cranelift: Implement sqrt in interpreter (#4362)
This ignores SIMD for now.
This commit is contained in:
@@ -763,6 +763,11 @@ impl Ieee32 {
|
||||
pub fn is_nan(&self) -> bool {
|
||||
f32::from_bits(self.0).is_nan()
|
||||
}
|
||||
|
||||
/// Returns the square root of self.
|
||||
pub fn sqrt(self) -> Self {
|
||||
Self::with_float(f32::from_bits(self.0).sqrt())
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for Ieee32 {
|
||||
@@ -848,6 +853,11 @@ impl Ieee64 {
|
||||
pub fn is_nan(&self) -> bool {
|
||||
f64::from_bits(self.0).is_nan()
|
||||
}
|
||||
|
||||
/// Returns the square root of self.
|
||||
pub fn sqrt(self) -> Self {
|
||||
Self::with_float(f64::from_bits(self.0).sqrt())
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for Ieee64 {
|
||||
|
||||
97
cranelift/filetests/filetests/runtests/sqrt.clif
Normal file
97
cranelift/filetests/filetests/runtests/sqrt.clif
Normal file
@@ -0,0 +1,97 @@
|
||||
test interpret
|
||||
test run
|
||||
target aarch64
|
||||
target x86_64
|
||||
target s390x
|
||||
|
||||
function %sqrt_f32(f32) -> f32 {
|
||||
block0(v0: f32):
|
||||
v1 = sqrt v0
|
||||
return v1
|
||||
}
|
||||
; run: %sqrt_f32(0x9.0) == 0x3.0
|
||||
; run: %sqrt_f32(0x0.0) == 0x0.0
|
||||
; run: %sqrt_f32(-0x0.0) == -0x0.0
|
||||
; run: %sqrt_f32(+Inf) == +Inf
|
||||
|
||||
; F32 Epsilon / Max / Min Positive
|
||||
; run: %sqrt_f32(0x1.000000p-23) == 0x1.6a09e6p-12
|
||||
; run: %sqrt_f32(0x1.fffffep127) == 0x1.fffffep63
|
||||
; run: %sqrt_f32(0x1.000000p-126) == 0x1.000000p-63
|
||||
|
||||
; F32 Subnormals
|
||||
; run: %sqrt_f32(0x0.800000p-126) == 0x1.6a09e6p-64
|
||||
; run: %sqrt_f32(0x0.000002p-126) == 0x1.6a09e6p-75
|
||||
|
||||
|
||||
; The IEEE754 Standard does not make a lot of guarantees about what
|
||||
; comes out of NaN producing operations, we just check if its a NaN
|
||||
function %sqrt_is_nan_f32(f32) -> i32 {
|
||||
block0(v0: f32):
|
||||
v2 = sqrt v0
|
||||
v3 = fcmp ne v2, v2
|
||||
v4 = bint.i32 v3
|
||||
return v4
|
||||
}
|
||||
; run: %sqrt_is_nan_f32(-0x9.0) == 1
|
||||
; run: %sqrt_is_nan_f32(-Inf) == 1
|
||||
; run: %sqrt_is_nan_f32(+NaN) == 1
|
||||
; run: %sqrt_is_nan_f32(-NaN) == 1
|
||||
; run: %sqrt_is_nan_f32(+NaN:0x0) == 1
|
||||
; run: %sqrt_is_nan_f32(+NaN:0x1) == 1
|
||||
; run: %sqrt_is_nan_f32(+NaN:0x300001) == 1
|
||||
; run: %sqrt_is_nan_f32(-NaN:0x0) == 1
|
||||
; run: %sqrt_is_nan_f32(-NaN:0x1) == 1
|
||||
; run: %sqrt_is_nan_f32(-NaN:0x300001) == 1
|
||||
; run: %sqrt_is_nan_f32(+sNaN:0x1) == 1
|
||||
; run: %sqrt_is_nan_f32(-sNaN:0x1) == 1
|
||||
; run: %sqrt_is_nan_f32(+sNaN:0x200001) == 1
|
||||
; run: %sqrt_is_nan_f32(-sNaN:0x200001) == 1
|
||||
; run: %sqrt_is_nan_f32(-0x1.fffffep127) == 1
|
||||
|
||||
|
||||
|
||||
function %sqrt_f64(f64) -> f64 {
|
||||
block0(v0: f64):
|
||||
v1 = sqrt v0
|
||||
return v1
|
||||
}
|
||||
; run: %sqrt_f64(0x9.0) == 0x3.0
|
||||
; run: %sqrt_f64(0x0.0) == 0x0.0
|
||||
; run: %sqrt_f64(-0x0.0) == -0x0.0
|
||||
; run: %sqrt_f64(+Inf) == +Inf
|
||||
|
||||
; F64 Epsilon / Max / Min Positive
|
||||
; run: %sqrt_f64(0x1.0000000000000p-52) == 0x1.0000000000000p-26
|
||||
; run: %sqrt_f64(0x1.fffffffffffffp1023) == 0x1.fffffffffffffp511
|
||||
; run: %sqrt_f64(0x1.0000000000000p-1022) == 0x1.0000000000000p-511
|
||||
|
||||
; F64 Subnormals
|
||||
; run: %sqrt_f64(0x0.8000000000000p-1022) == 0x1.6a09e667f3bcdp-512
|
||||
; run: %sqrt_f64(0x0.0000000000001p-1022) == 0x1.0000000000000p-537
|
||||
|
||||
|
||||
; The IEEE754 Standard does not make a lot of guarantees about what
|
||||
; comes out of NaN producing operations, we just check if its a NaN
|
||||
function %sqrt_is_nan_f64(f64) -> i32 {
|
||||
block0(v0: f64):
|
||||
v2 = sqrt v0
|
||||
v3 = fcmp ne v2, v2
|
||||
v4 = bint.i32 v3
|
||||
return v4
|
||||
}
|
||||
; run: %sqrt_is_nan_f64(-0x9.0) == 1
|
||||
; run: %sqrt_is_nan_f64(-Inf) == 1
|
||||
; run: %sqrt_is_nan_f64(+NaN) == 1
|
||||
; run: %sqrt_is_nan_f64(-NaN) == 1
|
||||
; run: %sqrt_is_nan_f64(+NaN:0x0) == 1
|
||||
; run: %sqrt_is_nan_f64(+NaN:0x1) == 1
|
||||
; run: %sqrt_is_nan_f64(+NaN:0x4000000000001) == 1
|
||||
; run: %sqrt_is_nan_f64(-NaN:0x0) == 1
|
||||
; run: %sqrt_is_nan_f64(-NaN:0x1) == 1
|
||||
; run: %sqrt_is_nan_f64(-NaN:0x4000000000001) == 1
|
||||
; run: %sqrt_is_nan_f64(+sNaN:0x1) == 1
|
||||
; run: %sqrt_is_nan_f64(-sNaN:0x1) == 1
|
||||
; run: %sqrt_is_nan_f64(+sNaN:0x4000000000001) == 1
|
||||
; run: %sqrt_is_nan_f64(-sNaN:0x4000000000001) == 1
|
||||
; run: %sqrt_is_nan_f64(-0x1.fffffffffffffp1023) == 1
|
||||
@@ -678,7 +678,7 @@ where
|
||||
Opcode::Fsub => binary(Value::sub, arg(0)?, arg(1)?)?,
|
||||
Opcode::Fmul => binary(Value::mul, arg(0)?, arg(1)?)?,
|
||||
Opcode::Fdiv => binary(Value::div, arg(0)?, arg(1)?)?,
|
||||
Opcode::Sqrt => unimplemented!("Sqrt"),
|
||||
Opcode::Sqrt => assign(Value::sqrt(arg(0)?)?),
|
||||
Opcode::Fma => unimplemented!("Fma"),
|
||||
Opcode::Fneg => binary(Value::sub, Value::float(0, ctrl_ty)?, arg(0)?)?,
|
||||
Opcode::Fabs => unimplemented!("Fabs"),
|
||||
|
||||
@@ -50,6 +50,7 @@ pub trait Value: Clone + From<DataValue> {
|
||||
fn mul(self, other: Self) -> ValueResult<Self>;
|
||||
fn div(self, other: Self) -> ValueResult<Self>;
|
||||
fn rem(self, other: Self) -> ValueResult<Self>;
|
||||
fn sqrt(self) -> ValueResult<Self>;
|
||||
|
||||
// Saturating arithmetic.
|
||||
fn add_sat(self, other: Self) -> ValueResult<Self>;
|
||||
@@ -275,6 +276,8 @@ impl Value for DataValue {
|
||||
(DataValue::I64(n), types::I32) => DataValue::I32(i32::try_from(n)?),
|
||||
(DataValue::I64(n), types::I64) => DataValue::I64(n),
|
||||
(DataValue::I64(n), types::I128) => DataValue::I128(n as i128),
|
||||
(DataValue::F32(n), types::I32) => DataValue::I32(n.bits() as i32),
|
||||
(DataValue::F64(n), types::I64) => DataValue::I64(n.bits() as i64),
|
||||
(DataValue::B(b), t) if t.is_bool() => DataValue::B(b),
|
||||
(DataValue::B(b), t) if t.is_int() => {
|
||||
// Bools are represented in memory as all 1's
|
||||
@@ -461,6 +464,10 @@ impl Value for DataValue {
|
||||
binary_match!(%(&self, &other); [I8, I16, I32, I64])
|
||||
}
|
||||
|
||||
fn sqrt(self) -> ValueResult<Self> {
|
||||
unary_match!(sqrt(&self); [F32, F64]; [Ieee32, Ieee64])
|
||||
}
|
||||
|
||||
fn add_sat(self, other: Self) -> ValueResult<Self> {
|
||||
binary_match!(saturating_add(self, &other); [I8, I16, I32, I64, I128, U8, U16, U32, U64, U128])
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user