Don't copy executable code into a CodeMemory (#3265)
* Don't copy executable code into a `CodeMemory` This commit moves a copy from compiled artifacts into a `CodeMemory`. In general this commit drastically changes the meaning of a `CodeMemory`. Previously it was an iteratively-pushed-on structure that would accumulate executable code over time. Afterwards, however, it's a manager for an `MmapVec` which updates the permissions on text section to ensure that the pages are executable. By taking ownership of an `MmapVec` within a `CodeMemory` there's no need to copy any data around, which means that the `.text` section in the ELF image produced by Wasmtime is usable as-is after placement in memory and relocations have been resolved. This moves Wasmtime one step closer to being able to directly use a module after it's `mmap`'d into memory, optimizing when a module is loaded. * Fix windows section alignment * Review comments
This commit is contained in:
@@ -1,147 +1,187 @@
|
||||
//! Memory management for executable code.
|
||||
|
||||
use crate::unwind::UnwindRegistration;
|
||||
use anyhow::{Context, Result};
|
||||
use object::read::{File as ObjectFile, Object, ObjectSection};
|
||||
use crate::MmapVec;
|
||||
use anyhow::{bail, Context, Result};
|
||||
use object::read::{File, Object, ObjectSection};
|
||||
use std::mem::ManuallyDrop;
|
||||
use wasmtime_runtime::Mmap;
|
||||
|
||||
struct CodeMemoryEntry {
|
||||
mmap: ManuallyDrop<Mmap>,
|
||||
/// Management of executable memory within a `MmapVec`
|
||||
///
|
||||
/// This type consumes ownership of a region of memory and will manage the
|
||||
/// executable permissions of the contained JIT code as necessary.
|
||||
pub struct CodeMemory {
|
||||
// NB: these are `ManuallyDrop` because `unwind_registration` must be
|
||||
// dropped first since it refers to memory owned by `mmap`.
|
||||
mmap: ManuallyDrop<MmapVec>,
|
||||
unwind_registration: ManuallyDrop<Option<UnwindRegistration>>,
|
||||
text_len: usize,
|
||||
unwind_info_len: usize,
|
||||
published: bool,
|
||||
}
|
||||
|
||||
impl CodeMemoryEntry {
|
||||
fn new(text_len: usize, unwind_info_len: usize) -> Result<Self> {
|
||||
let mmap = ManuallyDrop::new(Mmap::with_at_least(text_len + unwind_info_len)?);
|
||||
Ok(Self {
|
||||
mmap,
|
||||
unwind_registration: ManuallyDrop::new(None),
|
||||
text_len,
|
||||
unwind_info_len,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for CodeMemoryEntry {
|
||||
impl Drop for CodeMemory {
|
||||
fn drop(&mut self) {
|
||||
// Drop `unwind_registration` before `self.mmap`
|
||||
unsafe {
|
||||
// The registry needs to be dropped before the mmap
|
||||
ManuallyDrop::drop(&mut self.unwind_registration);
|
||||
ManuallyDrop::drop(&mut self.mmap);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Memory manager for executable code.
|
||||
pub struct CodeMemory {
|
||||
entries: Vec<CodeMemoryEntry>,
|
||||
published: usize,
|
||||
}
|
||||
|
||||
fn _assert() {
|
||||
fn _assert_send_sync<T: Send + Sync>() {}
|
||||
_assert_send_sync::<CodeMemory>();
|
||||
}
|
||||
|
||||
/// Result of publishing a `CodeMemory`, containing references to the parsed
|
||||
/// internals.
|
||||
pub struct Publish<'a> {
|
||||
/// The parsed ELF image that resides within the original `MmapVec`.
|
||||
pub obj: File<'a>,
|
||||
|
||||
/// Reference to the entire `MmapVec` and its contents.
|
||||
pub mmap: &'a [u8],
|
||||
|
||||
/// Reference to just the text section of the object file, a subslice of
|
||||
/// `mmap`.
|
||||
pub text: &'a [u8],
|
||||
}
|
||||
|
||||
impl CodeMemory {
|
||||
/// Create a new `CodeMemory` instance.
|
||||
pub fn new() -> Self {
|
||||
/// Creates a new `CodeMemory` by taking ownership of the provided
|
||||
/// `MmapVec`.
|
||||
///
|
||||
/// The returned `CodeMemory` manages the internal `MmapVec` and the
|
||||
/// `publish` method is used to actually make the memory executable.
|
||||
pub fn new(mmap: MmapVec) -> Self {
|
||||
Self {
|
||||
entries: Vec::new(),
|
||||
published: 0,
|
||||
mmap: ManuallyDrop::new(mmap),
|
||||
unwind_registration: ManuallyDrop::new(None),
|
||||
published: false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Make all allocated memory executable.
|
||||
pub fn publish(&mut self) {
|
||||
for entry in &mut self.entries[self.published..] {
|
||||
assert!(!entry.mmap.is_empty());
|
||||
/// Returns a reference to the underlying `MmapVec` this memory owns.
|
||||
pub fn mmap(&self) -> &MmapVec {
|
||||
&self.mmap
|
||||
}
|
||||
|
||||
unsafe {
|
||||
// Switch the executable portion from read/write to
|
||||
// read/execute, notably not using read/write/execute to prevent
|
||||
// modifications.
|
||||
region::protect(
|
||||
entry.mmap.as_mut_ptr(),
|
||||
entry.text_len,
|
||||
region::Protection::READ_EXECUTE,
|
||||
)
|
||||
.expect("unable to make memory readonly and executable");
|
||||
/// Publishes the internal ELF image to be ready for execution.
|
||||
///
|
||||
/// This method can only be called once and will panic if called twice. This
|
||||
/// will parse the ELF image from the original `MmapVec` and do everything
|
||||
/// necessary to get it ready for execution, including:
|
||||
///
|
||||
/// * Change page protections from read/write to read/execute.
|
||||
/// * Register unwinding information with the OS
|
||||
///
|
||||
/// After this function executes all JIT code should be ready to execute.
|
||||
/// The various parsed results of the internals of the `MmapVec` are
|
||||
/// returned through the `Publish` structure.
|
||||
pub fn publish(&mut self) -> Result<Publish<'_>> {
|
||||
assert!(!self.published);
|
||||
self.published = true;
|
||||
|
||||
if entry.unwind_info_len == 0 {
|
||||
continue;
|
||||
}
|
||||
let mut ret = Publish {
|
||||
obj: File::parse(&self.mmap[..])
|
||||
.with_context(|| "failed to parse internal compilation artifact")?,
|
||||
mmap: &self.mmap,
|
||||
text: &[],
|
||||
};
|
||||
|
||||
// With all our memory setup use the platform-specific
|
||||
// `UnwindRegistration` implementation to inform the general
|
||||
// runtime that there's unwinding information available for all
|
||||
// our just-published JIT functions.
|
||||
*entry.unwind_registration = Some(
|
||||
UnwindRegistration::new(
|
||||
entry.mmap.as_mut_ptr(),
|
||||
entry.mmap.as_mut_ptr().add(entry.text_len),
|
||||
entry.unwind_info_len,
|
||||
)
|
||||
.expect("failed to create unwind info registration"),
|
||||
// Sanity-check that all sections are aligned correctly.
|
||||
for section in ret.obj.sections() {
|
||||
let data = match section.data() {
|
||||
Ok(data) => data,
|
||||
Err(_) => continue,
|
||||
};
|
||||
if section.align() == 0 || data.len() == 0 {
|
||||
continue;
|
||||
}
|
||||
if data.as_ptr() as u64 % section.align() != 0 {
|
||||
bail!(
|
||||
"section `{}` isn't aligned to {:#x}",
|
||||
section.name().unwrap_or("ERROR"),
|
||||
section.align()
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
self.published = self.entries.len();
|
||||
}
|
||||
// Find the `.text` section with executable code in it.
|
||||
let text = match ret.obj.section_by_name(".text") {
|
||||
Some(section) => section,
|
||||
None => return Ok(ret),
|
||||
};
|
||||
ret.text = match text.data() {
|
||||
Ok(data) if !data.is_empty() => data,
|
||||
_ => return Ok(ret),
|
||||
};
|
||||
|
||||
/// Alternative to `allocate_for_object`, but when the object file isn't
|
||||
/// already parsed.
|
||||
pub fn allocate_for_object_unparsed<'a, 'b>(
|
||||
&'a mut self,
|
||||
obj: &'b [u8],
|
||||
) -> Result<(&'a mut [u8], ObjectFile<'b>)> {
|
||||
let obj = ObjectFile::parse(obj)?;
|
||||
Ok((self.allocate_for_object(&obj)?, obj))
|
||||
}
|
||||
// The unsafety here comes from a few things:
|
||||
//
|
||||
// * First in `apply_reloc` we're walking around the `File` that the
|
||||
// `object` crate has to get a mutable view into the text section.
|
||||
// Currently the `object` crate doesn't support easily parsing a file
|
||||
// and updating small bits and pieces of it, so we work around it for
|
||||
// now. ELF's file format should guarantee that `text_mut` doesn't
|
||||
// collide with any memory accessed by `text.relocations()`.
|
||||
//
|
||||
// * Second we're actually updating some page protections to executable
|
||||
// memory.
|
||||
//
|
||||
// * Finally we're registering unwinding information which relies on the
|
||||
// correctness of the information in the first place. This applies to
|
||||
// both the actual unwinding tables as well as the validity of the
|
||||
// pointers we pass in itself.
|
||||
unsafe {
|
||||
let text_mut =
|
||||
std::slice::from_raw_parts_mut(ret.text.as_ptr() as *mut u8, ret.text.len());
|
||||
for (offset, r) in text.relocations() {
|
||||
crate::link::apply_reloc(&ret.obj, text_mut, offset, r);
|
||||
}
|
||||
|
||||
/// Allocates and copies the ELF image code section into CodeMemory.
|
||||
/// Returns references to functions and trampolines defined there.
|
||||
pub fn allocate_for_object(&mut self, obj: &ObjectFile) -> Result<&mut [u8]> {
|
||||
let text_section = obj.section_by_name(".text").unwrap();
|
||||
let text_section_size = text_section.size() as usize;
|
||||
|
||||
if text_section_size == 0 {
|
||||
// No code in the image.
|
||||
return Ok(&mut []);
|
||||
}
|
||||
|
||||
// Find the platform-specific unwind section, if present, which contains
|
||||
// unwinding tables that will be used to load unwinding information
|
||||
// dynamically at runtime.
|
||||
let unwind_section = obj.section_by_name(UnwindRegistration::section_name());
|
||||
let unwind_section_size = unwind_section
|
||||
.as_ref()
|
||||
.map(|s| s.size() as usize)
|
||||
.unwrap_or(0);
|
||||
|
||||
// Allocate memory for the text section and unwinding information if it
|
||||
// is present. Then we can copy in all of the code and unwinding memory
|
||||
// over.
|
||||
let entry = CodeMemoryEntry::new(text_section_size, unwind_section_size)?;
|
||||
self.entries.push(entry);
|
||||
let entry = self.entries.last_mut().unwrap();
|
||||
entry.mmap.as_mut_slice()[..text_section_size].copy_from_slice(
|
||||
text_section
|
||||
.data()
|
||||
.with_context(|| "cannot read text section data")?,
|
||||
);
|
||||
if let Some(section) = unwind_section {
|
||||
entry.mmap.as_mut_slice()[text_section_size..][..unwind_section_size].copy_from_slice(
|
||||
section
|
||||
.data()
|
||||
.with_context(|| "cannot read unwind section data")?,
|
||||
// Switch the executable portion from read/write to
|
||||
// read/execute, notably not using read/write/execute to prevent
|
||||
// modifications.
|
||||
assert!(
|
||||
ret.text.as_ptr() as usize % region::page::size() == 0,
|
||||
"text section is not page-aligned"
|
||||
);
|
||||
region::protect(
|
||||
ret.text.as_ptr() as *mut _,
|
||||
ret.text.len(),
|
||||
region::Protection::READ_EXECUTE,
|
||||
)
|
||||
.expect("unable to make memory readonly and executable");
|
||||
|
||||
// With all our memory set up use the platform-specific
|
||||
// `UnwindRegistration` implementation to inform the general
|
||||
// runtime that there's unwinding information available for all
|
||||
// our just-published JIT functions.
|
||||
*self.unwind_registration = register_unwind_info(&ret.obj, ret.text)?;
|
||||
}
|
||||
|
||||
Ok(&mut entry.mmap.as_mut_slice()[..text_section_size])
|
||||
Ok(ret)
|
||||
}
|
||||
}
|
||||
|
||||
unsafe fn register_unwind_info(obj: &File, text: &[u8]) -> Result<Option<UnwindRegistration>> {
|
||||
let unwind_info = match obj
|
||||
.section_by_name(UnwindRegistration::section_name())
|
||||
.and_then(|s| s.data().ok())
|
||||
{
|
||||
Some(info) => info,
|
||||
None => return Ok(None),
|
||||
};
|
||||
if unwind_info.len() == 0 {
|
||||
return Ok(None);
|
||||
}
|
||||
Ok(Some(
|
||||
UnwindRegistration::new(
|
||||
text.as_ptr() as *mut _,
|
||||
unwind_info.as_ptr() as *mut _,
|
||||
unwind_info.len(),
|
||||
)
|
||||
.context("failed to create unwind info registration")?,
|
||||
))
|
||||
}
|
||||
|
||||
@@ -5,7 +5,6 @@
|
||||
|
||||
use crate::code_memory::CodeMemory;
|
||||
use crate::debug::create_gdbjit_image;
|
||||
use crate::link::link_module;
|
||||
use crate::{MmapVec, ProfilingAgent};
|
||||
use anyhow::{anyhow, Context, Result};
|
||||
use object::write::{Object, StandardSegment};
|
||||
@@ -237,33 +236,18 @@ pub struct TypeTables {
|
||||
pub instance_signatures: PrimaryMap<InstanceTypeIndex, InstanceSignature>,
|
||||
}
|
||||
|
||||
/// Container for data needed for an Instance function to exist.
|
||||
pub struct ModuleCode {
|
||||
range: (usize, usize),
|
||||
#[allow(dead_code)]
|
||||
code_memory: CodeMemory,
|
||||
#[allow(dead_code)]
|
||||
dbg_jit_registration: Option<GdbJitImageRegistration>,
|
||||
}
|
||||
|
||||
impl ModuleCode {
|
||||
/// Gets the [begin, end) range of the module's code.
|
||||
pub fn range(&self) -> (usize, usize) {
|
||||
self.range
|
||||
}
|
||||
}
|
||||
|
||||
/// A compiled wasm module, ready to be instantiated.
|
||||
pub struct CompiledModule {
|
||||
wasm_data: Range<usize>,
|
||||
address_map_data: Range<usize>,
|
||||
trap_data: Range<usize>,
|
||||
mmap: MmapVec,
|
||||
module: Arc<Module>,
|
||||
funcs: PrimaryMap<DefinedFuncIndex, FunctionInfo>,
|
||||
trampolines: Vec<Trampoline>,
|
||||
meta: Metadata,
|
||||
code: Arc<ModuleCode>,
|
||||
code: Range<usize>,
|
||||
code_memory: CodeMemory,
|
||||
dbg_jit_registration: Option<GdbJitImageRegistration>,
|
||||
}
|
||||
|
||||
impl CompiledModule {
|
||||
@@ -288,11 +272,18 @@ impl CompiledModule {
|
||||
info: Option<CompiledModuleInfo>,
|
||||
profiler: &dyn ProfilingAgent,
|
||||
) -> Result<Arc<Self>> {
|
||||
let obj = File::parse(&mmap[..])
|
||||
.with_context(|| "failed to parse internal ELF compilation artifact")?;
|
||||
// Transfer ownership of `obj` to a `CodeMemory` object which will
|
||||
// manage permissions, such as the executable bit. Once it's located
|
||||
// there we also publish it for being able to execute. Note that this
|
||||
// step will also resolve pending relocations in the compiled image.
|
||||
let mut code_memory = CodeMemory::new(mmap);
|
||||
let code = code_memory
|
||||
.publish()
|
||||
.context("failed to publish code memory")?;
|
||||
|
||||
let section = |name: &str| {
|
||||
obj.section_by_name(name)
|
||||
code.obj
|
||||
.section_by_name(name)
|
||||
.and_then(|s| s.data().ok())
|
||||
.ok_or_else(|| anyhow!("missing section `{}` in compilation artifacts", name))
|
||||
};
|
||||
@@ -304,39 +295,18 @@ impl CompiledModule {
|
||||
None => bincode::deserialize(section(ELF_WASMTIME_INFO)?)
|
||||
.context("failed to deserialize wasmtime module info")?,
|
||||
};
|
||||
let module = Arc::new(info.module);
|
||||
let funcs = info.funcs;
|
||||
let trampolines = info.trampolines;
|
||||
let wasm_data = subslice_range(section(ELF_WASM_DATA)?, &mmap);
|
||||
let address_map_data = subslice_range(section(ELF_WASMTIME_ADDRMAP)?, &mmap);
|
||||
let trap_data = subslice_range(section(ELF_WASMTIME_TRAPS)?, &mmap);
|
||||
|
||||
// Allocate all of the compiled functions into executable memory,
|
||||
// copying over their contents.
|
||||
let (code_memory, code_range) = build_code_memory(&obj).map_err(|message| {
|
||||
SetupError::Instantiate(InstantiationError::Resource(anyhow::anyhow!(
|
||||
"failed to build code memory for functions: {}",
|
||||
message
|
||||
)))
|
||||
})?;
|
||||
|
||||
let start = code_range.0 as usize;
|
||||
let end = start + code_range.1;
|
||||
|
||||
let mut ret = Self {
|
||||
meta: info.meta,
|
||||
funcs,
|
||||
trampolines,
|
||||
module,
|
||||
mmap,
|
||||
wasm_data,
|
||||
address_map_data,
|
||||
trap_data,
|
||||
code: Arc::new(ModuleCode {
|
||||
range: (start, end),
|
||||
code_memory,
|
||||
dbg_jit_registration: None,
|
||||
}),
|
||||
module: Arc::new(info.module),
|
||||
funcs: info.funcs,
|
||||
trampolines: info.trampolines,
|
||||
wasm_data: subslice_range(section(ELF_WASM_DATA)?, code.mmap),
|
||||
address_map_data: subslice_range(section(ELF_WASMTIME_ADDRMAP)?, code.mmap),
|
||||
trap_data: subslice_range(section(ELF_WASMTIME_TRAPS)?, code.mmap),
|
||||
code: subslice_range(code.text, code.mmap),
|
||||
dbg_jit_registration: None,
|
||||
code_memory,
|
||||
};
|
||||
ret.register_debug_and_profiling(profiler)?;
|
||||
|
||||
@@ -345,31 +315,23 @@ impl CompiledModule {
|
||||
|
||||
fn register_debug_and_profiling(&mut self, profiler: &dyn ProfilingAgent) -> Result<()> {
|
||||
// Register GDB JIT images; initialize profiler and load the wasm module.
|
||||
let dbg_jit_registration = if self.meta.native_debug_info_present {
|
||||
let bytes = create_gdbjit_image(
|
||||
self.mmap.to_vec(),
|
||||
(
|
||||
self.code.range.0 as *const u8,
|
||||
self.code.range.1 - self.code.range.0,
|
||||
),
|
||||
)
|
||||
.map_err(SetupError::DebugInfo)?;
|
||||
if self.meta.native_debug_info_present {
|
||||
let code = self.code();
|
||||
let bytes = create_gdbjit_image(self.mmap().to_vec(), (code.as_ptr(), code.len()))
|
||||
.map_err(SetupError::DebugInfo)?;
|
||||
profiler.module_load(self, Some(&bytes));
|
||||
let reg = GdbJitImageRegistration::register(bytes);
|
||||
Some(reg)
|
||||
self.dbg_jit_registration = Some(reg);
|
||||
} else {
|
||||
profiler.module_load(self, None);
|
||||
None
|
||||
};
|
||||
|
||||
Arc::get_mut(&mut self.code).unwrap().dbg_jit_registration = dbg_jit_registration;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Returns the underlying memory which contains the compiled module's
|
||||
/// image.
|
||||
pub fn mmap(&self) -> &MmapVec {
|
||||
&self.mmap
|
||||
self.code_memory.mmap()
|
||||
}
|
||||
|
||||
/// Returns the concatenated list of all data associated with this wasm
|
||||
@@ -378,20 +340,27 @@ impl CompiledModule {
|
||||
/// This is used for initialization of memories and all data ranges stored
|
||||
/// in a `Module` are relative to the slice returned here.
|
||||
pub fn wasm_data(&self) -> &[u8] {
|
||||
&self.mmap[self.wasm_data.clone()]
|
||||
&self.mmap()[self.wasm_data.clone()]
|
||||
}
|
||||
|
||||
/// Returns the encoded address map section used to pass to
|
||||
/// `wasmtime_environ::lookup_file_pos`.
|
||||
pub fn address_map_data(&self) -> &[u8] {
|
||||
&self.mmap[self.address_map_data.clone()]
|
||||
&self.mmap()[self.address_map_data.clone()]
|
||||
}
|
||||
|
||||
/// Returns the encoded trap information for this compiled image.
|
||||
///
|
||||
/// For more information see `wasmtime_environ::trap_encoding`.
|
||||
pub fn trap_data(&self) -> &[u8] {
|
||||
&self.mmap[self.trap_data.clone()]
|
||||
&self.mmap()[self.trap_data.clone()]
|
||||
}
|
||||
|
||||
/// Returns the text section of the ELF image for this compiled module.
|
||||
///
|
||||
/// This memory should have the read/execute permissions.
|
||||
pub fn code(&self) -> &[u8] {
|
||||
&self.mmap()[self.code.clone()]
|
||||
}
|
||||
|
||||
/// Return a reference-counting pointer to a module.
|
||||
@@ -414,12 +383,14 @@ impl CompiledModule {
|
||||
pub fn finished_functions(
|
||||
&self,
|
||||
) -> impl ExactSizeIterator<Item = (DefinedFuncIndex, *mut [VMFunctionBody])> + '_ {
|
||||
let code = self.code();
|
||||
self.funcs.iter().map(move |(i, info)| {
|
||||
let func = &code[info.start as usize..][..info.length as usize];
|
||||
(
|
||||
i,
|
||||
std::ptr::slice_from_raw_parts_mut(
|
||||
(self.code.range.0 + info.start as usize) as *mut VMFunctionBody,
|
||||
info.length as usize,
|
||||
func.as_ptr() as *mut VMFunctionBody,
|
||||
func.len(),
|
||||
),
|
||||
)
|
||||
})
|
||||
@@ -427,10 +398,11 @@ impl CompiledModule {
|
||||
|
||||
/// Returns the per-signature trampolines for this module.
|
||||
pub fn trampolines(&self) -> impl Iterator<Item = (SignatureIndex, VMTrampoline)> + '_ {
|
||||
let code = self.code();
|
||||
self.trampolines.iter().map(move |info| {
|
||||
(info.signature, unsafe {
|
||||
let ptr = self.code.range.0 + info.start as usize;
|
||||
std::mem::transmute::<usize, VMTrampoline>(ptr)
|
||||
let ptr = &code[info.start as usize];
|
||||
std::mem::transmute::<*const u8, VMTrampoline>(ptr)
|
||||
})
|
||||
})
|
||||
}
|
||||
@@ -492,11 +464,6 @@ impl CompiledModule {
|
||||
.expect("defined function should be present")
|
||||
}
|
||||
|
||||
/// Returns module's JIT code.
|
||||
pub fn code(&self) -> &Arc<ModuleCode> {
|
||||
&self.code
|
||||
}
|
||||
|
||||
/// Creates a new symbolication context which can be used to further
|
||||
/// symbolicate stack traces.
|
||||
///
|
||||
@@ -507,7 +474,7 @@ impl CompiledModule {
|
||||
if !self.meta.has_wasm_debuginfo {
|
||||
return Ok(None);
|
||||
}
|
||||
let obj = File::parse(&self.mmap[..])
|
||||
let obj = File::parse(&self.mmap()[..])
|
||||
.context("failed to parse internal ELF file representation")?;
|
||||
let dwarf = gimli::Dwarf::load(|id| -> Result<_> {
|
||||
let data = obj
|
||||
@@ -554,21 +521,6 @@ impl<'a> SymbolizeContext<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
fn build_code_memory(obj: &File) -> Result<(CodeMemory, (*const u8, usize))> {
|
||||
let mut code_memory = CodeMemory::new();
|
||||
|
||||
let allocation = code_memory.allocate_for_object(obj)?;
|
||||
|
||||
link_module(obj, allocation);
|
||||
|
||||
let code_range = (allocation.as_ptr(), allocation.len());
|
||||
|
||||
// Make all code compiled thus far executable.
|
||||
code_memory.publish();
|
||||
|
||||
Ok((code_memory, code_range))
|
||||
}
|
||||
|
||||
/// Returns the range of `inner` within `outer`, such that `outer[range]` is the
|
||||
/// same as `inner`.
|
||||
///
|
||||
|
||||
@@ -30,10 +30,9 @@ mod unwind;
|
||||
|
||||
pub use crate::code_memory::CodeMemory;
|
||||
pub use crate::instantiate::{
|
||||
finish_compile, subslice_range, CompiledModule, CompiledModuleInfo, ModuleCode, SetupError,
|
||||
finish_compile, subslice_range, CompiledModule, CompiledModuleInfo, SetupError,
|
||||
SymbolizeContext, TypeTables,
|
||||
};
|
||||
pub use crate::link::link_module;
|
||||
pub use crate::mmap_vec::MmapVec;
|
||||
pub use profiling::*;
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
//! Linking for JIT-compiled code.
|
||||
|
||||
use object::read::{Object, ObjectSection, Relocation, RelocationTarget};
|
||||
use object::read::{Object, Relocation, RelocationTarget};
|
||||
use object::{elf, File, NativeEndian as NE, ObjectSymbol, RelocationEncoding, RelocationKind};
|
||||
use std::convert::TryFrom;
|
||||
use wasmtime_runtime::libcalls;
|
||||
@@ -9,24 +9,13 @@ type U32 = object::U32Bytes<NE>;
|
||||
type I32 = object::I32Bytes<NE>;
|
||||
type U64 = object::U64Bytes<NE>;
|
||||
|
||||
/// Links a module that has been compiled with `compiled_module` in `wasmtime-environ`.
|
||||
/// Applies the relocation `r` at `offset` within `code`, according to the
|
||||
/// symbols found in `obj`.
|
||||
///
|
||||
/// Performs all required relocations inside the function code, provided the necessary metadata.
|
||||
/// The relocations data provided in the object file, see object.rs for details.
|
||||
///
|
||||
/// Currently, the produced ELF image can be trusted.
|
||||
/// TODO refactor logic to remove panics and add defensive code the image data
|
||||
/// becomes untrusted.
|
||||
pub fn link_module(obj: &File, code_range: &mut [u8]) {
|
||||
// Read the ".text" section and process its relocations.
|
||||
let text_section = obj.section_by_name(".text").unwrap();
|
||||
|
||||
for (offset, r) in text_section.relocations() {
|
||||
apply_reloc(obj, code_range, offset, r);
|
||||
}
|
||||
}
|
||||
|
||||
fn apply_reloc(obj: &File, code: &mut [u8], offset: u64, r: Relocation) {
|
||||
/// This method is used at runtime to resolve relocations in ELF images,
|
||||
/// typically with respect to where the memory was placed in the final address
|
||||
/// in memory.
|
||||
pub fn apply_reloc(obj: &File, code: &mut [u8], offset: u64, r: Relocation) {
|
||||
let target_func_address: usize = match r.target() {
|
||||
RelocationTarget::Symbol(i) => {
|
||||
// Processing relocation target is a named symbols that is compiled
|
||||
|
||||
Reference in New Issue
Block a user