LICM pass (#87)
* LICM pass * Uses loop analysis to detect loop tree * For each loop (starting with the inner ones), create a pre-header and move there loop-invariant instructions * An instruction is loop invariant if it does not use as argument a value defined earlier in the loop * File tests to check LICM's correctness * Optimized pre-header creation If the loop already has a natural pre-header, we use it instead of creating a new one. The natural pre-header of a loop is the only predecessor of the header it doesn't dominate.
This commit is contained in:
committed by
Jakob Stoklund Olesen
parent
402cb8e1f6
commit
e47f4a49fb
@@ -19,6 +19,7 @@ use regalloc;
|
||||
use result::CtonResult;
|
||||
use verifier;
|
||||
use simple_gvn::do_simple_gvn;
|
||||
use licm::do_licm;
|
||||
|
||||
/// Persistent data structures and compilation pipeline.
|
||||
pub struct Context {
|
||||
@@ -92,6 +93,15 @@ impl Context {
|
||||
self.verify(None).map_err(Into::into)
|
||||
}
|
||||
|
||||
/// Perform LICM on the function.
|
||||
pub fn licm(&mut self) -> CtonResult {
|
||||
do_licm(&mut self.func,
|
||||
&mut self.cfg,
|
||||
&mut self.domtree,
|
||||
&mut self.loop_analysis);
|
||||
self.verify(None).map_err(Into::into)
|
||||
}
|
||||
|
||||
/// Run the register allocator.
|
||||
pub fn regalloc(&mut self, isa: &TargetIsa) -> CtonResult {
|
||||
self.regalloc
|
||||
|
||||
@@ -32,6 +32,7 @@ mod constant_hash;
|
||||
mod context;
|
||||
mod iterators;
|
||||
mod legalizer;
|
||||
mod licm;
|
||||
mod packed_option;
|
||||
mod partition_slice;
|
||||
mod predicates;
|
||||
|
||||
208
lib/cretonne/src/licm.rs
Normal file
208
lib/cretonne/src/licm.rs
Normal file
@@ -0,0 +1,208 @@
|
||||
//! A Loop Invariant Code Motion optimization pass
|
||||
|
||||
use ir::{Function, Ebb, Inst, Value, Cursor, Type, InstBuilder, Layout};
|
||||
use flowgraph::ControlFlowGraph;
|
||||
use std::collections::HashSet;
|
||||
use dominator_tree::DominatorTree;
|
||||
use entity_list::{EntityList, ListPool};
|
||||
use loop_analysis::{Loop, LoopAnalysis};
|
||||
|
||||
/// Performs the LICM pass by detecting loops within the CFG and moving
|
||||
/// loop-invariant instructions out of them.
|
||||
/// Changes the CFG and domtree in-place during the operation.
|
||||
pub fn do_licm(func: &mut Function,
|
||||
cfg: &mut ControlFlowGraph,
|
||||
domtree: &mut DominatorTree,
|
||||
loop_analysis: &mut LoopAnalysis) {
|
||||
loop_analysis.compute(func, cfg, domtree);
|
||||
for lp in loop_analysis.loops() {
|
||||
// For each loop that we want to optimize we determine the set of loop-invariant
|
||||
// instructions
|
||||
let invariant_inst = remove_loop_invariant_instructions(lp, func, cfg, loop_analysis);
|
||||
// Then we create the loop's pre-header and fill it with the invariant instructions
|
||||
// Then we remove the invariant instructions from the loop body
|
||||
if invariant_inst.len() > 0 {
|
||||
// If the loop has a natural pre-header we use it, otherwise we create it.
|
||||
let mut pos;
|
||||
match has_pre_header(&func.layout,
|
||||
cfg,
|
||||
domtree,
|
||||
loop_analysis.loop_header(lp).clone()) {
|
||||
None => {
|
||||
let pre_header = create_pre_header(loop_analysis.loop_header(lp).clone(),
|
||||
func,
|
||||
cfg,
|
||||
domtree);
|
||||
pos = Cursor::new(&mut func.layout);
|
||||
pos.goto_bottom(pre_header);
|
||||
pos.prev_inst();
|
||||
}
|
||||
// If there is a natural pre-header we insert new instructions just before the
|
||||
// related jumping instruction (which is not necessarily at the end).
|
||||
Some((_, last_inst)) => {
|
||||
pos = Cursor::new(&mut func.layout);
|
||||
pos.goto_inst(last_inst);
|
||||
}
|
||||
};
|
||||
// The last instruction of the pre-header is the termination instruction (usually
|
||||
// a jump) so we need to insert just before this.
|
||||
for inst in invariant_inst.iter() {
|
||||
pos.insert_inst(inst.clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
// We have to recompute the domtree to account for the changes
|
||||
cfg.compute(func);
|
||||
domtree.compute(func, cfg);
|
||||
}
|
||||
|
||||
// Insert a pre-header before the header, modifying the function layout and CFG to reflect it.
|
||||
// A jump instruction to the header is placed at the end of the pre-header.
|
||||
fn create_pre_header(header: Ebb,
|
||||
func: &mut Function,
|
||||
cfg: &mut ControlFlowGraph,
|
||||
domtree: &DominatorTree)
|
||||
-> Ebb {
|
||||
let pool = &mut ListPool::<Value>::new();
|
||||
let header_args_values: Vec<Value> = func.dfg
|
||||
.ebb_args(header)
|
||||
.into_iter()
|
||||
.map(|val| *val)
|
||||
.collect();
|
||||
let header_args_types: Vec<Type> = header_args_values
|
||||
.clone()
|
||||
.into_iter()
|
||||
.map(|val| func.dfg.value_type(val))
|
||||
.collect();
|
||||
let pre_header = func.dfg.make_ebb();
|
||||
let mut pre_header_args_value: EntityList<Value> = EntityList::new();
|
||||
for typ in header_args_types {
|
||||
pre_header_args_value.push(func.dfg.append_ebb_arg(pre_header, typ), pool);
|
||||
}
|
||||
for &(_, last_inst) in cfg.get_predecessors(header) {
|
||||
// We only follow normal edges (not the back edges)
|
||||
if !domtree.ebb_dominates(header.clone(), last_inst, &func.layout) {
|
||||
change_branch_jump_destination(last_inst, pre_header, func);
|
||||
}
|
||||
}
|
||||
{
|
||||
let mut pos = Cursor::new(&mut func.layout);
|
||||
pos.goto_top(header);
|
||||
// Inserts the pre-header at the right place in the layout.
|
||||
pos.insert_ebb(pre_header);
|
||||
pos.next_inst();
|
||||
func.dfg
|
||||
.ins(&mut pos)
|
||||
.jump(header, pre_header_args_value.as_slice(pool));
|
||||
}
|
||||
pre_header
|
||||
}
|
||||
|
||||
// Detects if a loop header has a natural pre-header.
|
||||
//
|
||||
// A loop header has a pre-header if there is only one predecessor that the header doesn't
|
||||
// dominate.
|
||||
// Returns the pre-header Ebb and the instruction jumping to the header.
|
||||
fn has_pre_header(layout: &Layout,
|
||||
cfg: &ControlFlowGraph,
|
||||
domtree: &DominatorTree,
|
||||
header: Ebb)
|
||||
-> Option<(Ebb, Inst)> {
|
||||
let mut result = None;
|
||||
let mut found = false;
|
||||
for &(pred_ebb, last_inst) in cfg.get_predecessors(header) {
|
||||
// We only count normal edges (not the back edges)
|
||||
if !domtree.ebb_dominates(header.clone(), last_inst, layout) {
|
||||
if found {
|
||||
// We have already found one, there are more than one
|
||||
return None;
|
||||
} else {
|
||||
result = Some((pred_ebb, last_inst));
|
||||
found = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
result
|
||||
}
|
||||
|
||||
|
||||
// Change the destination of a jump or branch instruction. Does nothing if called with a non-jump
|
||||
// or non-branch instruction.
|
||||
fn change_branch_jump_destination(inst: Inst, new_ebb: Ebb, func: &mut Function) {
|
||||
match func.dfg[inst].branch_destination_mut() {
|
||||
None => (),
|
||||
Some(instruction_dest) => *instruction_dest = new_ebb,
|
||||
}
|
||||
}
|
||||
|
||||
// Traverses a loop in reverse post-order from a header EBB and identify lopp-invariant
|
||||
// instructions. Theseloop-invariant instructions are then removed from the code and returned
|
||||
// (in reverse post-order) for later use.
|
||||
fn remove_loop_invariant_instructions(lp: Loop,
|
||||
func: &mut Function,
|
||||
cfg: &ControlFlowGraph,
|
||||
loop_analysis: &LoopAnalysis)
|
||||
-> Vec<Inst> {
|
||||
let mut loop_values: HashSet<Value> = HashSet::new();
|
||||
let mut invariant_inst: Vec<Inst> = Vec::new();
|
||||
let mut pos = Cursor::new(&mut func.layout);
|
||||
// We traverse the loop EBB in reverse post-order.
|
||||
for ebb in postorder_ebbs_loop(loop_analysis, cfg, lp).iter().rev() {
|
||||
// Arguments of the EBB are loop values
|
||||
for val in func.dfg.ebb_args(*ebb) {
|
||||
loop_values.insert(val.clone());
|
||||
}
|
||||
pos.goto_top(*ebb);
|
||||
while let Some(inst) = pos.next_inst() {
|
||||
if func.dfg.has_results(inst) &&
|
||||
func.dfg
|
||||
.inst_args(inst)
|
||||
.into_iter()
|
||||
.all(|arg| !loop_values.contains(arg)) {
|
||||
// If all the instruction's argument are defined outside the loop
|
||||
// then this instruction is loop-invariant
|
||||
invariant_inst.push(inst);
|
||||
// We remove it from the loop
|
||||
pos.remove_inst();
|
||||
pos.prev_inst();
|
||||
} else {
|
||||
// If the instruction is not loop-invariant we push its results in the set of
|
||||
// loop values
|
||||
for out in func.dfg.inst_results(inst) {
|
||||
loop_values.insert(out.clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
invariant_inst
|
||||
}
|
||||
|
||||
/// Return ebbs from a loop in post-order, starting from an entry point in the block.
|
||||
pub fn postorder_ebbs_loop(loop_analysis: &LoopAnalysis,
|
||||
cfg: &ControlFlowGraph,
|
||||
lp: Loop)
|
||||
-> Vec<Ebb> {
|
||||
let mut grey = HashSet::new();
|
||||
let mut black = HashSet::new();
|
||||
let mut stack = vec![loop_analysis.loop_header(lp).clone()];
|
||||
let mut postorder = Vec::new();
|
||||
|
||||
while !stack.is_empty() {
|
||||
let node = stack.pop().unwrap();
|
||||
if !grey.contains(&node) {
|
||||
// This is a white node. Mark it as gray.
|
||||
grey.insert(node);
|
||||
stack.push(node);
|
||||
// Get any children we've never seen before.
|
||||
for child in cfg.get_successors(node) {
|
||||
if loop_analysis.is_in_loop(child.clone(), lp) && !grey.contains(child) {
|
||||
stack.push(child.clone());
|
||||
}
|
||||
}
|
||||
} else if !black.contains(&node) {
|
||||
postorder.push(node.clone());
|
||||
black.insert(node.clone());
|
||||
}
|
||||
}
|
||||
postorder
|
||||
}
|
||||
@@ -129,13 +129,13 @@ impl LoopAnalysis {
|
||||
domtree: &DominatorTree,
|
||||
layout: &Layout) {
|
||||
// We traverse the CFg in reverse postorder
|
||||
for ebb in cfg.postorder_ebbs().iter().rev() {
|
||||
for &(_, pred_inst) in cfg.get_predecessors(*ebb) {
|
||||
for &ebb in cfg.postorder_ebbs().iter().rev() {
|
||||
for &(_, pred_inst) in cfg.get_predecessors(ebb) {
|
||||
// If the ebb dominates one of its predecessors it is a back edge
|
||||
if domtree.ebb_dominates(ebb.clone(), pred_inst, layout) {
|
||||
if domtree.ebb_dominates(ebb, pred_inst, layout) {
|
||||
// This ebb is a loop header, so we create its associated loop
|
||||
let lp = self.loops.push(LoopData::new(*ebb, None));
|
||||
self.ebb_loop_map[*ebb] = lp.into();
|
||||
let lp = self.loops.push(LoopData::new(ebb, None));
|
||||
self.ebb_loop_map[ebb] = lp.into();
|
||||
break;
|
||||
// We break because we only need one back edge to identify a loop header.
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user