Preserving frame pointers -- even inside leaf functions -- makes it easy to
capture the stack of a running program, without requiring any side tables or
metadata (like `.eh_frame` sections). Many sampling profilers and similar tools
walk frame pointers to capture stacks. Enabling this option will play nice with
those tools.
Converted the existing implementations for the following Opcodes to ISLE on AArch64:
- `fadd`
- `fsub`
- `fmul`
- `fdiv`
- `fmin`
- `fmax`
- `fmin_pseudo`
- `fmax_pseudo`
Copyright (c) 2022 Arm Limited
This adds full support for all Cranelift SIMD instructions
to the s390x target. Everything is matched fully via ISLE.
In addition to adding support for many new instructions,
and the lower.isle code to match all SIMD IR patterns,
this patch also adds ABI support for vector types.
In particular, we now need to handle the fact that
vector registers 8 .. 15 are partially callee-saved,
i.e. the high parts of those registers (which correspond
to the old floating-poing registers) are callee-saved,
but the low parts are not. This is the exact same situation
that we already have on AArch64, and so this patch uses the
same solution (the is_included_in_clobbers callback).
The bulk of the changes are platform-specific, but there are
a few exceptions:
- Added ISLE extractors for the Immediate and Constant types,
to enable matching the vconst and swizzle instructions.
- Added a missing accessor for call_conv to ABISig.
- Fixed endian conversion for vector types in data_value.rs
to enable their use in runtests on the big-endian platforms.
- Enabled (nearly) all SIMD runtests on s390x. [ Two test cases
remain disabled due to vector shift count semantics, see below. ]
- Enabled all Wasmtime SIMD tests on s390x.
There are three minor issues, called out via FIXMEs below,
which should be addressed in the future, but should not be
blockers to getting this patch merged. I've opened the
following issues to track them:
- Vector shift count semantics
https://github.com/bytecodealliance/wasmtime/issues/4424
- is_included_in_clobbers vs. link register
https://github.com/bytecodealliance/wasmtime/issues/4425
- gen_constant callback
https://github.com/bytecodealliance/wasmtime/issues/4426
All tests, including all newly enabled SIMD tests, pass
on both z14 and z15 architectures.
* Implement `iabs` in ISLE (AArch64)
Converts the existing implementation of `iabs` for AArch64 into ISLE,
and fixes support for `iabs` on scalar values.
Copyright (c) 2022 Arm Limited.
* Improve scalar `iabs` implementation.
Also introduces `CSNeg` instruction.
Copyright (c) 2022 Arm Limited
* Convert `scalar_to_vector` to ISLE (AArch64)
Converted the exisiting implementation of `scalar_to_vector` for AArch64 to
ISLE.
Copyright (c) 2022 Arm Limited
* Add support for floats and fix FpuExtend
- Added rules to cover `f32 -> f32x4` and `f64 -> f64x2` for
`scalar_to_vector`
- Added tests for `scalar_to_vector` on floats.
- Corrected an invalid instruction emitted by `FpuExtend` on 64-bit
values.
Copyright (c) 2022 Arm Limited
As @MaxGraey pointed out (thanks!) in #4397, `round` has different
behavior from `nearest`. And it looks like the native rust
implementation is still pending stabilization.
Right now we duplicate the wasmtime implementation, merged in #2171.
However, we definitely should switch to the rust native version
when it is available.
Introduce a new concept in the IR that allows a producer to create
dynamic vector types. An IR function can now contain global value(s)
that represent a dynamic scaling factor, for a given fixed-width
vector type. A dynamic type is then created by 'multiplying' the
corresponding global value with a fixed-width type. These new types
can be used just like the existing types and the type system has a
set of hard-coded dynamic types, such as I32X4XN, which the user
defined types map onto. The dynamic types are also used explicitly
to create dynamic stack slots, which have no set size like their
existing counterparts. New IR instructions are added to access these
new stack entities.
Currently, during codegen, the dynamic scaling factor has to be
lowered to a constant so the dynamic slots do eventually have a
compile-time known size, as do spill slots.
The current lowering for aarch64 just targets Neon, using a dynamic
scale of 1.
Copyright (c) 2022, Arm Limited.
@yuyang-ok reported via zulip that i128 overflow tests were:
1. different from the interpreter implementation
2. wrong on some of the test cases
This fixes both the tests and the aarch64 implementation and adds the
interpreter to the testsuite.
`fmin`/`fmax` are defined as returning -0.0 as smaller than 0.0.
This is not how the IEEE754 views these values and the interpreter was
returning the wrong value in these operations since it was just using the
standard IEEE754 comparisons.
This also tries to preserve NaN information by avoiding passing NaN's
through any operation that could canonicalize it.
* cranelift: Implement `fma` on interpreter
* cranelift: Implement `fabs` on interpreter
* cranelift: Fix `fneg` implementation on interpreter
`fneg` was implemented as `0 - x` which is not correct according to the
standard since that operation makes no guarantees on what the output
is when the input is `NaN`. However for `fneg` the output for `NaN`
inputs is fully defined.
* cranelift: Implement `fcopysign` on interpreter
This defines the full set of 32 128-bit vector registers on s390x.
(Note that the VRs overlap the existing FPRs.) In addition, this
adds support to use all 32 vector registers to implement floating-
point operations, by using vector floating-point instructions with
the 'W' bit set to operate only on the first element.
This part of the vector instruction set mostly matches the old FP
instruction set, with two exceptions:
- There is no vector version of the COPY SIGN instruction. Instead,
now use a VECTOR SELECT with an appropriate bit mask to implement
the fcopysign operation.
- There are no vector version of the float <-> int conversion
instructions where source and target differ in bit size. Use
appropriate multiple conversion steps instead. This also requires
use of explicit checking to implement correct overflow handling.
As a side effect, this version now also implements the i8 / i16
variants of all conversions, which had been missing so far.
For all operations except those two above, we continue to use the
old FP instruction if applicable (i.e. if all operands happen to
have been allocated to the original FP register set), and use the
vector instruction otherwise.
This adds infrastructure to allow implementing call and return
instructions in ISLE, and migrates the s390x back-end.
To implement ABI details, this patch creates public accessors
for `ABISig` and makes them accessible in ISLE. All actual
code generation is then done in ISLE rules, following the
information provided by that signature.
[ Note that the s390x back end never requires multiple slots for
a single argument - the infrastructure to handle this should
already be present, however. ]
To implement loops in ISLE rules, this patch uses regular tail
recursion, employing a `Range` data structure holding a range
of integers to be looped over.
The previous `cls` code was producing wrong results when fed with a -1 i8.
The fix here is to sign extend instead of zero extending since we want
to keep the sign bit as one in order for it to be counted correctly
in the cls instruction
This also merges the interpreter only tests now that aarch64
correctly supports this instruction
* Upgrade to regalloc2 v0.2.3 to get bugfix from bytecodealliance/regalloc2#60.
* Update RELEASES.md.
* Update two compile tests based on slightly shifting regalloc output.
* cranelift: Fix `bint` implementation on interpreter
The interpreter was returning -1 instead of 1 for positive values.
This also extends the bint test suite to cover all types.
* cranelift: Restrict `bint` to scalar values only
The current lowering helper for `cmpxchg` returns the literal RealReg
`rax` as its result. However, this breaks a number of invariants, and
eventually causes a regalloc panic if used as a blockparam arg (pinned
vregs cannot be used in this way).
In general we have to return regular vregs, not a RealReg, as results of
instructions during lowering. However #4223 added a helper for
`x64_cmpxchg` that returns a literal `rax`.
Fortunately we can do the right thing here by just giving a fresh vreg
to the instruction; the regalloc constraints mean that this vreg is
constrained to `rax` at the instruction (at its def/late point), so the
generator of the instruction need not worry about `rax` here.
If an address expression is given to `to_amode` that is completely
constant (no registers at all), then it will produce an `Amode` that has
the resulting constant as an offset, and `(invalid_reg)` as the base.
This is a side-effect of the way we build up the amode step-by-step --
we're waiting to see a register and plug it into the base field. If we
never get a reg though, we need to generate a constant zero into a
register and use that as the base. This PR adds a `finalize_amode`
helper to do just that.
Fixes#4234.
This resolves an edge-case where mul.i128 with an input that continues
to be live after the instruction could cause an invalid regalloc
constraint (basically, the regalloc did not previously support an
instruction use and def both being constrained to the same physical reg;
and the "mul" variant used for mul.i128 on x64 was the only instance of
such operands in Cranelift).
Causes two extra move instructions in the mul.i128 filetest, but that's
the price to pay for the slightly more general (works in all cases)
handling of the constraints.
RA2 recently removed the need for a dedicated scratch register for
cyclic moves (bytecodealliance/regalloc2#51). This has moderate positive
performance impact on function bodies that were register-constrained, as
it means that one more register is available. In Sightglass, I measured
+5-8% on `blake3-scalar`, at least among current benchmarks.
Previously, the pinned register (enabled by the `enable_pinned_reg`
Cranelift setting and used via the `get_pinned_reg` and `set_pinned_reg`
CLIF ops) was only used when Cranelift was embedded in SpiderMonkey, in
order to support a pinned heap register. SpiderMonkey has its own
calling convention in Cranelift (named after the integration layer,
"Baldrdash").
However, the feature is more general, and should be usable with the
default system calling convention too, e.g. SysV or Windows Fastcall.
This PR fixes the ABI code to properly treat the pinned register as a
globally allocated register -- and hence an implicit input and output to
every function, not saved/restored in the prologue/epilogue -- for SysV
on x86-64 and aarch64, and Fastcall on x86-64.
Fixes#4170.
This PR adds a basic *alias analysis*, and optimizations that use it.
This is a "mid-end optimization": it operates on CLIF, the
machine-independent IR, before lowering occurs.
The alias analysis (or maybe more properly, a sort of memory-value
analysis) determines when it can prove a particular memory
location is equal to a given SSA value, and when it can, it replaces any
loads of that location.
This subsumes two common optimizations:
* Redundant load elimination: when the same memory address is loaded two
times, and it can be proven that no intervening operations will write
to that memory, then the second load is *redundant* and its result
must be the same as the first. We can use the first load's result and
remove the second load.
* Store-to-load forwarding: when a load can be proven to access exactly
the memory written by a preceding store, we can replace the load's
result with the store's data operand, and remove the load.
Both of these optimizations rely on a "last store" analysis that is a
sort of coloring mechanism, split across disjoint categories of abstract
state. The basic idea is that every memory-accessing operation is put
into one of N disjoint categories; it is disallowed for memory to ever
be accessed by an op in one category and later accessed by an op in
another category. (The frontend must ensure this.)
Then, given this, we scan the code and determine, for each
memory-accessing op, when a single prior instruction is a store to the
same category. This "colors" the instruction: it is, in a sense, a
static name for that version of memory.
This analysis provides an important invariant: if two operations access
memory with the same last-store, then *no other store can alias* in the
time between that last store and these operations. This must-not-alias
property, together with a check that the accessed address is *exactly
the same* (same SSA value and offset), and other attributes of the
access (type, extension mode) are the same, let us prove that the
results are the same.
Given last-store info, we scan the instructions and build a table from
"memory location" key (last store, address, offset, type, extension) to
known SSA value stored in that location. A store inserts a new mapping.
A load may also insert a new mapping, if we didn't already have one.
Then when a load occurs and an entry already exists for its "location",
we can reuse the value. This will be either RLE or St-to-Ld depending on
where the value came from.
Note that this *does* work across basic blocks: the last-store analysis
is a full iterative dataflow pass, and we are careful to check dominance
of a previously-defined value before aliasing to it at a potentially
redundant load. So we will do the right thing if we only have a
"partially redundant" load (loaded already but only in one predecessor
block), but we will also correctly reuse a value if there is a store or
load above a loop and a redundant load of that value within the loop, as
long as no potentially-aliasing stores happen within the loop.
* Upgrade to regalloc2 0.1.3.
This pulls in bytecodealliance/regalloc2#49, which slightly improves
codegen in some cases where a safepoint (for reference-typed values)
occurs in the same liverange as a register-constrained use. For
example, in bytecodealliance/wasmtime#3785, an extra move instruction
appeared and a callee-save register was used (necessitating a more
expensive prologue) because of suboptimal splitting heuristics, which
this PR fixes. The updated RA2 heuristics appear to have no measured
downsides in existing benchmarks and improve the manually-observed
codegen issue.
* Update filetests where regalloc2 improvement altered behavior with reftypes.
Current codegen had a number of logic errors confusing
NAND with AND WITH COMPLEMENT, and NOR with OR WITH COMPLEMENT.
Add support for the missing z15 instructions and fix logic.
This test was added between the last CI run on #4088 and its merge to
main, and the changes in #4088 (use of constants directly in instruction
via load from constant pool, rather than from a register initialized by
a separate instruction) cause it to fail now.
This PR alters the test to be invariant to regalloc and argument
decisions during lowering, as the test is really checking (per the
comment) that we get two cmoves without an intervening move. As such, it
just matches the instruction opcodes, irrespective of the arguments.
* Allow emitting u64 constants into constant pool.
* Use constant pool for constants on x64 that do not fit in a simm32 and are needed as a RegMem or RegMemImm.
* Fix rip-relative addressing bug in pinsrd emission.