Move formats, entities, and immediates to the base package.

- base.formats defines instruction formats.
- base.entities defines kinds of entity references.
- base.immediates defines kinds of imediate operands.
This commit is contained in:
Jakob Stoklund Olesen
2016-11-08 11:02:07 -08:00
parent 19287c1f32
commit eb688dc72d
7 changed files with 8 additions and 7 deletions

View File

@@ -0,0 +1,29 @@
"""
The `cretonne.entities` module predefines all the Cretonne entity reference
operand types. There are corresponding definitions in the `cretonne.entities`
Rust module.
"""
from __future__ import absolute_import
from cdsl.operands import EntityRefKind
#: A reference to an extended basic block in the same function.
#: This is primarliy used in control flow instructions.
ebb = EntityRefKind(
'ebb', 'An extended basic block in the same function.',
default_member='destination')
#: A reference to a stack slot declared in the function preamble.
stack_slot = EntityRefKind('stack_slot', 'A stack slot.')
#: A reference to a function sugnature declared in the function preamble.
#: Tbis is used to provide the call signature in an indirect call instruction.
sig_ref = EntityRefKind('sig_ref', 'A function signature.')
#: A reference to an external function declared in the function preamble.
#: This is used to provide the callee and signature in a call instruction.
func_ref = EntityRefKind('func_ref', 'An external function.')
#: A reference to a jump table declared in the function preamble.
jump_table = EntityRefKind(
'jump_table', 'A jump table.', default_member='table')

View File

@@ -0,0 +1,58 @@
"""
The cretonne.formats defines all instruction formats.
Every instruction format has a corresponding `InstructionData` variant in the
Rust representation of cretonne IL, so all instruction formats must be defined
in this module.
"""
from __future__ import absolute_import
from cdsl.operands import VALUE, VARIABLE_ARGS
from cretonne import InstructionFormat
from .immediates import imm64, uimm8, ieee32, ieee64, immvector, intcc, floatcc
from .entities import ebb, sig_ref, func_ref, jump_table
Nullary = InstructionFormat()
Unary = InstructionFormat(VALUE)
UnaryImm = InstructionFormat(imm64)
UnaryIeee32 = InstructionFormat(ieee32)
UnaryIeee64 = InstructionFormat(ieee64)
UnaryImmVector = InstructionFormat(immvector, boxed_storage=True)
UnarySplit = InstructionFormat(VALUE, multiple_results=True)
Binary = InstructionFormat(VALUE, VALUE)
BinaryImm = InstructionFormat(VALUE, imm64)
BinaryImmRev = InstructionFormat(imm64, VALUE)
# Generate result + overflow flag.
BinaryOverflow = InstructionFormat(VALUE, VALUE, multiple_results=True)
# The select instructions are controlled by the second VALUE operand.
# The first VALUE operand is the controlling flag which has a derived type.
# The fma instruction has the same constraint on all inputs.
Ternary = InstructionFormat(VALUE, VALUE, VALUE, typevar_operand=1)
# Carry in *and* carry out for `iadd_carry` and friends.
TernaryOverflow = InstructionFormat(
VALUE, VALUE, VALUE, multiple_results=True, boxed_storage=True)
InsertLane = InstructionFormat(VALUE, ('lane', uimm8), VALUE)
ExtractLane = InstructionFormat(VALUE, ('lane', uimm8))
IntCompare = InstructionFormat(intcc, VALUE, VALUE)
FloatCompare = InstructionFormat(floatcc, VALUE, VALUE)
Jump = InstructionFormat(ebb, VARIABLE_ARGS, boxed_storage=True)
Branch = InstructionFormat(VALUE, ebb, VARIABLE_ARGS, boxed_storage=True)
BranchTable = InstructionFormat(VALUE, jump_table)
Call = InstructionFormat(
func_ref, VARIABLE_ARGS, multiple_results=True, boxed_storage=True)
IndirectCall = InstructionFormat(
sig_ref, VALUE, VARIABLE_ARGS,
multiple_results=True, boxed_storage=True)
Return = InstructionFormat(VARIABLE_ARGS, boxed_storage=True)
# Finally extract the names of global variables in this module.
InstructionFormat.extract_names(globals())

View File

@@ -0,0 +1,52 @@
"""
The `cretonne.immediates` module predefines all the Cretonne immediate operand
types.
"""
from __future__ import absolute_import
from cdsl.operands import ImmediateKind
#: A 64-bit immediate integer operand.
#:
#: This type of immediate integer can interact with SSA values with any
#: :py:class:`cretonne.IntType` type.
imm64 = ImmediateKind('imm64', 'A 64-bit immediate integer.')
#: An unsigned 8-bit immediate integer operand.
#:
#: This small operand is used to indicate lane indexes in SIMD vectors and
#: immediate bit counts on shift instructions.
uimm8 = ImmediateKind('uimm8', 'An 8-bit immediate unsigned integer.')
#: A 32-bit immediate floating point operand.
#:
#: IEEE 754-2008 binary32 interchange format.
ieee32 = ImmediateKind('ieee32', 'A 32-bit immediate floating point number.')
#: A 64-bit immediate floating point operand.
#:
#: IEEE 754-2008 binary64 interchange format.
ieee64 = ImmediateKind('ieee64', 'A 64-bit immediate floating point number.')
#: A large SIMD vector constant.
immvector = ImmediateKind(
'immvector',
'An immediate SIMD vector.',
rust_type='ImmVector')
#: A condition code for comparing integer values.
#:
#: This enumerated operand kind is used for the :cton:inst:`icmp` instruction
#: and corresponds to the `condcodes::IntCC` Rust type.
intcc = ImmediateKind(
'intcc',
'An integer comparison condition code.',
default_member='cond', rust_type='IntCC')
#: A condition code for comparing floating point values.
#:
#: This enumerated operand kind is used for the :cton:inst:`fcmp` instruction
#: and corresponds to the `condcodes::FloatCC` Rust type.
floatcc = ImmediateKind(
'floatcc',
'A floating point comparison condition code.',
default_member='cond', rust_type='FloatCC')