More PR feedback changes.

* More use of `anyhow`.
* Change `make_accessible` into `protect_linear_memory` to better demonstrate
  what it is used for; this will make the uffd implementation make a little
  more sense.
* Remove `create_memory_map` in favor of just creating the `Mmap` instances in
  the pooling allocator. This also removes the need for `MAP_NORESERVE` in the
  uffd implementation.
* Moar comments.
* Remove `BasePointerIterator` in favor of `impl Iterator`.
* The uffd implementation now only monitors linear memory pages and will only
  receive faults on pages that could potentially be accessible and never on a
  statically known guard page.
* Stop allocating memory or table pools if the maximum limit of the memory or
  table is 0.
This commit is contained in:
Peter Huene
2021-03-04 14:01:42 -08:00
parent a464465e2f
commit ff840b3d3b
11 changed files with 484 additions and 500 deletions

View File

@@ -1,23 +1,58 @@
use crate::Mmap;
use anyhow::{anyhow, Result};
use anyhow::{bail, Context, Result};
pub unsafe fn make_accessible(addr: *mut u8, len: usize) -> bool {
region::protect(addr, len, region::Protection::READ_WRITE).is_ok()
fn decommit(addr: *mut u8, len: usize, protect: bool) -> Result<()> {
if len == 0 {
return Ok(());
}
unsafe {
if protect {
region::protect(addr, len, region::Protection::NONE)
.context("failed to protect memory pages")?;
}
// On Linux, this is enough to cause the kernel to initialize the pages to 0 on next access
if libc::madvise(addr as _, len, libc::MADV_DONTNEED) != 0 {
bail!(
"madvise failed to decommit: {}",
std::io::Error::last_os_error()
);
}
}
Ok(())
}
pub unsafe fn decommit(addr: *mut u8, len: usize) {
region::protect(addr, len, region::Protection::NONE).unwrap();
pub fn commit_memory_pages(addr: *mut u8, len: usize) -> Result<()> {
if len == 0 {
return Ok(());
}
// On Linux, this is enough to cause the kernel to initialize the pages to 0 on next access
assert_eq!(
libc::madvise(addr as _, len, libc::MADV_DONTNEED),
0,
"madvise failed to mark pages as missing: {}",
std::io::Error::last_os_error()
);
// Just change the protection level to READ|WRITE
unsafe {
region::protect(addr, len, region::Protection::READ_WRITE)
.context("failed to make linear memory pages read/write")
}
}
pub fn create_memory_map(accessible_size: usize, mapping_size: usize) -> Result<Mmap> {
Mmap::accessible_reserved(accessible_size, mapping_size)
.map_err(|e| anyhow!("failed to allocate pool memory: {}", e))
pub fn decommit_memory_pages(addr: *mut u8, len: usize) -> Result<()> {
decommit(addr, len, true)
}
pub fn commit_table_pages(_addr: *mut u8, _len: usize) -> Result<()> {
// A no-op as table pages remain READ|WRITE
Ok(())
}
pub fn decommit_table_pages(addr: *mut u8, len: usize) -> Result<()> {
decommit(addr, len, false)
}
pub fn commit_stack_pages(_addr: *mut u8, _len: usize) -> Result<()> {
// A no-op as stack pages remain READ|WRITE
Ok(())
}
pub fn decommit_stack_pages(addr: *mut u8, len: usize) -> Result<()> {
decommit(addr, len, false)
}

View File

@@ -16,11 +16,10 @@
//! 1. A user fault file descriptor is created to monitor specific areas of the address space.
//! 2. A thread is spawned to continually read events from the user fault file descriptor.
//! 3. When a page fault event is received, the handler thread calculates where the fault occurred:
//! a) If the fault occurs on a table page, it is handled by zeroing the page.
//! b) If the fault occurs on a linear memory page, it is handled by either copying the page from
//! a) If the fault occurs on a linear memory page, it is handled by either copying the page from
//! initialization data or zeroing it.
//! c) If the fault occurs on a guard page, the protection level of the guard page is changed to
//! force the kernel to signal SIGSEV on the next retry. The faulting page is recorded so the
//! b) If the fault occurs on a guard page, the protection level of the guard page is changed to
//! force the kernel to signal SIGBUS on the next retry. The faulting page is recorded so the
//! protection level can be reset in the future.
//! 4. Faults to address space relating to an instance may occur from both Wasmtime (e.g. instance
//! initialization) or from WebAssembly code (e.g. reading from or writing to linear memory),
@@ -31,80 +30,103 @@
//!
//! This feature requires a Linux kernel 4.11 or newer to use.
use super::InstancePool;
use crate::{instance::Instance, Mmap};
use super::{InstancePool, MemoryPool};
use crate::instance::Instance;
use anyhow::{bail, Context, Result};
use std::ptr;
use std::thread;
use userfaultfd::{Event, FeatureFlags, IoctlFlags, Uffd, UffdBuilder};
use wasmtime_environ::{entity::EntityRef, wasm::DefinedMemoryIndex, MemoryInitialization};
const WASM_PAGE_SIZE: usize = wasmtime_environ::WASM_PAGE_SIZE as usize;
pub unsafe fn make_accessible(_addr: *mut u8, _len: usize) -> bool {
// A no-op when userfaultfd is used
true
}
pub unsafe fn reset_guard_page(addr: *mut u8, len: usize) -> bool {
// Guard pages are READ_WRITE with uffd until faulted
region::protect(addr, len, region::Protection::READ_WRITE).is_ok()
}
pub unsafe fn decommit(addr: *mut u8, len: usize) {
// Use MADV_DONTNEED to mark the pages as missing
// This will cause a missing page fault for next access on any page in the given range
assert_eq!(
libc::madvise(addr as _, len, libc::MADV_DONTNEED),
0,
"madvise failed to mark pages as missing: {}",
std::io::Error::last_os_error()
);
}
pub fn create_memory_map(_accessible_size: usize, mapping_size: usize) -> Result<Mmap> {
// Allocate a single read-write region at once
// As writable pages need to count towards commit charge, use MAP_NORESERVE to override.
// This implies that the kernel is configured to allow overcommit or else this allocation
// will almost certainly fail without a plethora of physical memory to back the allocation.
// The consequence of not reserving is that our process may segfault on any write to a memory
// page that cannot be backed (i.e. out of memory conditions).
if mapping_size == 0 {
return Ok(Mmap::new());
fn decommit(addr: *mut u8, len: usize) -> Result<()> {
if len == 0 {
return Ok(());
}
unsafe {
let ptr = libc::mmap(
ptr::null_mut(),
mapping_size,
libc::PROT_READ | libc::PROT_WRITE,
libc::MAP_PRIVATE | libc::MAP_ANON | libc::MAP_NORESERVE,
-1,
0,
);
if ptr as isize == -1_isize {
// On Linux, this is enough to cause the kernel to initialize the pages to 0 on next access
if libc::madvise(addr as _, len, libc::MADV_DONTNEED) != 0 {
bail!(
"failed to allocate pool memory: mmap failed with {}",
"madvise failed to decommit: {}",
std::io::Error::last_os_error()
);
}
}
Ok(Mmap::from_raw(ptr as usize, mapping_size))
Ok(())
}
pub fn commit_memory_pages(_addr: *mut u8, _len: usize) -> Result<()> {
// A no-op as memory pages remain READ|WRITE with uffd
Ok(())
}
pub fn decommit_memory_pages(addr: *mut u8, len: usize) -> Result<()> {
decommit(addr, len)
}
pub fn commit_table_pages(_addr: *mut u8, _len: usize) -> Result<()> {
// A no-op as table pages remain READ|WRITE
Ok(())
}
pub fn decommit_table_pages(addr: *mut u8, len: usize) -> Result<()> {
decommit(addr, len)
}
pub fn commit_stack_pages(_addr: *mut u8, _len: usize) -> Result<()> {
// A no-op as stack pages remain READ|WRITE
Ok(())
}
pub fn decommit_stack_pages(addr: *mut u8, len: usize) -> Result<()> {
decommit(addr, len)
}
/// This is used to initialize the memory pool when uffd is enabled.
///
/// Without uffd, all of the memory pool's pages are initially protected with `NONE` to treat the entire
/// range as guard pages. When an instance is created, the initial pages of the memory are
/// changed to `READ_WRITE`.
///
/// With uffd, however, the potentially accessible pages of the each linear memory are made `READ_WRITE` and
/// the page fault handler will detect an out of bounds access and treat the page, temporarily,
/// as a guard page.
///
/// This me
pub(super) fn initialize_memory_pool(pool: &MemoryPool) -> Result<()> {
if pool.memory_size == 0 || pool.max_wasm_pages == 0 {
return Ok(());
}
for i in 0..pool.max_instances {
for base in pool.get(i) {
unsafe {
region::protect(
base as _,
pool.max_wasm_pages as usize * WASM_PAGE_SIZE,
region::Protection::READ_WRITE,
)
.context("failed to initialize memory pool for uffd")?;
}
}
}
Ok(())
}
/// This is used to reset a linear memory's guard page back to read-write as the page might be accessible
/// again in the future depending on how the linear memory grows.
fn reset_guard_page(addr: *mut u8, len: usize) -> Result<()> {
unsafe {
region::protect(addr, len, region::Protection::READ_WRITE)
.context("failed to reset guard page")
}
}
/// Represents a location of a page fault within monitored regions of memory.
enum AddressLocation<'a> {
/// The address location is in a WebAssembly table page.
/// The fault handler will zero the page as tables are initialized at instantiation-time.
TablePage {
/// The address of the page being accessed.
page_addr: *mut u8,
/// The length of the page being accessed.
len: usize,
},
enum FaultLocation<'a> {
/// The address location is in a WebAssembly linear memory page.
/// The fault handler will copy the pages from initialization data if necessary.
MemoryPage {
@@ -121,12 +143,12 @@ enum AddressLocation<'a> {
},
}
/// Used to resolve fault addresses to address locations.
/// Used to resolve fault addresses to a location.
///
/// This implementation relies heavily on how the various resource pools utilize their memory.
/// This implementation relies heavily on how the linear memory pool organizes its memory.
///
/// `usize` is used here instead of pointers to keep this `Send` as it gets sent to the handler thread.
struct AddressLocator {
struct FaultLocator {
instances_start: usize,
instance_size: usize,
max_instances: usize,
@@ -134,19 +156,13 @@ struct AddressLocator {
memories_end: usize,
memory_size: usize,
max_memories: usize,
tables_start: usize,
tables_end: usize,
table_size: usize,
page_size: usize,
}
impl AddressLocator {
impl FaultLocator {
fn new(instances: &InstancePool) -> Self {
let instances_start = instances.mapping.as_ptr() as usize;
let memories_start = instances.memories.mapping.as_ptr() as usize;
let memories_end = memories_start + instances.memories.mapping.len();
let tables_start = instances.tables.mapping.as_ptr() as usize;
let tables_end = tables_start + instances.tables.mapping.len();
// Should always have instances
debug_assert!(instances_start != 0);
@@ -159,10 +175,6 @@ impl AddressLocator {
memories_end,
memory_size: instances.memories.memory_size,
max_memories: instances.memories.max_memories,
tables_start,
tables_end,
table_size: instances.tables.table_size,
page_size: instances.tables.page_size,
}
}
@@ -174,7 +186,7 @@ impl AddressLocator {
///
/// Of course a stray faulting memory access from a thread that does not own
/// the instance might introduce a race, but this implementation considers
/// such to be a serious bug.
/// such to be a serious soundness bug not originating in this code.
///
/// If the assumption holds true, accessing the instance data from the handler thread
/// should, in theory, be safe.
@@ -183,8 +195,8 @@ impl AddressLocator {
&*((self.instances_start + (index * self.instance_size)) as *const Instance)
}
unsafe fn get_location(&self, addr: usize) -> Option<AddressLocation> {
// Check for a memory location
unsafe fn locate(&self, addr: usize) -> Option<FaultLocation> {
// Check for a linear memory location
if addr >= self.memories_start && addr < self.memories_end {
let index = (addr - self.memories_start) / self.memory_size;
let memory_index = DefinedMemoryIndex::new(index % self.max_memories);
@@ -200,7 +212,7 @@ impl AddressLocator {
}
});
return Some(AddressLocation::MemoryPage {
return Some(FaultLocation::MemoryPage {
page_addr: (memory_start + page_index * WASM_PAGE_SIZE) as _,
len: WASM_PAGE_SIZE,
instance,
@@ -209,19 +221,6 @@ impl AddressLocator {
});
}
// Check for a table location
if addr >= self.tables_start && addr < self.tables_end {
let index = (addr - self.tables_start) / self.table_size;
let table_start = self.tables_start + (index * self.table_size);
let table_offset = addr - table_start;
let page_index = table_offset / self.page_size;
return Some(AddressLocation::TablePage {
page_addr: (table_start + (page_index * self.page_size)) as _,
len: self.page_size,
});
}
None
}
}
@@ -231,9 +230,9 @@ impl AddressLocator {
/// Because the region being monitored is protected read-write, this needs to set the
/// protection level to `NONE` before waking the page.
///
/// This will cause the kernel to raise a SIGSEGV when retrying the fault.
/// This will cause the kernel to raise a SIGBUS when retrying the fault.
unsafe fn wake_guard_page_access(uffd: &Uffd, page_addr: *const u8, len: usize) -> Result<()> {
// Set the page to NONE to induce a SIGSEGV for the access on the next retry
// Set the page to NONE to induce a SIGBUS for the access on the next retry
region::protect(page_addr, len, region::Protection::NONE)
.context("failed to change guard page protection")?;
@@ -288,22 +287,11 @@ unsafe fn initialize_wasm_page(
unsafe fn handle_page_fault(
uffd: &Uffd,
locator: &AddressLocator,
locator: &FaultLocator,
addr: *mut std::ffi::c_void,
) -> Result<()> {
match locator.get_location(addr as usize) {
Some(AddressLocation::TablePage { page_addr, len }) => {
log::trace!(
"handling fault in table at address {:p} on page {:p}",
addr,
page_addr,
);
// Tables are always initialized upon instantiation, so zero the page
uffd.zeropage(page_addr as _, len, true)
.context("failed to zero table page")?;
}
Some(AddressLocation::MemoryPage {
match locator.locate(addr as usize) {
Some(FaultLocation::MemoryPage {
page_addr,
len,
instance,
@@ -340,7 +328,7 @@ unsafe fn handle_page_fault(
Ok(())
}
fn handler_thread(uffd: Uffd, locator: AddressLocator, mut registrations: usize) -> Result<()> {
fn fault_handler_thread(uffd: Uffd, locator: FaultLocator) -> Result<()> {
loop {
match uffd.read_event().expect("failed to read event") {
Some(Event::Unmap { start, end }) => {
@@ -348,13 +336,8 @@ fn handler_thread(uffd: Uffd, locator: AddressLocator, mut registrations: usize)
let (start, end) = (start as usize, end as usize);
if (start == locator.memories_start && end == locator.memories_end)
|| (start == locator.tables_start && end == locator.tables_end)
{
registrations -= 1;
if registrations == 0 {
break;
}
if start == locator.memories_start && end == locator.memories_end {
break;
} else {
panic!("unexpected memory region unmapped");
}
@@ -385,53 +368,39 @@ impl PageFaultHandler {
.create()
.context("failed to create user fault descriptor")?;
// Register the ranges with the userfault fd
let mut registrations = 0;
for (start, len) in &[
(
instances.memories.mapping.as_ptr() as usize,
instances.memories.mapping.len(),
),
(
instances.tables.mapping.as_ptr() as usize,
instances.tables.mapping.len(),
),
] {
if *start == 0 || *len == 0 {
continue;
}
// Register the linear memory pool with the userfault fd
let start = instances.memories.mapping.as_ptr();
let len = instances.memories.mapping.len();
let thread = if !start.is_null() && len > 0 {
let ioctls = uffd
.register(*start as _, *len)
.register(start as _, len)
.context("failed to register user fault range")?;
if !ioctls.contains(IoctlFlags::WAKE | IoctlFlags::COPY | IoctlFlags::ZEROPAGE) {
bail!(
"required user fault ioctls not supported; found: {:?}",
"required user fault ioctls not supported by the kernel; found: {:?}",
ioctls,
);
}
registrations += 1;
}
let thread = if registrations == 0 {
log::trace!("user fault handling disabled as there are no regions to monitor");
None
} else {
log::trace!(
"user fault handling enabled on {} memory regions",
registrations
"user fault handling enabled on linear memory pool at {:p} with size {}",
start,
len
);
let locator = AddressLocator::new(&instances);
let locator = FaultLocator::new(&instances);
Some(
thread::Builder::new()
.name("page fault handler".into())
.spawn(move || handler_thread(uffd, locator, registrations))
.spawn(move || fault_handler_thread(uffd, locator))
.context("failed to spawn page fault handler thread")?,
)
} else {
log::trace!("user fault handling disabled as there is no linear memory pool");
None
};
Ok(Self { thread })
@@ -442,7 +411,7 @@ impl Drop for PageFaultHandler {
fn drop(&mut self) {
// The handler thread should terminate once all monitored regions of memory are unmapped.
// The pooling instance allocator ensures that the regions are unmapped prior to dropping
// the user fault handler.
// the page fault handler.
if let Some(thread) = self.thread.take() {
thread
.join()
@@ -456,15 +425,12 @@ impl Drop for PageFaultHandler {
mod test {
use super::*;
use crate::{
table::max_table_element_size, Imports, InstanceAllocationRequest, InstanceLimits,
ModuleLimits, PoolingAllocationStrategy, VMSharedSignatureIndex,
Imports, InstanceAllocationRequest, InstanceLimits, ModuleLimits,
PoolingAllocationStrategy, VMSharedSignatureIndex,
};
use std::ptr;
use std::sync::Arc;
use wasmtime_environ::{
entity::PrimaryMap,
wasm::{Memory, Table, TableElementType, WasmType},
MemoryPlan, MemoryStyle, Module, TablePlan, TableStyle,
};
use wasmtime_environ::{entity::PrimaryMap, wasm::Memory, MemoryPlan, MemoryStyle, Module};
#[cfg(target_pointer_width = "64")]
#[test]
@@ -476,10 +442,10 @@ mod test {
imported_globals: 0,
types: 0,
functions: 0,
tables: 3,
tables: 0,
memories: 2,
globals: 0,
table_elements: 1000,
table_elements: 0,
memory_pages: 2,
};
let instance_limits = InstanceLimits {
@@ -490,7 +456,7 @@ mod test {
let instances =
InstancePool::new(&module_limits, &instance_limits).expect("should allocate");
let locator = AddressLocator::new(&instances);
let locator = FaultLocator::new(&instances);
assert_eq!(locator.instances_start, instances.mapping.as_ptr() as usize);
assert_eq!(locator.instance_size, 4096);
@@ -505,21 +471,10 @@ mod test {
);
assert_eq!(locator.memory_size, WASM_PAGE_SIZE * 10);
assert_eq!(locator.max_memories, 2);
assert_eq!(
locator.tables_start,
instances.tables.mapping.as_ptr() as usize
);
assert_eq!(
locator.tables_end,
locator.tables_start + instances.tables.mapping.len()
);
assert_eq!(locator.table_size, 8192);
unsafe {
assert!(locator.get_location(0).is_none());
assert!(locator
.get_location(std::cmp::max(locator.memories_end, locator.tables_end))
.is_none());
assert!(locator.locate(0).is_none());
assert!(locator.locate(locator.memories_end).is_none());
let mut module = Module::new();
@@ -535,25 +490,13 @@ mod test {
});
}
for _ in 0..module_limits.tables {
module.table_plans.push(TablePlan {
table: Table {
wasm_ty: WasmType::FuncRef,
ty: TableElementType::Func,
minimum: 800,
maximum: Some(900),
},
style: TableStyle::CallerChecksSignature,
});
}
module_limits.validate(&module).expect("should validate");
let mut handles = Vec::new();
let module = Arc::new(module);
let finished_functions = &PrimaryMap::new();
// Allocate the maximum number of instances with the maxmimum number of memories and tables
// Allocate the maximum number of instances with the maximum number of memories
for _ in 0..instances.max_instances {
handles.push(
instances
@@ -570,9 +513,9 @@ mod test {
},
lookup_shared_signature: &|_| VMSharedSignatureIndex::default(),
host_state: Box::new(()),
interrupts: std::ptr::null(),
externref_activations_table: std::ptr::null_mut(),
stack_map_registry: std::ptr::null_mut(),
interrupts: ptr::null(),
externref_activations_table: ptr::null_mut(),
stack_map_registry: ptr::null_mut(),
},
)
.expect("instance should allocate"),
@@ -587,8 +530,8 @@ mod test {
+ (memory_index * locator.memory_size);
// Test for access to first page
match locator.get_location(memory_start + 10000) {
Some(AddressLocation::MemoryPage {
match locator.locate(memory_start + 10000) {
Some(FaultLocation::MemoryPage {
page_addr,
len,
instance: _,
@@ -604,8 +547,8 @@ mod test {
}
// Test for access to second page
match locator.get_location(memory_start + 1024 + WASM_PAGE_SIZE) {
Some(AddressLocation::MemoryPage {
match locator.locate(memory_start + 1024 + WASM_PAGE_SIZE) {
Some(FaultLocation::MemoryPage {
page_addr,
len,
instance: _,
@@ -621,8 +564,8 @@ mod test {
}
// Test for guard page
match locator.get_location(memory_start + 10 + 9 * WASM_PAGE_SIZE) {
Some(AddressLocation::MemoryPage {
match locator.locate(memory_start + 10 + 9 * WASM_PAGE_SIZE) {
Some(FaultLocation::MemoryPage {
page_addr,
len,
instance: _,
@@ -639,33 +582,6 @@ mod test {
}
}
// Validate table locations
for instance_index in 0..instances.max_instances {
for table_index in 0..instances.tables.max_tables {
let table_start = locator.tables_start
+ (instance_index * locator.table_size * instances.tables.max_tables)
+ (table_index * locator.table_size);
// Check for an access of index 107 (first page)
match locator.get_location(table_start + (107 * max_table_element_size())) {
Some(AddressLocation::TablePage { page_addr, len }) => {
assert_eq!(page_addr, table_start as _);
assert_eq!(len, locator.page_size);
}
_ => panic!("expected a table page location"),
}
// Check for an access of index 799 (second page)
match locator.get_location(table_start + (799 * max_table_element_size())) {
Some(AddressLocation::TablePage { page_addr, len }) => {
assert_eq!(page_addr, (table_start + locator.page_size) as _);
assert_eq!(len, locator.page_size);
}
_ => panic!("expected a table page location"),
}
}
}
for handle in handles.drain(..) {
instances.deallocate(&handle);
}

View File

@@ -1,27 +1,64 @@
use crate::Mmap;
use anyhow::{anyhow, Result};
use anyhow::{bail, Context, Result};
pub unsafe fn make_accessible(addr: *mut u8, len: usize) -> bool {
region::protect(addr, len, region::Protection::READ_WRITE).is_ok()
}
fn decommit(addr: *mut u8, len: usize, protect: bool) -> Result<()> {
if len == 0 {
return Ok(());
}
pub unsafe fn decommit(addr: *mut u8, len: usize) {
assert_eq!(
if unsafe {
libc::mmap(
addr as _,
len,
libc::PROT_NONE,
if protect {
libc::PROT_NONE
} else {
libc::PROT_READ | libc::PROT_WRITE
},
libc::MAP_PRIVATE | libc::MAP_ANON | libc::MAP_FIXED,
-1,
0,
) as *mut u8,
addr,
"mmap failed to remap pages: {}",
std::io::Error::last_os_error()
);
) as *mut u8
} != addr
{
bail!(
"mmap failed to remap pages: {}",
std::io::Error::last_os_error()
);
}
Ok(())
}
pub fn create_memory_map(accessible_size: usize, mapping_size: usize) -> Result<Mmap> {
Mmap::accessible_reserved(accessible_size, mapping_size)
.map_err(|e| anyhow!("failed to allocate pool memory: {}", e))
pub fn commit_memory_pages(addr: *mut u8, len: usize) -> Result<()> {
if len == 0 {
return Ok(());
}
// Just change the protection level to READ|WRITE
unsafe {
region::protect(addr, len, region::Protection::READ_WRITE)
.context("failed to make linear memory pages read/write")
}
}
pub fn decommit_memory_pages(addr: *mut u8, len: usize) -> Result<()> {
decommit(addr, len, true)
}
pub fn commit_table_pages(_addr: *mut u8, _len: usize) -> Result<()> {
// A no-op as table pages remain READ|WRITE
Ok(())
}
pub fn decommit_table_pages(addr: *mut u8, len: usize) -> Result<()> {
decommit(addr, len, false)
}
pub fn commit_stack_pages(_addr: *mut u8, _len: usize) -> Result<()> {
// A no-op as stack pages remain READ|WRITE
Ok(())
}
pub fn decommit_stack_pages(addr: *mut u8, len: usize) -> Result<()> {
decommit(addr, len, false)
}

View File

@@ -1,22 +1,55 @@
use crate::Mmap;
use anyhow::{anyhow, Result};
use anyhow::{bail, Result};
use winapi::um::memoryapi::{VirtualAlloc, VirtualFree};
use winapi::um::winnt::{MEM_COMMIT, MEM_DECOMMIT, PAGE_READWRITE};
pub unsafe fn make_accessible(addr: *mut u8, len: usize) -> bool {
// This doesn't use the `region` crate because the memory needs to be committed
!VirtualAlloc(addr as _, len, MEM_COMMIT, PAGE_READWRITE).is_null()
pub fn commit(addr: *mut u8, len: usize) -> Result<()> {
if len == 0 {
return Ok(());
}
// Memory needs to be committed, so don't use the `region` crate
if unsafe { VirtualAlloc(addr as _, len, MEM_COMMIT, PAGE_READWRITE).is_null() } {
bail!("failed to commit memory as read/write");
}
Ok(())
}
pub unsafe fn decommit(addr: *mut u8, len: usize) {
assert!(
VirtualFree(addr as _, len, MEM_DECOMMIT) != 0,
"failed to decommit memory pages: {}",
std::io::Error::last_os_error()
);
pub fn decommit(addr: *mut u8, len: usize) -> Result<()> {
if len == 0 {
return Ok(());
}
if unsafe { VirtualFree(addr as _, len, MEM_DECOMMIT) } == 0 {
bail!(
"failed to decommit memory pages: {}",
std::io::Error::last_os_error()
);
}
Ok(())
}
pub fn create_memory_map(accessible_size: usize, mapping_size: usize) -> Result<Mmap> {
Mmap::accessible_reserved(accessible_size, mapping_size)
.map_err(|e| anyhow!("failed to allocate pool memory: {}", e))
pub fn commit_memory_pages(addr: *mut u8, len: usize) -> Result<()> {
commit(addr, len)
}
pub fn decommit_memory_pages(addr: *mut u8, len: usize) -> Result<()> {
decommit(addr, len)
}
pub fn commit_table_pages(addr: *mut u8, len: usize) -> Result<()> {
commit(addr, len)
}
pub fn decommit_table_pages(addr: *mut u8, len: usize) -> Result<()> {
decommit(addr, len)
}
pub fn commit_stack_pages(addr: *mut u8, len: usize) -> Result<()> {
commit(addr, len)
}
pub fn decommit_stack_pages(addr: *mut u8, len: usize) -> Result<()> {
decommit(addr, len)
}