wiggle: copy guest slices back to shared memory (#5471)

This change upgrades `UnsafeGuestSlice` in Wiggle to expose more
functionality to be able to use `std::ptr::copy` for writing bytes into
Wasm shared memory. Additionally, it adds a new `GuestCow` type for
delineating between Wasm memory regions that can be borrowed (non-shared
memory) or must be copied (shared memory) in order to maintain Rust
guarantees.

With these in place, it is now possible to implement the `preview1`
"read" functions for shared memory. Previously, these would panic if
attempting to copy to a shared memory. This change removes the panic and
introduces some (rather complex) logic for handling both the shared and
non-shared cases:
- if reading into a Wasm non-shared memory, Wiggle guarantees that no
  other guest pointers will touch the memory region and, in the absence
  of concurrency, a WASI function can write directly to this memory
- if reading into a Wasm shared memory, the memory region can be
  concurrently modified. At @alexcrichton's request re: Rust safety,
  this change copies all of the bytes into an intermediate buffer before
  using `std::ptr::copy` to move them into Wasm memory.

This change only applies to the `preview0` and `preview1`
implementations of `wasi-common`. Fixing up other WASI implementations
(esp. wasi-crypto) is left for later.
This commit is contained in:
Andrew Brown
2023-01-03 11:51:34 -08:00
committed by GitHub
parent 69b7ecf90e
commit f911855612
3 changed files with 465 additions and 157 deletions

View File

@@ -482,6 +482,11 @@ impl<'a, T: ?Sized + Pointee> GuestPtr<'a, T> {
{
GuestPtr::new(self.mem, (self.pointer, elems))
}
/// Check if this pointer references WebAssembly shared memory.
pub fn is_shared_memory(&self) -> bool {
self.mem.is_shared_memory()
}
}
impl<'a, T> GuestPtr<'a, [T]> {
@@ -512,6 +517,24 @@ impl<'a, T> GuestPtr<'a, [T]> {
(0..self.len()).map(move |i| base.add(i))
}
/// Attempts to create a [`GuestCow<'_, T>`] from this pointer, performing
/// bounds checks and type validation. Whereas [`GuestPtr::as_slice`] will
/// fail with `None` if attempting to access Wasm shared memory, this call
/// will succeed: if used on shared memory, this function will copy the
/// slice into [`GuestCow::Copied`]. If the memory is non-shared, this
/// returns a [`GuestCow::Borrowed`] (a thin wrapper over [`GuestSlice<'_,
/// T>]`).
pub fn as_cow(&self) -> Result<GuestCow<'a, T>, GuestError>
where
T: GuestTypeTransparent<'a> + Copy + 'a,
{
match self.as_unsafe_slice_mut()?.shared_borrow() {
UnsafeBorrowResult::Ok(slice) => Ok(GuestCow::Borrowed(slice)),
UnsafeBorrowResult::Shared(_) => Ok(GuestCow::Copied(self.to_vec()?)),
UnsafeBorrowResult::Err(e) => Err(e),
}
}
/// Attempts to create a [`GuestSlice<'_, T>`] from this pointer, performing
/// bounds checks and type validation. The `GuestSlice` is a smart pointer
/// that can be used as a `&[T]` via the `Deref` trait. The region of memory
@@ -524,7 +547,8 @@ impl<'a, T> GuestPtr<'a, [T]> {
/// any checks fail then `GuestError` will be returned.
///
/// Additionally, because it is `unsafe` to have a `GuestSlice` of shared
/// memory, this function will return `None` in this case.
/// memory, this function will return `None` in this case (see
/// [`GuestPtr::as_cow`]).
pub fn as_slice(&self) -> Result<Option<GuestSlice<'a, T>>, GuestError>
where
T: GuestTypeTransparent<'a>,
@@ -553,11 +577,7 @@ impl<'a, T> GuestPtr<'a, [T]> {
where
T: GuestTypeTransparent<'a>,
{
match self.as_unsafe_slice_mut()?.mut_borrow() {
UnsafeBorrowResult::Ok(slice) => Ok(Some(slice)),
UnsafeBorrowResult::Shared(_) => Ok(None),
UnsafeBorrowResult::Err(e) => Err(e),
}
self.as_unsafe_slice_mut()?.as_slice_mut()
}
/// Similar to `as_slice_mut`, this function will attempt to create a smart
@@ -614,39 +634,7 @@ impl<'a, T> GuestPtr<'a, [T]> {
where
T: GuestTypeTransparent<'a> + Copy + 'a,
{
// Retrieve the slice of memory to copy to, performing the necessary
// bounds checks ...
let guest_slice = self.as_unsafe_slice_mut()?;
// ... length check ...
if guest_slice.ptr.len() != slice.len() {
return Err(GuestError::SliceLengthsDiffer);
}
if slice.len() == 0 {
return Ok(());
}
// ... and copy the bytes.
match guest_slice.mut_borrow() {
UnsafeBorrowResult::Ok(mut dst) => dst.copy_from_slice(slice),
UnsafeBorrowResult::Shared(guest_slice) => {
// SAFETY: in the shared memory case, we copy and accept that
// the guest data may be concurrently modified. TODO: audit that
// this use of `std::ptr::copy` is safe with shared memory
// (https://github.com/bytecodealliance/wasmtime/issues/4203)
//
// Also note that the validity of `guest_slice` has already been
// determined by the `as_unsafe_slice_mut` call above.
unsafe {
std::ptr::copy(
slice.as_ptr(),
guest_slice.ptr[0].get(),
guest_slice.ptr.len(),
)
};
}
UnsafeBorrowResult::Err(e) => return Err(e),
}
Ok(())
self.as_unsafe_slice_mut()?.copy_from_slice(slice)
}
/// Returns a `GuestPtr` pointing to the base of the array for the interior
@@ -772,6 +760,30 @@ impl<T: ?Sized + Pointee> fmt::Debug for GuestPtr<'_, T> {
}
}
/// A smart pointer for distinguishing between different kinds of Wasm memory:
/// shared and non-shared.
///
/// As with `GuestSlice`, this is usable as a `&'a [T]` via [`std::ops::Deref`].
/// The major difference is that, for shared memories, the memory will be copied
/// out of Wasm linear memory to avoid the possibility of concurrent mutation by
/// another thread. This extra copy exists solely to maintain the Rust
/// guarantees regarding `&[T]`.
pub enum GuestCow<'a, T> {
Borrowed(GuestSlice<'a, T>),
Copied(Vec<T>),
}
impl<'a, T> std::ops::Deref for GuestCow<'a, T> {
type Target = [T];
fn deref(&self) -> &Self::Target {
match self {
GuestCow::Borrowed(s) => s,
GuestCow::Copied(s) => s,
}
}
}
/// A smart pointer to an shareable slice in guest memory.
///
/// Usable as a `&'a [T]` via [`std::ops::Deref`].
@@ -868,7 +880,72 @@ pub struct UnsafeGuestSlice<'a, T> {
mem: &'a dyn GuestMemory,
}
// SAFETY: `UnsafeGuestSlice` can be used across an `await` and therefore must
// be `Send` and `Sync`. As with `GuestSlice` and friends, we mirror the
// `Send`/`Sync` impls due to the interior usage of `&[UnsafeCell<T>]`.
unsafe impl<T: Sync> Sync for UnsafeGuestSlice<'_, T> {}
unsafe impl<T: Send> Send for UnsafeGuestSlice<'_, T> {}
impl<'a, T> UnsafeGuestSlice<'a, T> {
/// See `GuestPtr::copy_from_slice`.
pub fn copy_from_slice(self, slice: &[T]) -> Result<(), GuestError>
where
T: GuestTypeTransparent<'a> + Copy + 'a,
{
// Check the length...
if self.ptr.len() != slice.len() {
return Err(GuestError::SliceLengthsDiffer);
}
if slice.len() == 0 {
return Ok(());
}
// ... and copy the bytes.
match self.mut_borrow() {
UnsafeBorrowResult::Ok(mut dst) => dst.copy_from_slice(slice),
UnsafeBorrowResult::Shared(guest_slice) => {
// SAFETY: in the shared memory case, we copy and accept that
// the guest data may be concurrently modified. TODO: audit that
// this use of `std::ptr::copy` is safe with shared memory
// (https://github.com/bytecodealliance/wasmtime/issues/4203)
//
// Also note that the validity of `guest_slice` has already been
// determined by the `as_unsafe_slice_mut` call above.
unsafe {
std::ptr::copy(
slice.as_ptr(),
guest_slice.ptr[0].get(),
guest_slice.ptr.len(),
)
};
}
UnsafeBorrowResult::Err(e) => return Err(e),
}
Ok(())
}
/// Return the number of items in this slice.
pub fn len(&self) -> usize {
self.ptr.len()
}
/// Check if this slice comes from WebAssembly shared memory.
pub fn is_shared_memory(&self) -> bool {
self.mem.is_shared_memory()
}
/// See `GuestPtr::as_slice_mut`.
pub fn as_slice_mut(self) -> Result<Option<GuestSliceMut<'a, T>>, GuestError>
where
T: GuestTypeTransparent<'a>,
{
match self.mut_borrow() {
UnsafeBorrowResult::Ok(slice) => Ok(Some(slice)),
UnsafeBorrowResult::Shared(_) => Ok(None),
UnsafeBorrowResult::Err(e) => Err(e),
}
}
/// Transform an `unsafe` guest slice to a [`GuestSliceMut`].
///
/// # Safety