement
guards for them, but I wouldn't really consider the testing adequate
from just this PR itself. I did try to take care in one test to actually
allocate a 4gb+ heap and then avoid running that in the pooling
allocator or in emulation because otherwise that may fail or take
excessively long.

[proposal]: https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md

* Fix some tests

* More test fixes

* Fix wasmtime tests

* Fix doctests

* Revert to 32-bit immediate offsets in `heap_addr`

This commit updates the generation of addresses in wasm code to always
use 32-bit offsets for `heap_addr`, and if the calculated offset is
bigger than 32-bits we emit a manual add with an overflow check.

* Disable memory64 for spectest fuzzing

* Fix wrong offset being added to heap addr

* More comments!

* Clarify bytes/pages
2021-08-12 09:40:20 -05:00
Andrew Brown
76a93dc112 fuzz: log Wasm contents to file when log::debug is enabled
Previously, the WAT was printed as a log message. This change
standardizes all of the oracles to use `log_wasm`, which emits a `.wasm`
and `.wat` file for each case if `log::debug` is enabled and prints a
message with the names of the created files. Closes #3140.
2021-08-11 09:10:20 -07:00
Andrew Brown
42acb72c54 fuzz: retrieve the WebAssembly spec repository in build.rs
To avoid the large download size of the spec repository mentioned
[here](https://github.com/bytecodealliance/wasmtime/pull/3124#discussion_r684605984),
this change removes it as a submodule and instead clones it shallowly
when the directory is empty (or not present) when `build.rs` is run.
2021-08-10 11:56:07 -07:00
Andrew Brown
651a321f1a fuzz: add differential_spec fuzzing target
This new target compares the outputs of executing the first exported
function of a Wasm module in Wasmtime and in the official Wasm spec
interpreter (using the `wasm-spec-interpreter` crate). This is an
initial step towards more fully-featured fuzzing (e.g. compare memories,
add `v128`, add references, add other proposals, etc.)
2021-08-10 11:56:07 -07:00
Andrew Brown
f3955fa62a refactor: rename DifferentialWasmiModuleConfig to SingleFunctionModuleConfig
Since we plan to reuse this configuration, we rename it and ensure it
has at least 1 type (this resulted in invalid modules).
2021-08-10 11:56:07 -07:00
Andrew Brown
a7f592a026 Add a crate to interface with the WebAssembly spec interpreter
The WebAssembly spec interpreter is written in OCaml and the new crate
uses `ocaml-interop` along with a small OCaml wrapper to interpret Wasm
modules in-process. The build process for this crate is currently
Linux-specific: it requires several OCaml packages (e.g. `apt install -y
ocaml-nox ocamlbuild`) as well as `make`, `cp`, and `ar`.
2021-08-10 11:56:07 -07:00
Alex Crichton
480dff21e8 fuzz: Disable more features for spectests fuzzer (#3159)
The previous commit to eanble multi-memory and simd leaked into the
spectest fuzzer, but to pass the spec tests we can't enable these features.
2021-08-06 16:27:42 -05:00
Alex Crichton
33c3d00f10 Remove rss prediction from api_calls fuzzer (#3156)
This functionality is now subsumed by the limiter built-in to all
fuzzing stores, so there's no longer any need for it. It was also
triggering arithmetic overflows in fuzzing, so instead of fixing I'm
removing it!
2021-08-06 12:43:22 -05:00
Nick Fitzgerald
e5ef1455a3 Merge pull request #3157 from alexcrichton/centralize-error-handling
fuzz: Centralize handling instantiation errors
2021-08-06 10:38:48 -07:00
Alex Crichton
45896e0533 Decrease memory limit in fuzzing to 1gb (#3155)
This should keep us under the default 2gb limit when fuzzing
2021-08-06 12:28:49 -05:00
Alex Crichton
3bdf6c7a48 fuzz: Centralize handling instantiation errors
At the same time remove some string matching in favor of checking for
oom explicitly.
2021-08-06 07:47:28 -07:00
Alex Crichton
bb85366a3b Enable simd fuzzing on oss-fuzz (#3152)
* Enable simd fuzzing on oss-fuzz

This commit generally enables the simd feature while fuzzing, which
should affect almost all fuzzers. For fuzzers that just throw random
data at the wall and see what sticks, this means that they'll now be
able to throw simd-shaped data at the wall and have it stick. For
wasm-smith-based fuzzers this commit also updates wasm-smith to 0.6.0
which allows further configuring the `SwarmConfig` after generation,
notably allowing `instantiate-swarm` to generate modules using simd
using `wasm-smith`. This should much more reliably feed simd-related
things into the fuzzers.

Finally, this commit updates wasmtime to avoid usage of the general
`wasm_smith::Module` generator to instead use a Wasmtime-specific custom
default configuration which enables various features we have
implemented.

* Allow dummy table creation to fail

Tables might creation for imports may exceed the memory limit on the
store, which we'll want to gracefully recover from and not fail the
fuzzers.
2021-08-05 16:24:42 -05:00
Alex Crichton
214c5f862d fuzz: Implement finer memory limits per-store (#3149)
* fuzz: Implement finer memory limits per-store

This commit implements a custom resource limiter for fuzzing. Locally I
was seeing a lot of ooms while fuzzing and I believe it was generally
caused from not actually having any runtime limits for wasm modules. I'm
actually surprised that this hasn't come up more on oss-fuzz more in
reality, but with a custom store limiter I think this'll get the job
done where we have an easier knob to turn for controlling the memory
usage of fuzz-generated modules.

For now I figure a 2gb limit should be good enough for limiting fuzzer
execution. Additionally the "out of resources" check if instantiation
fails now looks for the `oom` flag to be set instead of pattern matching
on some error messages about resources.

* Fix tests
2021-08-05 15:07:33 -05:00
Alex Crichton
a33caec9be Bump the wasm-tools crates (#3139)
* Bump the wasm-tools crates

Pulls in some updates here and there, mostly for updating crates to the
latest version to prepare for later memory64 work.

* Update lightbeam
2021-08-04 09:53:47 -05:00
Alex Crichton
ff1ae6e10c Flag another error as ok to hit when fuzzing (#3092)
We've got a lot of fuzz failures right now of modules instantiating
memories of 65536 pages, which we specifically disallow since the
representation of limits within Wasmtime don't support full 4GB
memories. This is ok, however, and it's not a fuzz failure that we're
interested in, so this commit allows strings of that error to pass
through the fuzzer.
2021-07-16 14:37:27 -05:00
Alex Crichton
1047c4e156 Fix fuzzers requesting 4gb memories (#3029)
Wasmtime was updated to reject creation of memories exactly 4gb in size
in #3013, but the fuzzers still had the assumption that any request to
create a host object for a particular wasm type would succeed.
Unfortunately now, though, a request to create a 4gb memory fails. This
is an expected failure, though, so the fix here was to catch the error
and allow it.
2021-06-24 14:53:18 -05:00
Alex Crichton
7ce46043dc Add guard pages to the front of linear memories (#2977)
* Add guard pages to the front of linear memories

This commit implements a safety feature for Wasmtime to place guard
pages before the allocation of all linear memories. Guard pages placed
after linear memories are typically present for performance (at least)
because it can help elide bounds checks. Guard pages before a linear
memory, however, are never strictly needed for performance or features.
The intention of a preceding guard page is to help insulate against bugs
in Cranelift or other code generators, such as CVE-2021-32629.

This commit adds a `Config::guard_before_linear_memory` configuration
option, defaulting to `true`, which indicates whether guard pages should
be present both before linear memories as well as afterwards. Guard
regions continue to be controlled by
`{static,dynamic}_memory_guard_size` methods.

The implementation here affects both on-demand allocated memories as
well as the pooling allocator for memories. For on-demand memories this
adjusts the size of the allocation as well as adjusts the calculations
for the base pointer of the wasm memory. For the pooling allocator this
will place a singular extra guard region at the very start of the
allocation for memories. Since linear memories in the pooling allocator
are contiguous every memory already had a preceding guard region in
memory, it was just the previous memory's guard region afterwards. Only
the first memory needed this extra guard.

I've attempted to write some tests to help test all this, but this is
all somewhat tricky to test because the settings are pretty far away
from the actual behavior. I think, though, that the tests added here
should help cover various use cases and help us have confidence in
tweaking the various `Config` settings beyond their defaults.

Note that this also contains a semantic change where
`InstanceLimits::memory_reservation_size` has been removed. Instead this
field is now inferred from the `static_memory_maximum_size` and guard
size settings. This should hopefully remove some duplication in these
settings, canonicalizing on the guard-size/static-size settings as the
way to control memory sizes and virtual reservations.

* Update config docs

* Fix a typo

* Fix benchmark

* Fix wasmtime-runtime tests

* Fix some more tests

* Try to fix uffd failing test

* Review items

* Tweak 32-bit defaults

Makes the pooling allocator a bit more reasonable by default on 32-bit
with these settings.
2021-06-18 09:57:08 -05:00
Alex Crichton
5140fd251a Update wasm-tools crates (#2989)
* Update wasm-tools crates

This brings in recent updates, notably including more improvements to
wasm-smith which will hopefully help exercise non-trapping wasm more.

* Fix some wat
2021-06-15 22:56:10 -05:00
Pat Hickey
8b4bdf92e2 make ResourceLimiter operate on Store data; add hooks for entering and exiting native code (#2952)
* wasmtime_runtime: move ResourceLimiter defaults into this crate

In preparation of changing wasmtime::ResourceLimiter to be a re-export
of this definition, because translating between two traits was causing
problems elsewhere.

* wasmtime: make ResourceLimiter a re-export of wasmtime_runtime::ResourceLimiter

* refactor Store internals to support ResourceLimiter as part of store's data

* add hooks for entering and exiting native code to Store

* wasmtime-wast, fuzz: changes to adapt ResourceLimiter API

* fix tests

* wrap calls into wasm with entering/exiting exit hooks as well

* the most trivial test found a bug, lets write some more

* store: mark some methods as #[inline] on Store, StoreInner, StoreInnerMost

Co-authored-By: Alex Crichton <alex@alexcrichton.com>

* improve tests for the entering/exiting native hooks

Co-authored-by: Alex Crichton <alex@alexcrichton.com>
2021-06-08 09:37:00 -05:00
Alex Crichton
e516f0339a Update wasm-smith to generate more wasm (#2967)
This brings in bytecodealliance/wasm-tools#277 which should improve the
wasm programs that wasm-smith generates.
2021-06-04 17:11:19 -05:00
Alex Crichton
7a1b7cdf92 Implement RFC 11: Redesigning Wasmtime's APIs (#2897)
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.
2021-06-03 09:10:53 -05:00
Olivier Lemasle
b5f29bd3b2 Update wasm-tools crates (#2908)
wasmparser 0.78 adds the Unknown name subsection type.
2021-05-17 10:08:17 -05:00
Peter Huene
f12b4c467c Add resource limiting to the Wasmtime API. (#2736)
* Add resource limiting to the Wasmtime API.

This commit adds a `ResourceLimiter` trait to the Wasmtime API.

When used in conjunction with `Store::new_with_limiter`, this can be used to
monitor and prevent WebAssembly code from growing linear memories and tables.

This is particularly useful when hosts need to take into account host resource
usage to determine if WebAssembly code can consume more resources.

A simple `StaticResourceLimiter` is also included with these changes that will
simply limit the size of linear memories or tables for all instances created in
the store based on static values.

* Code review feedback.

* Implemented `StoreLimits` and `StoreLimitsBuilder`.
* Moved `max_instances`, `max_memories`, `max_tables` out of `Config` and into
  `StoreLimits`.
* Moved storage of the limiter in the runtime into `Memory` and `Table`.
* Made `InstanceAllocationRequest` use a reference to the limiter.
* Updated docs.
* Made `ResourceLimiterProxy` generic to remove a level of indirection.
* Fixed the limiter not being used for `wasmtime::Memory` and
  `wasmtime::Table`.

* Code review feedback and bug fix.

* `Memory::new` now returns `Result<Self>` so that an error can be returned if
  the initial requested memory exceeds any limits placed on the store.

* Changed an `Arc` to `Rc` as the `Arc` wasn't necessary.

* Removed `Store` from the `ResourceLimiter` callbacks. Custom resource limiter
  implementations are free to capture any context they want, so no need to
  unnecessarily store a weak reference to `Store` from the proxy type.

* Fixed a bug in the pooling instance allocator where an instance would be
  leaked from the pool. Previously, this would only have happened if the OS was
  unable to make the necessary linear memory available for the instance. With
  these changes, however, the instance might not be created due to limits
  placed on the store. We now properly deallocate the instance on error.

* Added more tests, including one that covers the fix mentioned above.

* Code review feedback.

* Add another memory to `test_pooling_allocator_initial_limits_exceeded` to
  ensure a partially created instance is successfully deallocated.
* Update some doc comments for better documentation of `Store` and
  `ResourceLimiter`.
2021-04-19 09:19:20 -05:00
Chris Fallin
cb48ea406e Switch default to new x86_64 backend.
This PR switches the default backend on x86, for both the
`cranelift-codegen` crate and for Wasmtime, to the new
(`MachInst`-style, `VCode`-based) backend that has been under
development and testing for some time now.

The old backend is still available by default in builds with the
`old-x86-backend` feature, or by requesting `BackendVariant::Legacy`
from the appropriate APIs.

As part of that switch, it adds some more runtime-configurable plumbing
to the testing infrastructure so that tests can be run using the
appropriate backend. `clif-util test` is now capable of parsing a
backend selector option from filetests and instantiating the correct
backend.

CI has been updated so that the old x86 backend continues to run its
tests, just as we used to run the new x64 backend separately.

At some point, we will remove the old x86 backend entirely, once we are
satisfied that the new backend has not caused any unforeseen issues and
we do not need to revert.
2021-04-02 11:35:53 -07:00
Peter Huene
4ad0099da4 Update wat crate.
Update the `wat` crate to latest version and use `Error::set_path` in
`Module::from_file` to properly record the path associated with errors.
2021-04-01 20:11:26 -07:00
Alex Crichton
90aa5cf49f Daily update of wasm-smith (#2798)
Because apparently it's daily now!
2021-04-01 15:05:38 -05:00
Alex Crichton
dfffc69150 Update wasm-smith again (#2794)
More fuzz tweaks!
2021-03-31 15:39:37 -05:00
Alex Crichton
6748dfa43a Disable module linking in spectest fuzzing
Module linking implicitly enables multiple tables but that isn't
supported by the spec tests today.
2021-03-31 07:20:22 -07:00
Alex Crichton
e0440eebb7 Update wasm-smith dependency
Brings in a fuzzing bug fix!
2021-03-30 07:13:10 -07:00
Alex Crichton
b1a3c9047f Actually make spectest fuzzing deterministic
Turns out #2106 missed the actual sorting operation. Silly me!
2021-03-29 09:12:16 -07:00
Alex Crichton
550c774c1d fuzz: Allow incompatible import types in instantiation (#2778)
Yesterday fuzzing was switched to using a `Linker` to improve coverage
when using module linking since we can fake instance imports with
definitions of each individual item. Using a `Linker`, however, means
that we can't necessarily instantiate all modules, such as

    (module
      (import "" "" (memory (;0;) 0 1))
      (import "" "" (memory (;1;) 2)))

As a result this just allows these sorts of "incompatible import type"
errors when fuzzing to not trigger crashes.
2021-03-26 14:38:34 -05:00
Alex Crichton
211731b876 Update wasm-tools crates (#2773)
Brings in some fuzzing-related bug-fixes
2021-03-25 18:44:31 -05:00
Alex Crichton
516a97b3f3 A few more small fuzzing fixes (#2770)
* Increase allowances for values when fuzzing

The wasm-smith limits for generating modules are a bit higher than what
we specify, so sync those up to avoid getting too many false positives
with limits getting blown.

* Ensure fuzzing `*.wat` files are in sync

I keep looking at `*.wat` files that are actually stale, so remove stale
files if we write out a `*.wasm` file and can't disassemble it.

* Enable shadowing in dummy_linker

Fixes an issues where the same name is imported twice and we generated
two values for that. We don't mind the error here, we just want to
ignore the shadowing errors.
2021-03-25 18:44:04 -05:00