Although the string description for `TableOutOfBounds` isn't quite
matching what this error case is, it's a bit more descriptive than
`HeapOutOfBounds` anyway.
We've enabled bulk memory and reference types by default now which means
that wasmtime in its default settings no longer passes the spec test
suite (due to changes in error messages in initialization), so when
we're running the spec test fuzzer be sure to disable reference types
and bulk memory since that's required to pass.
The Wasm translation handles unreachable code sections
specially, skipping ops until the end of a block and a control-flow
merger at which code becomes reachable again. Unfortunately, while the
ordinary else-op handler properly sets up the value stack for the
else-branch with the parameters to the if/else, the unreachable-case
else-op handler did not. This resulted in a bad translation and CLIF
type error despite valid Wasm.
Found via fuzzing by :decoder in
https://bugzilla.mozilla.org/show_bug.cgi?id=1657895.
This commit removes all import resolution handling from the
`wasmtime-jit` crate, instead moving the logic to the `wasmtime` crate.
Previously `wasmtime-jit` had a generic `Resolver` trait and would do
all the import type matching itself, but with the upcoming
module-linking implementation this is going to get much trickier.
The goal of this commit is to centralize all meaty "preparation" logic
for instantiation into one location, probably the `wasmtime` crate
itself. Instantiation will soon involve recursive instantiation and
management of alias definitions as well. Having everything in one
location, especially with access to `Store` so we can persist
instances for safety, will be quite convenient.
Additionally the `Resolver` trait isn't really necessary any more since
imports are, at the lowest level, provided as a list rather than a map
of some kind. More generic resolution functionality is provided via
`Linker` or user layers on top of `Instance::new` itself. This makes
matching up provided items to expected imports much easier as well.
Overall this is largely just moving code around, but most of the code
in the previous `resolve_imports` phase can be deleted since a lot of it
is handled by surrounding pieces of `wasmtime` as well.
This commit moves all of the caching support that currently lives in
`wasmtime-environ` into a `wasmtime-cache` crate and makes it optional. The
goal here is to slim down the `wasmtime-environ` crate and clearly separate
boundaries where caching is a standalone and optional feature, not intertwined
with other crates.
Provide automatic translation to opcodes from DW_OP_* identifiers. They are looked up from gimli.
Since DW_OP_WASM_location is not contained in gimli yet, we take care of manually translating it.
Currently spectest fuzzing indexes into a compile-time-created array of
strings which is the list of input files, but the order of this array is
dependent on the filesystem that we're reading from. This means that
inputs from oss-fuzz may not be easily reproducible locally because
files could be read in different orders, so indexes could be distinct.
This commit instead reads the directory paths, then sorts them, then
includes them for testing. That way fuzz inputs at a specific commit
should be consistent.
This change is a pure refactoring--no change to functionality. It removes `use crate::ir::types::*` imports and uses instead `types::I32`, e.g., throughout the x64 code. Though it increases code verbosity, this change makes it more clear where the type identifiers come from (they are generated by `cranelif-codegen-meta` so without a prefix it is difficult to find their origin), avoids IDE confusion (e.g. CLion flags the un-prefixed identifiers as errors), and avoids importing unwanted identifiers into the namespace.
This CI test has been intermittently failing, which is causing issues
with other PRs. We should turn it back off until we can work out why the
intermittent failures are occuring.
Similar to an earlier issue for ordinary branches (fixed in PR #1833),
the cranelift-wasm crate did not previously correctly translate a
br_table instruction's default-target branch when the branch target was
a loop with loop parameters. The mistranslated CLIF resulted in a
validation error. This one-line fix simply fills in the correct
parameter count, generating a jump instruction with the appropriate
parameters from the stack.
This issue was found by :decoder in the SpiderMonkey embedding of
Cranelift, in https://bugzilla.mozilla.org/show_bug.cgi?id=1657062. The
test case is from that bug report.
This was added long ago at this point to assist with caching, but
caching has moved to a different level such that this wonky second level
of a `Module` isn't necessary. This commit removes the `ModuleLocal`
type to simplify accessors and generally make it easier to work with.
This change is a pure refactoring--no change to functionality. It removes newlines between the `use ...` statements in the x64 backend so that rustfmt can format them according to its convention. I noticed some files had followed a manual convention but subsequent additions did not seem to fit; this change fixes that and lightly coalesces some of the occurrences of `use a::b; use a::c;` into `use::{b, c}`.
The implementation is pretty straightforward. Wasm atomic instructions fall
into 5 groups
* atomic read-modify-write
* atomic compare-and-swap
* atomic loads
* atomic stores
* fences
and the implementation mirrors that structure, at both the CLIF and AArch64
levels.
At the CLIF level, there are five new instructions, one for each group. Some
comments about these:
* for those that take addresses (all except fences), the address is contained
entirely in a single `Value`; there is no offset field as there is with
normal loads and stores. Wasm atomics require alignment checks, and
removing the offset makes implementation of those checks a bit simpler.
* atomic loads and stores get their own instructions, rather than reusing the
existing load and store instructions, for two reasons:
- per above comment, makes alignment checking simpler
- reuse of existing loads and stores would require extension of `MemFlags`
to indicate atomicity, which sounds semantically unclean. For example,
then *any* instruction carrying `MemFlags` could be marked as atomic, even
in cases where it is meaningless or ambiguous.
* I tried to specify, in comments, the behaviour of these instructions as
tightly as I could. Unfortunately there is no way (per my limited CLIF
knowledge) to enforce the constraint that they may only be used on I8, I16,
I32 and I64 types, and in particular not on floating point or vector types.
The translation from Wasm to CLIF, in `code_translator.rs` is unremarkable.
At the AArch64 level, there are also five new instructions, one for each
group. All of them except `::Fence` contain multiple real machine
instructions. Atomic r-m-w and atomic c-a-s are emitted as the usual
load-linked store-conditional loops, guarded at both ends by memory fences.
Atomic loads and stores are emitted as a load preceded by a fence, and a store
followed by a fence, respectively. The amount of fencing may be overkill, but
it reflects exactly what the SM Wasm baseline compiler for AArch64 does.
One reason to implement r-m-w and c-a-s as a single insn which is expanded
only at emission time is that we must be very careful what instructions we
allow in between the load-linked and store-conditional. In particular, we
cannot allow *any* extra memory transactions in there, since -- particularly
on low-end hardware -- that might cause the transaction to fail, hence
deadlocking the generated code. That implies that we can't present the LL/SC
loop to the register allocator as its constituent instructions, since it might
insert spills anywhere. Hence we must present it as a single indivisible
unit, as we do here. It also has the benefit of reducing the total amount of
work the RA has to do.
The only other notable feature of the r-m-w and c-a-s translations into
AArch64 code, is that they both need a scratch register internally. Rather
than faking one up by claiming, in `get_regs` that it modifies an extra
scratch register, and having to have a dummy initialisation of it, these new
instructions (`::LLSC` and `::CAS`) simply use fixed registers in the range
x24-x28. We rely on the RA's ability to coalesce V<-->R copies to make the
cost of the resulting extra copies zero or almost zero. x24-x28 are chosen so
as to be call-clobbered, hence their use is less likely to interfere with long
live ranges that span calls.
One subtlety regarding the use of completely fixed input and output registers
is that we must be careful how the surrounding copy from/to of the arg/result
registers is done. In particular, it is not safe to simply emit copies in
some arbitrary order if one of the arg registers is a real reg. For that
reason, the arguments are first moved into virtual regs if they are not
already there, using a new method `<LowerCtx for Lower>::ensure_in_vreg`.
Again, we rely on coalescing to turn them into no-ops in the common case.
There is also a ridealong fix for the AArch64 lowering case for
`Opcode::Trapif | Opcode::Trapff`, which removes a bug in which two trap insns
in a row were generated.
In the patch as submitted there are 6 "FIXME JRS" comments, which mark things
which I believe to be correct, but for which I would appreciate a second
opinion. Unless otherwise directed, I will remove them for the final commit
but leave the associated code/comments unchanged.