Add a new instruction uadd_overflow_trap, which is a fused version of iadd_ifcout and trapif. Adding this instruction removes a dependency on the iflags type, and would allow us to move closer to removing it entirely.
The instruction is defined for the i32 and i64 types only, and is currently only used in the legalization of heap_addr.
As discussed in the 2022/10/19 meeting, this PR removes many of the branch and select instructions that used iflags, in favor if using brz/brnz and select in their place. Additionally, it reworks selectif_spectre_guard to take an i8 input instead of an iflags input.
For reference, the removed instructions are: br_icmp, brif, brff, trueif, trueff, and selectif.
Eliminate a few remaining instances of non-SSA code.
Remove infrastructure previously used for non-SSA code emission.
Related cleanup around flags handling.
This can help rustc/llvm avoid bounds checks, but more importantly I will have
future changes here that remove indexing of params, and instead hand them out as
an iterator.
This fixes#5086 by addressing two separate issues:
- The `ValueDataPacked::set_type()` helper had an embarrassing bitfield-manipulation bug that would mangle the rest of a `ValueDef` when setting its type. This is not normally used, only when the egraph elaboration fills in types after-the-fact on a multi-value node.
- The lowering rules for `isplit` on aarch64 and s390x were dispatching on the first output type, rather than the input type. When only the second output is used (as in the example in #5086), the first output type actually remains `INVALID` (and this is fine because it's never used).
Remove uses of reg_mod from the s390x backend. This required moving away from using r0/r1 as the result registers from a few different pseudo instructions, standardizing instead on r2/r3. That change was necessary as regalloc2 will not correctly allocate registers that aren't listed in the allocatable set, which r0/r1 are not.
Co-authored-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
Co-authored-by: Chris Fallin <chris@cfallin.org>
Remove the boolean types from cranelift, and the associated instructions breduce, bextend, bconst, and bint. Standardize on using 1/0 for the return value from instructions that produce scalar boolean results, and -1/0 for boolean vector elements.
Fixes#3205
Co-authored-by: Afonso Bordado <afonso360@users.noreply.github.com>
Co-authored-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
Co-authored-by: Chris Fallin <chris@cfallin.org>
* egraph-based midend: draw the rest of the owl.
* Rename `egg` submodule of cranelift-codegen to `egraph`.
* Apply some feedback from @jsharp during code walkthrough.
* Remove recursion from find_best_node by doing a single pass.
Rather than recursively computing the lowest-cost node for a given
eclass and memoizing the answer at each eclass node, we can do a single
forward pass; because every eclass node refers only to earlier nodes,
this is sufficient. The behavior may slightly differ from the earlier
behavior because we cannot short-circuit costs to zero once a node is
elaborated; but in practice this should not matter.
* Make elaboration non-recursive.
Use an explicit stack instead (with `ElabStackEntry` entries,
alongside a result stack).
* Make elaboration traversal of the domtree non-recursive/stack-safe.
* Work analysis logic in Cranelift-side egraph glue into a general analysis framework in cranelift-egraph.
* Apply static recursion limit to rule application.
* Fix aarch64 wrt dynamic-vector support -- broken rebase.
* Topo-sort cranelift-egraph before cranelift-codegen in publish script, like the comment instructs me to!
* Fix multi-result call testcase.
* Include `cranelift-egraph` in `PUBLISHED_CRATES`.
* Fix atomic_rmw: not really a load.
* Remove now-unnecessary PartialOrd/Ord derivations.
* Address some code-review comments.
* Review feedback.
* Review feedback.
* No overlap in mid-end rules, because we are defining a multi-constructor.
* rustfmt
* Review feedback.
* Review feedback.
* Review feedback.
* Review feedback.
* Remove redundant `mut`.
* Add comment noting what rules can do.
* Review feedback.
* Clarify comment wording.
* Update `has_memory_fence_semantics`.
* Apply @jameysharp's improved loop-level computation.
Co-authored-by: Jamey Sharp <jamey@minilop.net>
* Fix suggestion commit.
* Fix off-by-one in new loop-nest analysis.
* Review feedback.
* Review feedback.
* Review feedback.
* Use `Default`, not `std::default::Default`, as per @fitzgen
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
* Apply @fitzgen's comment elaboration to a doc-comment.
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
* Add stat for hitting the rewrite-depth limit.
* Some code motion in split prelude to make the diff a little clearer wrt `main`.
* Take @jameysharp's suggested `try_into()` usage for blockparam indices.
Co-authored-by: Jamey Sharp <jamey@minilop.net>
* Take @jameysharp's suggestion to avoid double-match on load op.
Co-authored-by: Jamey Sharp <jamey@minilop.net>
* Fix suggestion (add import).
* Review feedback.
* Fix stack_load handling.
* Remove redundant can_store case.
* Take @jameysharp's suggested improvement to FuncEGraph::build() logic
Co-authored-by: Jamey Sharp <jamey@minilop.net>
* Tweaks to FuncEGraph::build() on top of suggestion.
* Take @jameysharp's suggested clarified condition
Co-authored-by: Jamey Sharp <jamey@minilop.net>
* Clean up after suggestion (unused variable).
* Fix loop analysis.
* loop level asserts
* Revert constant-space loop analysis -- edge cases were incorrect, so let's go with the simple thing for now.
* Take @jameysharp's suggestion re: result_tys
Co-authored-by: Jamey Sharp <jamey@minilop.net>
* Fix up after suggestion
* Take @jameysharp's suggestion to use fold rather than reduce
Co-authored-by: Jamey Sharp <jamey@minilop.net>
* Fixup after suggestion
* Take @jameysharp's suggestion to remove elaborate_eclass_use's return value.
* Clarifying comment in terminator insts.
Co-authored-by: Jamey Sharp <jamey@minilop.net>
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
* Replace resize+copy_from_slice with extend_from_slice
Vec::resize initializes the new space, which is wasted effort if we're
just going to call `copy_from_slice` on it immediately afterward. Using
`extend_from_slice` is simpler, and very slightly faster.
If the new size were bigger than the buffer we're copying from, then it
would make sense to initialize the excess. But it isn't: it's always
exactly the same size.
* Move helpers from Context to CompiledCode
These methods only use information from Context::compiled_code, so they
should live on CompiledCode instead.
* Remove an unnecessary #[cfg_attr]
There are other uses of `#[allow(clippy::too_many_arguments)]` in this
file, so apparently it doesn't need to be guarded by the "cargo-clippy"
feature.
* Fix a few comments
Two of these were wrong/misleading:
- `FunctionBuilder::new` does not clear the provided func_ctx. It does
debug-assert that the context is already clear, but I don't think
that's worth a comment.
- `switch_to_block` does not "create values for the arguments." That's
done by the combination of `append_block_params_for_function_params`
and `declare_wasm_parameters`.
* wasmtime-cranelift: Misc cleanups
The main change is to use the `CompiledCode` reference we already had
instead of getting it out of `Context` repeatedly. This removes a bunch
of `unwrap()` calls.
* wasmtime-cranelift: Factor out uncached compile
* ISLE: add support for multi-extractors and multi-constructors.
This support allows for rules that process multiple matching values per
extractor call on the left-hand side, and as a result, can produce
multiple values from the constructor whose body they define.
This is useful in situations where we are matching on an input data
structure that can have multiple "nodes" for a given value or ID, for
example in an e-graph.
* Review feedback: all multi-ctors and multi-etors return iterators; no `Vec` case.
* Add additional warning suppressions to generated-code toplevels to be consistent with new islec output.
* Cranelift: use regalloc2 constraints on caller side of ABI code.
This PR updates the shared ABI code and backends to use register-operand
constraints rather than explicit pinned-vreg moves for register
arguments and return values.
The s390x backend was not updated, because it has its own implementation
of ABI code. Ideally we could converge back to the code shared by x64
and aarch64 (which didn't exist when s390x ported calls to ISLE, so the
current situation is underestandable, to be clear!). I'll leave this for
future work.
This PR exposed several places where regalloc2 needed to be a bit more
flexible with constraints; it requires regalloc2#74 to be merged and
pulled in.
* Update to regalloc2 0.3.3.
In addition to version bump, this required removing two asserts as
`SpillSlot`s no longer carry their class (so we can't assert that they
have the correct class).
* Review comments.
* Filetest updates.
* Add cargo-vet audit for regalloc2 0.3.2 -> 0.3.3 upgrade.
* Update to regalloc2 0.4.0.
* s390x: update some regalloc metadata to remove use of `reg_mod`.
This is a step toward ultimately removing modify-operands, which along
with removal of pinned vregs, lets us move to a completely
constraint-based and fully-SSA regalloc input and get some nice
advantages eventually.
There are still a few uses of `mod` operands and pinned vregs remaining,
especially around the "regpair" abstraction. Those proved to be a bit
trickier to update though, so will have to be done separately.
* Review feedback: restore two-arg pretty-print form.
* Review feedback.
* ABI: implement register arguments with constraints.
Currently, Cranelift's ABI code emits a sequence of moves from physical
registers into vregs at the top of the function body, one for every
register-carried argument.
For a number of reasons, we want to move to operand constraints instead,
and remove the use of explicitly-named "pinned vregs"; this allows for
better regalloc in theory, as it removes the need to "reverse-engineer"
the sequence of moves.
This PR alters the ABI code so that it generates a single "args"
pseudo-instruction as the first instruction in the function body. This
pseudo-inst defs all register arguments, and constrains them to the
appropriate registers at the def-point. Subsequently the regalloc can
move them wherever it needs to.
Some care was taken not to have this pseudo-inst show up in
post-regalloc disassemblies, but the change did cause a general regalloc
"shift" in many tests, so the precise-output updates are a bit noisy.
Sorry about that!
A subsequent PR will handle the other half of the ABI code, namely, the
callsite case, with a similar preg-to-constraint conversion.
* Update based on review feedback.
* Review feedback.
* cranelift: Remove of/nof overflow flags from icmp
Neither Wasmtime nor cg-clif use these flags under any circumstances.
From discussion on #3060 I see it's long been unclear what purpose these
flags served.
Fixes#3060, fixes#4406, and fixes #4875... by deleting all the code
that could have been buggy.
This changes the cranelift-fuzzgen input format by removing some IntCC
options, so I've gone ahead and enabled I128 icmp tests at the same
time. Since only the of/nof cases were failing before, I expect these to
work.
* Restore trapif tests
It's still useful to validate that iadd_ifcout's iflags result can be
forwarded correctly to trapif, and for that purpose it doesn't really
matter what condition code is checked.
Add a function_alignment function to the TargetIsa trait, and use it to align functions when generating objects. Additionally, collect the maximum alignment required for pc-relative constants in functions and pass that value out. Use the max of these two values when padding functions for alignment.
This fixes a bug on x86_64 where rip-relative loads to sse registers could cause a segfault, as functions weren't always guaranteed to be aligned to 16-byte addresses.
Fixes#4812
* Cranelift: Deduplicate ABI signatures during lowering
This commit creates the `SigSet` type which interns and deduplicates the ABI
signatures that we create from `ir::Signature`s. The ABI signatures are now
referred to indirectly via a `Sig` (which is a `cranelift_entity` ID), and we
pass around a `SigSet` to anything that needs to access the actual underlying
`SigData` (which is what `ABISig` used to be).
I had to change a couple methods to return a `SmallInstVec` instead of emitting
directly to work around what would otherwise be shared and exclusive borrows of
the lowering context overlapping. I don't expect any of these to heap allocate
in practice.
This does not remove the often-unnecessary allocations caused by
`ensure_struct_return_ptr_is_returned`. That is left for follow up work.
This also opens the door for further shuffling of signature data into more
efficient representations in the future, now that we have `SigSet` to store it
all in one place and it is threaded through all the code. We could potentially
move each signature's parameter and return vectors into one big vector shared
between all signatures, for example, which could cut down on allocations and
shrink the size of `SigData` since those `SmallVec`s have pretty large inline
capacity.
Overall, this refactoring gives a 1-7% speedup for compilation on
`pulldown-cmark`:
```
compilation :: cycles :: benchmarks/pulldown-cmark/benchmark.wasm
Δ = 8754213.66 ± 7526266.23 (confidence = 99%)
dedupe.so is 1.01x to 1.07x faster than main.so!
[191003295 234620642.20 280597986] dedupe.so
[197626699 243374855.86 321816763] main.so
compilation :: cycles :: benchmarks/bz2/benchmark.wasm
No difference in performance.
[170406200 194299792.68 253001201] dedupe.so
[172071888 193230743.11 223608329] main.so
compilation :: cycles :: benchmarks/spidermonkey/benchmark.wasm
No difference in performance.
[3870997347 4437735062.59 5216007266] dedupe.so
[4019924063 4424595349.24 4965088931] main.so
```
* Use full path instead of import to avoid warnings in some build configurations
Warnings will then cause CI to fail.
* Move `SigSet` into `VCode`
This fixes two problems: minimum symbol alignment for the LARL
instruction, and alignment requirements for LRL/LGRL etc.
The first problem is that the LARL instruction used to load a
symbol address (PC relative) requires that the target symbol
is at least 2-byte aligned. This is always guaranteed for code
symbols (all instructions must be 2-aligned anyway), but not
necessarily for data symbols.
Other s390x compilers fix this problem by ensuring that all
global symbols are always emitted with a minimum 2-byte
alignment. This patch introduces an equivalent mechanism
for cranelift:
- Add a symbol_alignment routine to TargetIsa, similar to the
existing code_section_alignment routine.
- Respect symbol_alignment as minimum alignment for all symbols
emitted in the object backend (code and data).
The second problem is that PC-relative instructions that
directly *access* data (like LRL/LGRL, STRL/STGRL etc.)
not only have the 2-byte requirement like LARL, but actually
require that their memory operand is *naturally* aligned
(i.e. alignment is at least the size of the access).
This property (natural alignment for memory accesses) is
supposed to be provided by the "aligned" flag in MemFlags;
however, this is not implemented correctly at the moment.
To fix this, this patch:
- Only emits PC-relative memory access instructions if the
"aligned" flag is set in the associated MemFlags.
- Fixes a bug in emit_small_memory_copy and emit_small_memset
which currently set the aligned flag unconditionally, ignoring
the actual alignment info passed by their caller.
Tested with wasmtime and cg_clif.
* Cranelift: Remove `ABICallee` trait
It has only one implementation: the `ABICalleeImpl` struct. By using that
directly we can avoid unnecessary layers of generics and abstractions as well as
a couple `Box`es that were previously putting the single implementation into a
`Box<dyn>`.
* Cranelift: Rename `ABICalleeImpl` to `AbiCallee`
* Fix comments as per review
* Rename `AbiCallee` to `Callee`
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime.
After the suggestion of Chris, `Function` has been split into mostly two parts:
- on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`.
- on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on.
Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache:
- most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set.
- user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`.
- some refactorings have been made for function names:
- `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name.
- The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with.
The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions.
A basic fuzz target has been introduced that tries to do the bare minimum:
- check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function.
- check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache.
- This last check is less efficient and less likely to happen, so probably should be rethought a bit.
Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip.
Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement.
Fixes#4155.
The trait had only one implementation: the `Lower` struct. It is easier to just
use that directly, and not introduce unnecessary layers of generics and
abstractions.
Once upon a time, there was hope that we would have other implementations of the
`LowerCtx` trait, that did things like lower CLIF to SMTLIB for
verification. However, this is not practical these days given the way that the
trait has evolved over time, and our verification efforts are focused on ISLE
now anyways, and we're actually making some progress on that front (much more
than anyone ever did on a second `LowerCtx` trait implementation!)
This implements the s390x back-end portion of the solution for
https://github.com/bytecodealliance/wasmtime/issues/4566
We now support both big- and little-endian vector lane order
in code generation. The order used for a function is determined
by the function's ABI: if it uses a Wasmtime ABI, it will use
little-endian lane order, and big-endian lane order otherwise.
(This ensures that all raw_bitcast instructions generated by
both wasmtime and other cranelift frontends can always be
implemented as a no-op.)
Lane order affects the implementation of a number of operations:
- Vector immediates
- Vector memory load / store (in big- and little-endian variants)
- Operations explicitly using lane numbers
(insertlane, extractlane, shuffle, swizzle)
- Operations implicitly using lane numbers
(iadd_pairwise, narrow/widen, promote/demote, fcvt_low, vhigh_bits)
In addition, when calling a function using a different lane order,
we need to lane-swap all vector values passed or returned in registers.
A small number of changes to common code were also needed:
- Ensure we always select a Wasmtime calling convention on s390x
in crates/cranelift (func_signature).
- Fix vector immediates for filetests/runtests. In PR #4427,
I attempted to fix this by byte-swapping the V128 value, but
with the new scheme, we'd instead need to perform a per-lane
byte swap. Since we do not know the actual type in write_to_slice
and read_from_slice, this isn't easily possible.
Revert this part of PR #4427 again, and instead just mark the
memory buffer as little-endian when emitting the trampoline;
the back-end will then emit correct code to load the constant.
- Change a runtest in simd-bitselect-to-vselect.clif to no longer
make little-endian lane order assumptions.
- Remove runtests in simd-swizzle.clif that make little-endian
lane order assumptions by relying on implicit type conversion
when using a non-i16x8 swizzle result type (this feature should
probably be removed anyway).
Tested with both wasmtime and cg_clif.
This enables the object backend for s390x, in particular the
processing of all required relocations.
This uncovered a bug: we need to use PLT relocations for the
target of calls, which we currently do not. Fixed by adding
a new S390xPLTRel32Dbl reloc type and using it where needed.
Implement the tls_value for s390 in the ELF general-dynamic mode.
Notable differences to the x86_64 implementation are:
- We use a __tls_get_offset libcall instead of __tls_get_addr.
- The current thread pointer (stored in a pair of access registers)
needs to be added to the result of __tls_get_offset.
- __tls_get_offset has a variant ABI that requires the address of
the GOT (global offset table) is passed in %r12.
This means we need a new libcall entries for __tls_get_offset.
In addition, we also need a way to access _GLOBAL_OFFSET_TABLE_.
The latter is a "magic" symbol with a well-known name defined
by the ABI and recognized by the linker. This patch introduces
a new ExternalName::KnownSymbol variant to support such names
(originally due to @afonso360).
We also need to emit a relocation on a symbol placed in a
constant pool, as well as an extra relocation on the call
to __tls_get_offset required for TLS linker optimization.
Needed by the cg_clif frontend.
This adds full i128 support to the s390x target, including new filetests
and enabling the existing i128 runtest on s390x.
The ABI requires that i128 is passed and returned via implicit pointer,
but the front end still generates direct i128 types in call. This means
we have to implement ABI support to implicitly convert i128 types to
pointers when passing arguments.
To do so, we add a new variant ABIArg::ImplicitArg. This acts like
StructArg, except that the value type is the actual target type,
not a pointer type. The required conversions have to be inserted
in the prologue and at function call sites.
Note that when dereferencing the implicit pointer in the prologue,
we may require a temp register: the pointer may be passed on the
stack so it needs to be loaded first, but the value register may
be in the wrong class for pointer values. In this case, we use
the "stack limit" register, which should be available at this
point in the prologue.
For return values, we use a mechanism similar to the one used for
supporting multiple return values in the Wasmtime ABI. The only
difference is that the hidden pointer to the return buffer must
be the *first*, not last, argument in this case.
(This implements the second half of issue #4565.)
This adds support for StructArgument on s390x. The ABI for this
platform requires that the address of the buffer holding the copy
of the struct argument is passed from caller to callee as hidden
pointer, using a register or overflow stack slot.
To implement this, I've added an optional "pointer" filed to
ABIArg::StructArg, and code to handle the pointer both in common
abi_impl code and the s390x back-end.
One notable change necessary to make this work involved the
"copy_to_arg_order" mechanism. Currently, for struct args
we only need to copy the data (and that need to happen before
setting up any other args), while for non-struct args we only
need to set up the appropriate registers or stack slots.
This order is ensured by sorting the arguments appropriately
into a "copy_to_arg_order" list.
However, for struct args with explicit pointers we need to *both*
copy the data (again, before everything else), *and* set up a
register or stack slot. Since we now need to touch the argument
twice, we cannot solve the ordering problem by a simple sort.
Instead, the abi_impl common code now provided *two* callbacks,
emit_copy_regs_to_buffer and emit_copy_regs_to_arg, and expects
the back end to first call copy..to_buffer for all args, and
then call copy.._to_arg for all args. This required updates
to all back ends.
In the s390x back end, in addition to the new ABI code, I'm now
adding code to actually copy the struct data, using the MVC
instruction (for small buffers) or a memcpy libcall (for larger
buffers). This also requires a bit of new infrastructure:
- MVC is the first memory-to-memory instruction we use, which
needed a bit of memory argument tweaking
- We also need to set up the infrastructure to emit libcalls.
(This implements the first half of issue #4565.)
Give the user the option to sign and to authenticate function
return addresses with the operations introduced by the Pointer
Authentication extension to the Arm instruction set architecture.
Copyright (c) 2021, Arm Limited.
* Cranelift: Add instructions for getting the current stack/frame pointers and return address
This is the initial part of https://github.com/bytecodealliance/wasmtime/issues/4535
* x64: Remove `Amode::RbpOffset` and use `Amode::ImmReg` instead
We just special case getting operands from `Amode`s now.
* Fix s390x `get_return_address`; require `preserve_frame_pointers=true`
* Assert that `Amode::ImmRegRegShift` doesn't use rbp/rsp
* Handle non-allocatable registers in Amode::with_allocs
* Use "stack" instead of "r15" on s390x
* r14 is an allocatable register on s390x, so it shouldn't be used with `MovPReg`
* Cranellift: remove Baldrdash support and related features.
As noted in Mozilla's bugzilla bug 1781425 [1], the SpiderMonkey team
has recently determined that their current form of integration with
Cranelift is too hard to maintain, and they have chosen to remove it
from their codebase. If and when they decide to build updated support
for Cranelift, they will adopt different approaches to several details
of the integration.
In the meantime, after discussion with the SpiderMonkey folks, they
agree that it makes sense to remove the bits of Cranelift that exist
to support the integration ("Baldrdash"), as they will not need
them. Many of these bits are difficult-to-maintain special cases that
are not actually tested in Cranelift proper: for example, the
Baldrdash integration required Cranelift to emit function bodies
without prologues/epilogues, and instead communicate very precise
information about the expected frame size and layout, then stitched
together something post-facto. This was brittle and caused a lot of
incidental complexity ("fallthrough returns", the resulting special
logic in block-ordering); this is just one example. As another
example, one particular Baldrdash ABI variant processed stack args in
reverse order, so our ABI code had to support both traversal
orders. We had a number of other Baldrdash-specific settings as well
that did various special things.
This PR removes Baldrdash ABI support, the `fallthrough_return`
instruction, and pulls some threads to remove now-unused bits as a
result of those two, with the understanding that the SpiderMonkey folks
will build new functionality as needed in the future and we can perhaps
find cleaner abstractions to make it all work.
[1] https://bugzilla.mozilla.org/show_bug.cgi?id=1781425
* Review feedback.
* Fix (?) DWARF debug tests: add `--disable-cache` to wasmtime invocations.
The debugger tests invoke `wasmtime` from within each test case under
the control of a debugger (gdb or lldb). Some of these tests started to
inexplicably fail in CI with unrelated changes, and the failures were
only inconsistently reproducible locally. It seems to be cache related:
if we disable cached compilation on the nested `wasmtime` invocations,
the tests consistently pass.
* Review feedback.
* Move `emit_to_memory` to `MachCompileResult`
This small refactoring makes it clearer to me that emitting to memory
doesn't require anything else from the compilation `Context`. While it's
a trivial change, it's a small public API change that shouldn't cause
too much trouble, and doesn't seem RFC-worthy. Happy to hear different
opinions about this, though!
* hide the MachCompileResult behind a method
* Add a `CompileError` wrapper type that references a `Function`
* Rename MachCompileResult to CompiledCode
* Additionally remove the last unsafe API in cranelift-codegen
* Support shadowing in isle
* Re-run the isle build.rs if the examples change
* Print error messages when isle tests fail
* Move run tests
* Refactor `let` uses that don't need to introduce unique names