externref: implement stack map-based garbage collection

For host VM code, we use plain reference counting, where cloning increments
the reference count, and dropping decrements it. We can avoid many of the
on-stack increment/decrement operations that typically plague the
performance of reference counting via Rust's ownership and borrowing system.
Moving a `VMExternRef` avoids mutating its reference count, and borrowing it
either avoids the reference count increment or delays it until if/when the
`VMExternRef` is cloned.

When passing a `VMExternRef` into compiled Wasm code, we don't want to do
reference count mutations for every compiled `local.{get,set}`, nor for
every function call. Therefore, we use a variation of **deferred reference
counting**, where we only mutate reference counts when storing
`VMExternRef`s somewhere that outlives the activation: into a global or
table. Simultaneously, we over-approximate the set of `VMExternRef`s that
are inside Wasm function activations. Periodically, we walk the stack at GC
safe points, and use stack map information to precisely identify the set of
`VMExternRef`s inside Wasm activations. Then we take the difference between
this precise set and our over-approximation, and decrement the reference
count for each of the `VMExternRef`s that are in our over-approximation but
not in the precise set. Finally, the over-approximation is replaced with the
precise set.

The `VMExternRefActivationsTable` implements the over-approximized set of
`VMExternRef`s referenced by Wasm activations. Calling a Wasm function and
passing it a `VMExternRef` moves the `VMExternRef` into the table, and the
compiled Wasm function logically "borrows" the `VMExternRef` from the
table. Similarly, `global.get` and `table.get` operations clone the gotten
`VMExternRef` into the `VMExternRefActivationsTable` and then "borrow" the
reference out of the table.

When a `VMExternRef` is returned to host code from a Wasm function, the host
increments the reference count (because the reference is logically
"borrowed" from the `VMExternRefActivationsTable` and the reference count
from the table will be dropped at the next GC).

For more general information on deferred reference counting, see *An
Examination of Deferred Reference Counting and Cycle Detection* by Quinane:
https://openresearch-repository.anu.edu.au/bitstream/1885/42030/2/hon-thesis.pdf

cc #929

Fixes #1804
This commit is contained in:
Nick Fitzgerald
2020-06-03 09:21:34 -07:00
parent 357fb11f46
commit f30ce1fe97
32 changed files with 1415 additions and 235 deletions

View File

@@ -15,6 +15,7 @@ edition = "2018"
wasmtime-environ = { path = "../environ", version = "0.18.0" }
region = "2.0.0"
libc = { version = "0.2.70", default-features = false }
log = "0.4.8"
memoffset = "0.5.3"
indexmap = "1.0.2"
thiserror = "1.0.4"

View File

@@ -58,29 +58,59 @@
//! need a ton of excess padding between the `VMExternData` and the value for
//! values with large alignment.
//!
//! ## Reference Counting Protocol and Wasm Functions
//! ## Reference Counting, Wasm Functions, and Garbage Collection
//!
//! Currently, `VMExternRef`s passed into compiled Wasm functions have move
//! semantics: the host code gives up ownership and does not decrement the
//! reference count. Similarly, `VMExternRef`s returned from compiled Wasm
//! functions also have move semantics: host code takes ownership and the
//! reference count is not incremented.
//! For host VM code, we use plain reference counting, where cloning increments
//! the reference count, and dropping decrements it. We can avoid many of the
//! on-stack increment/decrement operations that typically plague the
//! performance of reference counting via Rust's ownership and borrowing system.
//! Moving a `VMExternRef` avoids mutating its reference count, and borrowing it
//! either avoids the reference count increment or delays it until if/when the
//! `VMExternRef` is cloned.
//!
//! This works well when a reference is passed into Wasm and then passed back
//! out again. However, if a reference is passed into Wasm, but not passed back
//! out, then the reference is leaked. This is only a temporary state, and
//! follow up work will leverage stack maps to fix this issue. Follow
//! https://github.com/bytecodealliance/wasmtime/issues/929 to keep an eye on
//! this.
//! When passing a `VMExternRef` into compiled Wasm code, we don't want to do
//! reference count mutations for every compiled `local.{get,set}`, nor for
//! every function call. Therefore, we use a variation of **deferred reference
//! counting**, where we only mutate reference counts when storing
//! `VMExternRef`s somewhere that outlives the activation: into a global or
//! table. Simultaneously, we over-approximate the set of `VMExternRef`s that
//! are inside Wasm function activations. Periodically, we walk the stack at GC
//! safe points, and use stack map information to precisely identify the set of
//! `VMExternRef`s inside Wasm activations. Then we take the difference between
//! this precise set and our over-approximation, and decrement the reference
//! count for each of the `VMExternRef`s that are in our over-approximation but
//! not in the precise set. Finally, the over-approximation is replaced with the
//! precise set.
//!
//! The `VMExternRefActivationsTable` implements the over-approximized set of
//! `VMExternRef`s referenced by Wasm activations. Calling a Wasm function and
//! passing it a `VMExternRef` moves the `VMExternRef` into the table, and the
//! compiled Wasm function logically "borrows" the `VMExternRef` from the
//! table. Similarly, `global.get` and `table.get` operations clone the gotten
//! `VMExternRef` into the `VMExternRefActivationsTable` and then "borrow" the
//! reference out of the table.
//!
//! When a `VMExternRef` is returned to host code from a Wasm function, the host
//! increments the reference count (because the reference is logically
//! "borrowed" from the `VMExternRefActivationsTable` and the reference count
//! from the table will be dropped at the next GC).
//!
//! For more general information on deferred reference counting, see *An
//! Examination of Deferred Reference Counting and Cycle Detection* by Quinane:
//! https://openresearch-repository.anu.edu.au/bitstream/1885/42030/2/hon-thesis.pdf
use std::alloc::Layout;
use std::any::Any;
use std::cell::UnsafeCell;
use std::cell::{Cell, RefCell, UnsafeCell};
use std::cmp::Ordering;
use std::collections::BTreeMap;
use std::collections::HashSet;
use std::hash::Hasher;
use std::mem;
use std::ops::Deref;
use std::ptr::{self, NonNull};
use std::sync::{Arc, RwLock};
use wasmtime_environ::{ir::Stackmap, StackMapInformation};
/// An external reference to some opaque data.
///
@@ -307,35 +337,73 @@ impl VMExternRef {
}
}
// /// Turn this `VMExternRef` into a raw, untyped pointer.
// ///
// /// This forgets `self` and does *not* decrement the reference count on the
// /// pointed-to data.
// ///
// /// This `VMExternRef` may be recovered with `VMExternRef::from_raw`.
// pub fn into_raw(self) -> *mut u8 {
// let ptr = self.as_raw();
// mem::forget(self);
// ptr
// }
// /// Recreate a `VMExternRef` from a pointer returned from a previous call to
// /// `VMExternRef::into_raw`.
// ///
// /// # Safety
// ///
// /// Wildly unsafe to use with anything other than the result of a previous
// /// `into_raw` call!
// ///
// /// This method does *not* increment the reference count on the pointed-to
// /// data, so `from_raw` must be called at most *once* on the result of a
// /// previous `into_raw` call. (Ideally, every `into_raw` is later followed
// /// by a `from_raw`, but it is technically memory safe to never call
// /// `from_raw` after `into_raw`: it will leak the pointed-to value, which is
// /// memory safe).
// pub unsafe fn from_raw(ptr: *mut u8) -> Self {
// debug_assert!(!ptr.is_null());
// VMExternRef(NonNull::new_unchecked(ptr).cast())
// }
/// Turn this `VMExternRef` into a raw, untyped pointer.
///
/// This forgets `self` and does *not* decrement the reference count on the
/// pointed-to data.
/// Unlike `into_raw`, this does not consume and forget `self`. It is *not*
/// safe to use `from_raw` on pointers returned from this method; only use
/// `clone_from_raw`!
///
/// This `VMExternRef` may be recovered with `VMExternRef::from_raw`.
pub fn into_raw(self) -> *mut u8 {
/// Nor does this method increment the reference count. You must ensure
/// that `self` (or some other clone of `self`) stays alive until
/// `clone_from_raw` is called.
pub fn as_raw(&self) -> *mut u8 {
let ptr = self.0.cast::<u8>().as_ptr();
mem::forget(self);
ptr
}
/// Create a `VMExternRef` from a pointer returned from a previous call to
/// `VMExternRef::into_raw`.
/// Recreate a `VMExternRef` from a pointer returned from a previous call to
/// `VMExternRef::as_raw`.
///
/// # Safety
///
/// Wildly unsafe to use with anything other than the result of a previous
/// `into_raw` call!
/// `as_raw` call!
///
/// This method does *not* increment the reference count on the pointed-to
/// data, so `from_raw` must be called at most *once* on the result of a
/// previous `into_raw` call. (Ideally, every `into_raw` is later followed
/// by a `from_raw`, but it is technically memory safe to never call
/// `from_raw` after `into_raw`: it will leak the pointed-to value, which is
/// memory safe).
pub unsafe fn from_raw(ptr: *mut u8) -> Self {
/// Additionally, it is your responsibility to ensure that this raw
/// `VMExternRef`'s reference count has not dropped to zero. Failure to do
/// so will result in use after free!
pub unsafe fn clone_from_raw(ptr: *mut u8) -> Self {
debug_assert!(!ptr.is_null());
VMExternRef(NonNull::new_unchecked(ptr).cast())
let x = VMExternRef(NonNull::new_unchecked(ptr).cast());
x.extern_data().increment_ref_count();
x
}
/// Get the reference count for this `VMExternRef`.
pub fn get_reference_count(&self) -> usize {
self.extern_data().get_ref_count()
}
#[inline]
@@ -393,6 +461,556 @@ impl Deref for VMExternRef {
}
}
type TableElem = UnsafeCell<Option<VMExternRef>>;
/// A table that over-approximizes the set of `VMExternRef`s that any Wasm
/// activation on this thread is currently using.
///
/// Under the covers, this is a simple bump allocator that allows duplicate
/// entries. Deduplication happens at GC time.
#[repr(C)]
pub struct VMExternRefActivationsTable {
/// Bump-allocation finger within the current chunk.
///
/// NB: this is an `UnsafeCell` because it is read from and written to by
/// compiled Wasm code.
next: UnsafeCell<NonNull<TableElem>>,
/// Pointer to just after the current chunk.
///
/// This is *not* within the current chunk and therefore is not a valid
/// place to insert a reference!
///
/// This is only updated from host code.
end: Cell<NonNull<TableElem>>,
/// The chunks within which we are bump allocating.
///
/// This is only updated from host code.
chunks: RefCell<Vec<Box<[TableElem]>>>,
/// The precise set of on-stack, inside-Wasm GC roots that we discover via
/// walking the stack and interpreting stack maps.
///
/// That is, this is the precise set that the bump allocation table is
/// over-approximating.
///
/// This is *only* used inside the `gc` function, and is empty otherwise. It
/// is just part of this struct so that we can reuse the allocation, rather
/// than create a new hash set every GC.
precise_stack_roots: RefCell<HashSet<NonNull<VMExternData>>>,
}
impl VMExternRefActivationsTable {
const INITIAL_CHUNK_SIZE: usize = 4096 / mem::size_of::<usize>();
/// Create a new `VMExternRefActivationsTable`.
pub fn new() -> Self {
let chunk = Self::new_chunk(Self::INITIAL_CHUNK_SIZE);
let next = chunk.as_ptr() as *mut TableElem;
let end = unsafe { next.add(chunk.len()) };
VMExternRefActivationsTable {
next: UnsafeCell::new(NonNull::new(next).unwrap()),
end: Cell::new(NonNull::new(end).unwrap()),
chunks: RefCell::new(vec![chunk]),
precise_stack_roots: RefCell::new(HashSet::with_capacity(Self::INITIAL_CHUNK_SIZE)),
}
}
fn new_chunk(size: usize) -> Box<[UnsafeCell<Option<VMExternRef>>]> {
assert!(size >= Self::INITIAL_CHUNK_SIZE);
let mut chunk = Vec::with_capacity(size);
for _ in 0..size {
chunk.push(UnsafeCell::new(None));
}
chunk.into_boxed_slice()
}
/// Try and insert a `VMExternRef` into this table.
///
/// This is a fast path that only succeeds when the current chunk has the
/// capacity for the requested insertion.
///
/// If the insertion fails, then the `VMExternRef` is given back. Callers
/// may attempt a GC to free up space and try again, or may call
/// `insert_slow_path` to allocate a new bump chunk for this insertion.
#[inline]
pub fn try_insert(&self, externref: VMExternRef) -> Result<(), VMExternRef> {
unsafe {
let next = *self.next.get();
let end = self.end.get();
if next == end {
return Err(externref);
}
debug_assert!((*next.as_ref().get()).is_none());
ptr::write(next.as_ptr(), UnsafeCell::new(Some(externref)));
let next = NonNull::new_unchecked(next.as_ptr().add(1));
debug_assert!(next <= end);
*self.next.get() = next;
Ok(())
}
}
/// This is a slow path for inserting a reference into the table when the
/// current bump chunk is full.
///
/// This method is infallible, and will allocate an additional bump chunk if
/// necessary.
#[inline(never)]
pub fn insert_slow_path(&self, externref: VMExternRef) {
let externref = match self.try_insert(externref) {
Ok(()) => return,
Err(x) => x,
};
{
let mut chunks = self.chunks.borrow_mut();
let new_size = chunks.last().unwrap().len() * 2;
let new_chunk = Self::new_chunk(new_size);
unsafe {
let next = new_chunk.as_ptr() as *mut TableElem;
debug_assert!(!next.is_null());
*self.next.get() = NonNull::new_unchecked(next);
let end = next.add(new_chunk.len());
debug_assert!(!end.is_null());
self.end.set(NonNull::new_unchecked(end));
}
chunks.push(new_chunk);
}
self.try_insert(externref)
.expect("insertion should always succeed after we allocate a new chunk");
}
fn num_filled_in_last_chunk(&self, chunks: &[Box<[TableElem]>]) -> usize {
let last_chunk = chunks.last().unwrap();
let next = unsafe { *self.next.get() };
let end = self.end.get();
let num_unused_in_last_chunk =
((end.as_ptr() as usize) - (next.as_ptr() as usize)) / mem::size_of::<usize>();
last_chunk.len().saturating_sub(num_unused_in_last_chunk)
}
fn elements(&self, mut f: impl FnMut(&VMExternRef)) {
// Every chunk except the last one is full, so we can simply iterate
// over all of their elements.
let chunks = self.chunks.borrow();
for chunk in chunks.iter().take(chunks.len() - 1) {
for elem in chunk.iter() {
if let Some(elem) = unsafe { &*elem.get() } {
f(elem);
}
}
}
// The last chunk is not all the way full, so we only iterate over its
// full parts.
let num_filled_in_last_chunk = self.num_filled_in_last_chunk(&chunks);
for elem in chunks.last().unwrap().iter().take(num_filled_in_last_chunk) {
if let Some(elem) = unsafe { &*elem.get() } {
f(elem);
}
}
}
fn insert_precise_stack_root(&self, root: NonNull<VMExternData>) {
let mut precise_stack_roots = self.precise_stack_roots.borrow_mut();
if precise_stack_roots.insert(root) {
// If this root was not already in the set, then we need to
// increment its reference count, so that it doesn't get freed in
// `reset` when we're overwriting old bump allocation table entries
// with new ones.
unsafe {
root.as_ref().increment_ref_count();
}
}
}
/// Refill the bump allocation table with our precise stack roots, and sweep
/// away everything else.
fn reset(&self) {
let mut chunks = self.chunks.borrow_mut();
let mut precise_roots = self.precise_stack_roots.borrow_mut();
if precise_roots.is_empty() {
// Get rid of all but our first bump chunk, and set our `next` and
// `end` bump allocation fingers into it.
unsafe {
let chunk = chunks.first().unwrap();
let next = chunk.as_ptr() as *mut TableElem;
debug_assert!(!next.is_null());
*self.next.get() = NonNull::new_unchecked(next);
let end = next.add(chunk.len());
debug_assert!(!end.is_null());
self.end.set(NonNull::new_unchecked(end));
}
chunks.truncate(1);
} else {
// Drain our precise stack roots into the bump allocation table.
//
// This overwrites old entries, which drops them and decrements their
// reference counts. Safety relies on the reference count increment in
// `insert_precise_stack_root` to avoid over-eagerly dropping references
// that are in `self.precise_stack_roots` but haven't been inserted into
// the bump allocation table yet.
let mut precise_roots = precise_roots.drain();
'outer: for (chunk_index, chunk) in chunks.iter().enumerate() {
for (slot_index, slot) in chunk.iter().enumerate() {
if let Some(root) = precise_roots.next() {
unsafe {
// NB: there is no reference count increment here
// because everything in `self.precise_stack_roots`
// already had its reference count incremented for us,
// and this is logically a move out from there, rather
// than a clone.
*slot.get() = Some(VMExternRef(root));
}
} else {
// We've inserted all of our precise, on-stack roots back
// into the bump allocation table. Update our `next` and
// `end` bump pointer members for the new current chunk, and
// free any excess chunks.
let start = chunk.as_ptr() as *mut TableElem;
unsafe {
let next = start.add(slot_index + 1);
debug_assert!(!next.is_null());
*self.next.get() = NonNull::new_unchecked(next);
let end = start.add(chunk.len());
debug_assert!(!end.is_null());
self.end.set(NonNull::new_unchecked(end));
}
chunks.truncate(chunk_index + 1);
break 'outer;
}
}
}
debug_assert!(
precise_roots.next().is_none(),
"should always have enough capacity in the bump allocations table \
to hold all of our precise, on-stack roots"
);
}
// Finally, sweep away excess capacity within our new last/current
// chunk, so that old, no-longer-live roots get dropped.
let num_filled_in_last_chunk = self.num_filled_in_last_chunk(&chunks);
for slot in chunks.last().unwrap().iter().skip(num_filled_in_last_chunk) {
unsafe {
*slot.get() = None;
}
}
}
}
/// A registry of stack maps for currently active Wasm modules.
#[derive(Default)]
pub struct StackMapRegistry {
inner: RwLock<StackMapRegistryInner>,
}
#[derive(Default)]
struct StackMapRegistryInner {
/// A map from the highest pc in a module, to its stack maps.
///
/// For details, see the comment above `GlobalFrameInfo::ranges`.
ranges: BTreeMap<usize, ModuleStackMaps>,
}
#[derive(Debug)]
struct ModuleStackMaps {
/// The range of PCs that this module covers. Different modules should
/// always have distinct ranges.
range: std::ops::Range<usize>,
/// A map from a PC in this module (that is a GC safepoint) to its
/// associated stack map.
pc_to_stack_map: Vec<(usize, Arc<Stackmap>)>,
}
impl StackMapRegistry {
/// Register the stack maps for a given module.
///
/// The stack maps should be given as an iterator over a function's PC range
/// in memory (that is, where the JIT actually allocated and emitted the
/// function's code at), and the stack maps and code offsets within that
/// range for each of its GC safepoints.
///
/// The return value is an RAII registration for the stack maps. The
/// registration should not be dropped until its associated module is
/// dropped. Dropping the registration will unregister its stack
/// maps.
///
/// # Safety
///
/// Dropping the returned registration before the module is dropped, or when
/// there are still active frames from the module on the stack, means we
/// will no longer be able to find GC roots for the module's frames anymore,
/// which could lead to freeing still-in-use objects and use-after-free!
pub unsafe fn register_stack_maps<'a>(
self: &Arc<Self>,
stack_maps: impl IntoIterator<Item = (std::ops::Range<usize>, &'a [StackMapInformation])>,
) -> Option<StackMapRegistration> {
let mut min = usize::max_value();
let mut max = 0;
let mut pc_to_stack_map = vec![];
for (range, infos) in stack_maps {
let len = range.end - range.start;
min = std::cmp::min(min, range.start);
max = std::cmp::max(max, range.end);
for info in infos {
assert!((info.code_offset as usize) < len);
pc_to_stack_map.push((
range.start + (info.code_offset as usize),
Arc::new(info.stack_map.clone()),
));
}
}
if pc_to_stack_map.is_empty() {
// Nothing to register.
return None;
}
let module_stack_maps = ModuleStackMaps {
range: min..max,
pc_to_stack_map,
};
let mut inner = self.inner.write().unwrap();
// Assert that this chunk of ranges doesn't collide with any other known
// chunks.
if let Some((_, prev)) = inner.ranges.range(max..).next() {
assert!(prev.range.start > max);
}
if let Some((prev_end, _)) = inner.ranges.range(..=min).next_back() {
assert!(*prev_end < min);
}
let old = inner.ranges.insert(max, module_stack_maps);
assert!(old.is_none());
Some(StackMapRegistration {
key: max,
registry: self.clone(),
})
}
/// Lookup the stack map for the given PC, if any.
pub fn lookup_stack_map(&self, pc: usize) -> Option<Arc<Stackmap>> {
let inner = self.inner.read().unwrap();
let stack_maps = inner.module_stack_maps(pc)?;
// Do a binary search to find the stack map for the given PC.
//
// Because GC safepoints are technically only associated with a single
// PC, we should ideally only care about `Ok(index)` values returned
// from the binary search. However, safepoints are inserted right before
// calls, and there are two things that can disturb the PC/offset
// associated with the safepoint versus the PC we actually use to query
// for the stack map:
//
// 1. The `backtrace` crate gives us the PC in a frame that will be
// *returned to*, and where execution will continue from, rather than
// the PC of the call we are currently at. So we would need to
// disassemble one instruction backwards to query the actual PC for
// the stack map.
//
// TODO: One thing we *could* do to make this a little less error
// prone, would be to assert/check that the nearest GC safepoint
// found is within `max_encoded_size(any kind of call instruction)`
// our queried PC for the target architecture.
//
// 2. Cranelift's stack maps only handle the stack, not
// registers. However, some references that are arguments to a call
// may need to be in registers. In these cases, what Cranelift will
// do is:
//
// a. spill all the live references,
// b. insert a GC safepoint for those references,
// c. reload the references into registers, and finally
// d. make the call.
//
// Step (c) adds drift between the GC safepoint and the location of
// the call, which is where we actually walk the stack frame and
// collect its live references.
//
// Luckily, the spill stack slots for the live references are still
// up to date, so we can still find all the on-stack roots.
// Furthermore, we do not have a moving GC, so we don't need to worry
// whether the following code will reuse the references in registers
// (which would not have been updated to point to the moved objects)
// or reload from the stack slots (which would have been updated to
// point to the moved objects).
let index = match stack_maps
.pc_to_stack_map
.binary_search_by_key(&pc, |(pc, _stack_map)| *pc)
{
// Exact hit.
Ok(i) => i,
Err(n) => {
// `Err(0)` means that the associated stack map would have been
// the first element in the array if this pc had an associated
// stack map, but this pc does not have an associated stack
// map. That doesn't make sense since every call and trap inside
// Wasm is a GC safepoint and should have a stack map, and the
// only way to have Wasm frames under this native frame is if we
// are at a call or a trap.
debug_assert!(n != 0);
n - 1
}
};
let stack_map = stack_maps.pc_to_stack_map[index].1.clone();
Some(stack_map)
}
}
impl StackMapRegistryInner {
fn module_stack_maps(&self, pc: usize) -> Option<&ModuleStackMaps> {
let (end, stack_maps) = self.ranges.range(pc..).next()?;
if pc < stack_maps.range.start || *end < pc {
None
} else {
Some(stack_maps)
}
}
}
/// The registration for a module's stack maps.
///
/// Unsafe to drop earlier than its module is dropped. See
/// `StackMapRegistry::register_stack_maps` for details.
pub struct StackMapRegistration {
key: usize,
registry: Arc<StackMapRegistry>,
}
impl Drop for StackMapRegistration {
fn drop(&mut self) {
if let Ok(mut inner) = self.registry.inner.write() {
inner.ranges.remove(&self.key);
}
}
}
#[cfg(debug_assertions)]
#[derive(Debug, Default)]
struct DebugOnly<T> {
inner: T,
}
#[cfg(debug_assertions)]
impl<T> std::ops::Deref for DebugOnly<T> {
type Target = T;
fn deref(&self) -> &T {
&self.inner
}
}
#[cfg(debug_assertions)]
impl<T> std::ops::DerefMut for DebugOnly<T> {
fn deref_mut(&mut self) -> &mut T {
&mut self.inner
}
}
#[cfg(not(debug_assertions))]
#[derive(Debug, Default)]
struct DebugOnly<T> {
_phantom: PhantomData<T>,
}
#[cfg(not(debug_assertions))]
impl<T> std::ops::Deref for DebugOnly<T> {
type Target = T;
fn deref(&self) -> &T {
panic!("only deref `DebugOnly` inside `debug_assert!`s")
}
}
#[cfg(not(debug_assertions))]
impl<T> std::ops::DerefMut for DebugOnly<T> {
fn deref_mut(&mut self) -> &mut T {
panic!("only deref `DebugOnly` inside `debug_assert!`s")
}
}
/// Perform garbage collection of `VMExternRef`s.
pub fn gc(
stack_maps_registry: &StackMapRegistry,
externref_activations_table: &VMExternRefActivationsTable,
) {
log::debug!("start GC");
debug_assert!({
// This set is only non-empty within this function. It is built up when
// walking the stack and interpreting stack maps, and then drained back
// into the activations table's bump-allocated space at the end.
let precise_stack_roots = externref_activations_table.precise_stack_roots.borrow();
precise_stack_roots.is_empty()
});
let mut activations_table_set: DebugOnly<HashSet<_>> = Default::default();
if cfg!(debug_assertions) {
externref_activations_table.elements(|elem| {
activations_table_set.insert(elem.as_raw() as *mut VMExternData);
});
}
backtrace::trace(|frame| {
let pc = frame.ip() as usize;
if let Some(stack_map) = stack_maps_registry.lookup_stack_map(pc) {
let ptr_to_frame = frame.sp() as usize;
for i in 0..(stack_map.mapped_words() as usize) {
if stack_map.get_bit(i) {
// Stack maps have one bit per word in the frame, and the
// zero^th bit is the *lowest* addressed word in the frame,
// i.e. the closest to the SP. So to get the `i`^th word in
// this frame, we add `i * sizeof(word)` to the
// lowest-addressed word within this frame.
let ptr_to_ref = ptr_to_frame + i * mem::size_of::<usize>();
let r = unsafe { std::ptr::read(ptr_to_ref as *const *mut VMExternData) };
debug_assert!(
r.is_null() || activations_table_set.contains(&r),
"every on-stack externref inside a Wasm frame should \
have an entry in the VMExternRefActivationsTable"
);
if let Some(r) = NonNull::new(r) {
externref_activations_table.insert_precise_stack_root(r);
}
}
}
}
// Keep walking the stack.
true
});
externref_activations_table.reset();
log::debug!("end GC");
}
#[cfg(test)]
mod tests {
use super::*;
@@ -434,4 +1052,65 @@ mod tests {
actual_offset.try_into().unwrap(),
);
}
#[test]
fn table_next_is_at_correct_offset() {
let table = VMExternRefActivationsTable::new();
let table_ptr = &table as *const _;
let next_ptr = &table.next as *const _;
let actual_offset = (next_ptr as usize) - (table_ptr as usize);
let offsets = wasmtime_environ::VMOffsets {
pointer_size: 8,
num_signature_ids: 0,
num_imported_functions: 0,
num_imported_tables: 0,
num_imported_memories: 0,
num_imported_globals: 0,
num_defined_tables: 0,
num_defined_memories: 0,
num_defined_globals: 0,
};
assert_eq!(offsets.vm_extern_ref_activation_table_next(), actual_offset);
}
#[test]
fn table_end_is_at_correct_offset() {
let table = VMExternRefActivationsTable::new();
let table_ptr = &table as *const _;
let end_ptr = &table.end as *const _;
let actual_offset = (end_ptr as usize) - (table_ptr as usize);
let offsets = wasmtime_environ::VMOffsets {
pointer_size: 8,
num_signature_ids: 0,
num_imported_functions: 0,
num_imported_tables: 0,
num_imported_memories: 0,
num_imported_globals: 0,
num_defined_tables: 0,
num_defined_memories: 0,
num_defined_globals: 0,
};
assert_eq!(offsets.vm_extern_ref_activation_table_end(), actual_offset);
}
fn assert_is_send<T: Send>() {}
fn assert_is_sync<T: Send>() {}
#[test]
fn stack_map_registry_is_send_sync() {
assert_is_send::<StackMapRegistry>();
assert_is_sync::<StackMapRegistry>();
}
#[test]
fn stack_map_registration_is_send_sync() {
assert_is_send::<StackMapRegistration>();
assert_is_sync::<StackMapRegistration>();
}
}

View File

@@ -3,6 +3,7 @@
//! `InstanceHandle` is a reference-counting handle for an `Instance`.
use crate::export::Export;
use crate::externref::{StackMapRegistry, VMExternRefActivationsTable};
use crate::imports::Imports;
use crate::memory::{DefaultMemoryCreator, RuntimeLinearMemory, RuntimeMemoryCreator};
use crate::table::Table;
@@ -20,6 +21,7 @@ use std::any::Any;
use std::cell::RefCell;
use std::collections::HashMap;
use std::convert::TryFrom;
use std::rc::Rc;
use std::sync::Arc;
use std::{mem, ptr, slice};
use thiserror::Error;
@@ -72,6 +74,19 @@ pub(crate) struct Instance {
/// interrupted.
pub(crate) interrupts: Arc<VMInterrupts>,
/// A handle to the (over-approximized) set of `externref`s that Wasm code
/// is using.
///
/// The `vmctx` also holds a raw pointer to the table and relies on this
/// member to keep it alive.
pub(crate) externref_activations_table: Rc<VMExternRefActivationsTable>,
/// A handle to the stack map registry for this thread.
///
/// The `vmctx` also holds a raw pointer to the registry and relies on this
/// member to keep it alive.
pub(crate) stack_map_registry: Arc<StackMapRegistry>,
/// Additional context used by compiled wasm code. This field is last, and
/// represents a dynamically-sized array that extends beyond the nominal
/// end of the struct (similar to a flexible array member).
@@ -238,6 +253,16 @@ impl Instance {
unsafe { self.vmctx_plus_offset(self.offsets.vmctx_interrupts()) }
}
/// Return a pointer to the `VMExternRefActivationsTable`.
pub fn externref_activations_table(&self) -> *mut *mut VMExternRefActivationsTable {
unsafe { self.vmctx_plus_offset(self.offsets.vmctx_externref_activations_table()) }
}
/// Return a pointer to the `StackMapRegistry`.
pub fn stack_map_registry(&self) -> *mut *mut StackMapRegistry {
unsafe { self.vmctx_plus_offset(self.offsets.vmctx_stack_map_registry()) }
}
/// Return a reference to the vmctx used by compiled wasm code.
pub fn vmctx(&self) -> &VMContext {
&self.vmctx
@@ -784,6 +809,8 @@ impl InstanceHandle {
vmshared_signatures: BoxedSlice<SignatureIndex, VMSharedSignatureIndex>,
host_state: Box<dyn Any>,
interrupts: Arc<VMInterrupts>,
externref_activations_table: Rc<VMExternRefActivationsTable>,
stack_map_registry: Arc<StackMapRegistry>,
) -> Result<Self, InstantiationError> {
let tables = create_tables(&module);
let memories = create_memories(&module, mem_creator.unwrap_or(&DefaultMemoryCreator {}))?;
@@ -819,6 +846,8 @@ impl InstanceHandle {
trampolines,
host_state,
interrupts,
externref_activations_table,
stack_map_registry,
vmctx: VMContext {},
};
let layout = instance.alloc_layout();
@@ -878,6 +907,9 @@ impl InstanceHandle {
VMBuiltinFunctionsArray::initialized(),
);
*instance.interrupts() = &*instance.interrupts;
*instance.externref_activations_table() =
&*instance.externref_activations_table as *const _ as *mut _;
*instance.stack_map_registry() = &*instance.stack_map_registry as *const _ as *mut _;
// Perform infallible initialization in this constructor, while fallible
// initialization is deferred to the `initialize` method.

View File

@@ -37,7 +37,7 @@ pub mod debug_builtins;
pub mod libcalls;
pub use crate::export::*;
pub use crate::externref::VMExternRef;
pub use crate::externref::*;
pub use crate::imports::Imports;
pub use crate::instance::{InstanceHandle, InstantiationError, LinkError};
pub use crate::jit_int::GdbJitImageRegistration;

View File

@@ -182,7 +182,7 @@ impl Mmap {
// Commit the accessible size.
let ptr = self.ptr as *const u8;
unsafe { region::protect(ptr.add(start), len, region::Protection::READ_WRITE) }
unsafe { region::protect(ptr.add(start), len, region::Protection::ReadWrite) }
.map_err(|e| e.to_string())
}