wasi-nn: use the MobileNet model instead of AlexNet
The MobileNet model is significantly smaller in size (14MB) than the AlexNet model (233MB); this change should reduce bandwidth used during CI.
This commit is contained in:
@@ -7,7 +7,7 @@
|
|||||||
# executed with the Wasmtime CLI.
|
# executed with the Wasmtime CLI.
|
||||||
set -e
|
set -e
|
||||||
WASMTIME_DIR=$(dirname "$0" | xargs dirname)
|
WASMTIME_DIR=$(dirname "$0" | xargs dirname)
|
||||||
FIXTURE=https://github.com/intel/openvino-rs/raw/main/crates/openvino/tests/fixtures/alexnet
|
FIXTURE=https://github.com/intel/openvino-rs/raw/main/crates/openvino/tests/fixtures/mobilenet
|
||||||
if [ -z "${1+x}" ]; then
|
if [ -z "${1+x}" ]; then
|
||||||
# If no temporary directory is specified, create one.
|
# If no temporary directory is specified, create one.
|
||||||
TMP_DIR=$(mktemp -d -t ci-XXXXXXXXXX)
|
TMP_DIR=$(mktemp -d -t ci-XXXXXXXXXX)
|
||||||
@@ -26,9 +26,9 @@ source /opt/intel/openvino/bin/setupvars.sh
|
|||||||
OPENVINO_INSTALL_DIR=/opt/intel/openvino cargo build -p wasmtime-cli --features wasi-nn
|
OPENVINO_INSTALL_DIR=/opt/intel/openvino cargo build -p wasmtime-cli --features wasi-nn
|
||||||
|
|
||||||
# Download all necessary test fixtures to the temporary directory.
|
# Download all necessary test fixtures to the temporary directory.
|
||||||
wget --no-clobber --directory-prefix=$TMP_DIR $FIXTURE/alexnet.bin
|
wget --no-clobber $FIXTURE/mobilenet.bin --output-document=$TMP_DIR/model.bin
|
||||||
wget --no-clobber --directory-prefix=$TMP_DIR $FIXTURE/alexnet.xml
|
wget --no-clobber $FIXTURE/mobilenet.xml --output-document=$TMP_DIR/model.xml
|
||||||
wget --no-clobber --directory-prefix=$TMP_DIR $FIXTURE/tensor-1x3x227x227-f32.bgr
|
wget --no-clobber $FIXTURE/tensor-1x224x224x3-f32.bgr --output-document=$TMP_DIR/tensor.bgr
|
||||||
|
|
||||||
# Now build an example that uses the wasi-nn API.
|
# Now build an example that uses the wasi-nn API.
|
||||||
pushd $WASMTIME_DIR/crates/wasi-nn/examples/classification-example
|
pushd $WASMTIME_DIR/crates/wasi-nn/examples/classification-example
|
||||||
@@ -42,4 +42,4 @@ OPENVINO_INSTALL_DIR=/opt/intel/openvino cargo run --features wasi-nn -- run --m
|
|||||||
# Clean up the temporary directory only if it was not specified (users may want to keep the directory around).
|
# Clean up the temporary directory only if it was not specified (users may want to keep the directory around).
|
||||||
if [[ $REMOVE_TMP_DIR -eq 1 ]]; then
|
if [[ $REMOVE_TMP_DIR -eq 1 ]]; then
|
||||||
rm -rf $TMP_DIR
|
rm -rf $TMP_DIR
|
||||||
fi
|
fi
|
||||||
|
|||||||
@@ -3,10 +3,10 @@ use std::fs;
|
|||||||
use wasi_nn;
|
use wasi_nn;
|
||||||
|
|
||||||
pub fn main() {
|
pub fn main() {
|
||||||
let xml = fs::read_to_string("fixture/alexnet.xml").unwrap();
|
let xml = fs::read_to_string("fixture/model.xml").unwrap();
|
||||||
println!("Read graph XML, first 50 characters: {}", &xml[..50]);
|
println!("Read graph XML, first 50 characters: {}", &xml[..50]);
|
||||||
|
|
||||||
let weights = fs::read("fixture/alexnet.bin").unwrap();
|
let weights = fs::read("fixture/model.bin").unwrap();
|
||||||
println!("Read graph weights, size in bytes: {}", weights.len());
|
println!("Read graph weights, size in bytes: {}", weights.len());
|
||||||
|
|
||||||
let graph = unsafe {
|
let graph = unsafe {
|
||||||
@@ -24,10 +24,10 @@ pub fn main() {
|
|||||||
|
|
||||||
// Load a tensor that precisely matches the graph input tensor (see
|
// Load a tensor that precisely matches the graph input tensor (see
|
||||||
// `fixture/frozen_inference_graph.xml`).
|
// `fixture/frozen_inference_graph.xml`).
|
||||||
let tensor_data = fs::read("fixture/tensor-1x3x227x227-f32.bgr").unwrap();
|
let tensor_data = fs::read("fixture/tensor.bgr").unwrap();
|
||||||
println!("Read input tensor, size in bytes: {}", tensor_data.len());
|
println!("Read input tensor, size in bytes: {}", tensor_data.len());
|
||||||
let tensor = wasi_nn::Tensor {
|
let tensor = wasi_nn::Tensor {
|
||||||
dimensions: &[1, 3, 227, 227],
|
dimensions: &[1, 3, 224, 224],
|
||||||
r#type: wasi_nn::TENSOR_TYPE_F32,
|
r#type: wasi_nn::TENSOR_TYPE_F32,
|
||||||
data: &tensor_data,
|
data: &tensor_data,
|
||||||
};
|
};
|
||||||
@@ -42,7 +42,7 @@ pub fn main() {
|
|||||||
println!("Executed graph inference");
|
println!("Executed graph inference");
|
||||||
|
|
||||||
// Retrieve the output.
|
// Retrieve the output.
|
||||||
let mut output_buffer = vec![0f32; 1000];
|
let mut output_buffer = vec![0f32; 1001];
|
||||||
unsafe {
|
unsafe {
|
||||||
wasi_nn::get_output(
|
wasi_nn::get_output(
|
||||||
context,
|
context,
|
||||||
@@ -60,10 +60,13 @@ pub fn main() {
|
|||||||
|
|
||||||
// Sort the buffer of probabilities. The graph places the match probability for each class at the
|
// Sort the buffer of probabilities. The graph places the match probability for each class at the
|
||||||
// index for that class (e.g. the probability of class 42 is placed at buffer[42]). Here we convert
|
// index for that class (e.g. the probability of class 42 is placed at buffer[42]). Here we convert
|
||||||
// to a wrapping InferenceResult and sort the results.
|
// to a wrapping InferenceResult and sort the results. It is unclear why the MobileNet output
|
||||||
|
// indices are "off by one" but the `.skip(1)` below seems necessary to get results that make sense
|
||||||
|
// (e.g. 763 = "revolver" vs 762 = "restaurant")
|
||||||
fn sort_results(buffer: &[f32]) -> Vec<InferenceResult> {
|
fn sort_results(buffer: &[f32]) -> Vec<InferenceResult> {
|
||||||
let mut results: Vec<InferenceResult> = buffer
|
let mut results: Vec<InferenceResult> = buffer
|
||||||
.iter()
|
.iter()
|
||||||
|
.skip(1)
|
||||||
.enumerate()
|
.enumerate()
|
||||||
.map(|(c, p)| InferenceResult(c, *p))
|
.map(|(c, p)| InferenceResult(c, *p))
|
||||||
.collect();
|
.collect();
|
||||||
|
|||||||
Reference in New Issue
Block a user