Move the wasmtime crate directories form lib/* to wasmtime-*.

This follows a similar change to Cranelift made here:

https://github.com/CraneStation/cranelift/pull/660
This commit is contained in:
Dan Gohman
2019-03-20 10:33:21 -07:00
parent 7b9761f4a2
commit db0abe8431
74 changed files with 21 additions and 21 deletions

3
wasmtime-environ/.gitignore vendored Normal file
View File

@@ -0,0 +1,3 @@
target/
**/*.rs.bk
Cargo.lock

View File

@@ -0,0 +1,31 @@
[package]
name = "wasmtime-environ"
version = "0.1.0"
authors = ["The Wasmtime Project Developers"]
description = "Standalone environment support for WebAsssembly code in Cranelift"
repository = "https://github.com/CraneStation/wasmtime"
documentation = "https://docs.rs/wasmtime-environ/"
categories = ["wasm"]
keywords = ["webassembly", "wasm"]
license = "Apache-2.0 WITH LLVM-exception"
readme = "README.md"
edition = "2018"
[dependencies]
cranelift-codegen = "0.29.0"
cranelift-entity = "0.29.0"
cranelift-wasm = "0.29.0"
cast = { version = "0.2.2", default-features = false }
failure = { version = "0.1.3", default-features = false }
failure_derive = { version = "0.1.3", default-features = false }
indexmap = "1.0.2"
rayon = "1.0"
[features]
default = ["std"]
std = ["cranelift-codegen/std", "cranelift-wasm/std"]
core = ["cranelift-codegen/core", "cranelift-wasm/core"]
[badges]
maintenance = { status = "experimental" }
travis-ci = { repository = "CraneStation/wasmtime" }

220
wasmtime-environ/LICENSE Normal file
View File

@@ -0,0 +1,220 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
--- LLVM Exceptions to the Apache 2.0 License ----
As an exception, if, as a result of your compiling your source code, portions
of this Software are embedded into an Object form of such source code, you
may redistribute such embedded portions in such Object form without complying
with the conditions of Sections 4(a), 4(b) and 4(d) of the License.
In addition, if you combine or link compiled forms of this Software with
software that is licensed under the GPLv2 ("Combined Software") and if a
court of competent jurisdiction determines that the patent provision (Section
3), the indemnity provision (Section 9) or other Section of the License
conflicts with the conditions of the GPLv2, you may retroactively and
prospectively choose to deem waived or otherwise exclude such Section(s) of
the License, but only in their entirety and only with respect to the Combined
Software.

View File

@@ -0,0 +1,6 @@
This is the `wasmtime-environ` crate, which contains the implementations
of the `ModuleEnvironment` and `FuncEnvironment` traits from
[`cranelift-wasm`](https://crates.io/crates/cranelift-wasm). They effectively
implement an ABI for basic wasm compilation that defines how linear memories
are allocated, how indirect calls work, and other details. They can be used
for JITing, native object files, or other purposes.

View File

@@ -0,0 +1,97 @@
//! A `Compilation` contains the compiled function bodies for a WebAssembly
//! module.
use cranelift_codegen::binemit;
use cranelift_codegen::ir;
use cranelift_codegen::CodegenError;
use cranelift_entity::PrimaryMap;
use cranelift_wasm::{DefinedFuncIndex, FuncIndex, WasmError};
use std::vec::Vec;
/// The result of compiling a WebAssembly module's functions.
#[derive(Debug)]
pub struct Compilation {
/// Compiled machine code for the function bodies.
pub functions: PrimaryMap<DefinedFuncIndex, Vec<u8>>,
}
impl Compilation {
/// Allocates the compilation result with the given function bodies.
pub fn new(functions: PrimaryMap<DefinedFuncIndex, Vec<u8>>) -> Self {
Self { functions }
}
}
/// A record of a relocation to perform.
#[derive(Debug, Clone)]
pub struct Relocation {
/// The relocation code.
pub reloc: binemit::Reloc,
/// Relocation target.
pub reloc_target: RelocationTarget,
/// The offset where to apply the relocation.
pub offset: binemit::CodeOffset,
/// The addend to add to the relocation value.
pub addend: binemit::Addend,
}
/// Destination function. Can be either user function or some special one, like `memory.grow`.
#[derive(Debug, Copy, Clone)]
pub enum RelocationTarget {
/// The user function index.
UserFunc(FuncIndex),
/// A compiler-generated libcall.
LibCall(ir::LibCall),
/// Function for growing a locally-defined 32-bit memory by the specified amount of pages.
Memory32Grow,
/// Function for growing an imported 32-bit memory by the specified amount of pages.
ImportedMemory32Grow,
/// Function for query current size of a locally-defined 32-bit linear memory.
Memory32Size,
/// Function for query current size of an imported 32-bit linear memory.
ImportedMemory32Size,
}
/// Relocations to apply to function bodies.
pub type Relocations = PrimaryMap<DefinedFuncIndex, Vec<Relocation>>;
/// An error while compiling WebAssembly to machine code.
#[derive(Fail, Debug)]
pub enum CompileError {
/// A wasm translation error occured.
#[fail(display = "WebAssembly translation error: {}", _0)]
Wasm(WasmError),
/// A compilation error occured.
#[fail(display = "Compilation error: {}", _0)]
Codegen(CodegenError),
}
/// Single address point transform.
#[derive(Debug)]
pub struct InstructionAddressTransform {
/// Original source location.
pub srcloc: ir::SourceLoc,
/// Generated instructions offset.
pub code_offset: usize,
/// Generated instructions length.
pub code_len: usize,
}
/// Function and its instructions transforms.
#[derive(Debug)]
pub struct FunctionAddressTransform {
/// Instructions transforms
pub locations: Vec<InstructionAddressTransform>,
/// Generated function body offset if applicable, otherwise 0.
pub body_offset: usize,
/// Generated function body length.
pub body_len: usize,
}
/// Function AddressTransforms collection.
pub type AddressTransforms = PrimaryMap<DefinedFuncIndex, FunctionAddressTransform>;

View File

@@ -0,0 +1,177 @@
//! Support for compiling with Cranelift.
use crate::compilation::{
AddressTransforms, Compilation, CompileError, FunctionAddressTransform,
InstructionAddressTransform, Relocation, RelocationTarget, Relocations,
};
use crate::func_environ::{
get_func_name, get_imported_memory32_grow_name, get_imported_memory32_size_name,
get_memory32_grow_name, get_memory32_size_name, FuncEnvironment,
};
use crate::module::Module;
use crate::module_environ::FunctionBodyData;
use cranelift_codegen::binemit;
use cranelift_codegen::ir;
use cranelift_codegen::ir::ExternalName;
use cranelift_codegen::isa;
use cranelift_codegen::Context;
use cranelift_entity::PrimaryMap;
use cranelift_wasm::{DefinedFuncIndex, FuncIndex, FuncTranslator};
use rayon::prelude::{IntoParallelRefIterator, ParallelIterator};
use std::vec::Vec;
/// Implementation of a relocation sink that just saves all the information for later
struct RelocSink {
/// Relocations recorded for the function.
func_relocs: Vec<Relocation>,
}
impl binemit::RelocSink for RelocSink {
fn reloc_ebb(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_ebb_offset: binemit::CodeOffset,
) {
// This should use the `offsets` field of `ir::Function`.
panic!("ebb headers not yet implemented");
}
fn reloc_external(
&mut self,
offset: binemit::CodeOffset,
reloc: binemit::Reloc,
name: &ExternalName,
addend: binemit::Addend,
) {
let reloc_target = if *name == get_memory32_grow_name() {
RelocationTarget::Memory32Grow
} else if *name == get_imported_memory32_grow_name() {
RelocationTarget::ImportedMemory32Grow
} else if *name == get_memory32_size_name() {
RelocationTarget::Memory32Size
} else if *name == get_imported_memory32_size_name() {
RelocationTarget::ImportedMemory32Size
} else if let ExternalName::User { namespace, index } = *name {
debug_assert!(namespace == 0);
RelocationTarget::UserFunc(FuncIndex::from_u32(index))
} else if let ExternalName::LibCall(libcall) = *name {
RelocationTarget::LibCall(libcall)
} else {
panic!("unrecognized external name")
};
self.func_relocs.push(Relocation {
reloc,
reloc_target,
offset,
addend,
});
}
fn reloc_jt(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_jt: ir::JumpTable,
) {
panic!("jump tables not yet implemented");
}
}
impl RelocSink {
/// Return a new `RelocSink` instance.
pub fn new() -> Self {
Self {
func_relocs: Vec::new(),
}
}
}
fn get_address_transform(
context: &Context,
isa: &isa::TargetIsa,
) -> Vec<InstructionAddressTransform> {
let mut result = Vec::new();
let func = &context.func;
let mut ebbs = func.layout.ebbs().collect::<Vec<_>>();
ebbs.sort_by_key(|ebb| func.offsets[*ebb]); // Ensure inst offsets always increase
let encinfo = isa.encoding_info();
for ebb in ebbs {
for (offset, inst, size) in func.inst_offsets(ebb, &encinfo) {
let srcloc = func.srclocs[inst];
result.push(InstructionAddressTransform {
srcloc,
code_offset: offset as usize,
code_len: size as usize,
});
}
}
result
}
/// Compile the module using Cranelift, producing a compilation result with
/// associated relocations.
pub fn compile_module<'data, 'module>(
module: &'module Module,
function_body_inputs: PrimaryMap<DefinedFuncIndex, FunctionBodyData<'data>>,
isa: &dyn isa::TargetIsa,
generate_debug_info: bool,
) -> Result<(Compilation, Relocations, AddressTransforms), CompileError> {
let mut functions = PrimaryMap::with_capacity(function_body_inputs.len());
let mut relocations = PrimaryMap::with_capacity(function_body_inputs.len());
let mut address_transforms = PrimaryMap::with_capacity(function_body_inputs.len());
function_body_inputs
.into_iter()
.collect::<Vec<(DefinedFuncIndex, &FunctionBodyData<'data>)>>()
.par_iter()
.map(|(i, input)| {
let func_index = module.func_index(*i);
let mut context = Context::new();
context.func.name = get_func_name(func_index);
context.func.signature = module.signatures[module.functions[func_index]].clone();
let mut trans = FuncTranslator::new();
trans
.translate(
input.data,
input.module_offset,
&mut context.func,
&mut FuncEnvironment::new(isa.frontend_config(), module),
)
.map_err(CompileError::Wasm)?;
let mut code_buf: Vec<u8> = Vec::new();
let mut reloc_sink = RelocSink::new();
let mut trap_sink = binemit::NullTrapSink {};
context
.compile_and_emit(isa, &mut code_buf, &mut reloc_sink, &mut trap_sink)
.map_err(CompileError::Codegen)?;
let address_transform = if generate_debug_info {
let body_len = code_buf.len();
let at = get_address_transform(&context, isa);
Some(FunctionAddressTransform {
locations: at,
body_offset: 0,
body_len,
})
} else {
None
};
Ok((code_buf, reloc_sink.func_relocs, address_transform))
})
.collect::<Result<Vec<_>, CompileError>>()?
.into_iter()
.for_each(|(function, relocs, address_transform)| {
functions.push(function);
relocations.push(relocs);
if let Some(address_transform) = address_transform {
address_transforms.push(address_transform);
}
});
// TODO: Reorganize where we create the Vec for the resolved imports.
Ok((Compilation::new(functions), relocations, address_transforms))
}

View File

@@ -0,0 +1,539 @@
use crate::module::{MemoryPlan, MemoryStyle, Module, TableStyle};
use crate::vmoffsets::VMOffsets;
use crate::WASM_PAGE_SIZE;
use cast;
use core::clone::Clone;
use cranelift_codegen::cursor::FuncCursor;
use cranelift_codegen::ir;
use cranelift_codegen::ir::condcodes::*;
use cranelift_codegen::ir::immediates::{Offset32, Uimm64};
use cranelift_codegen::ir::types::*;
use cranelift_codegen::ir::{
AbiParam, ArgumentPurpose, ExtFuncData, FuncRef, Function, InstBuilder, Signature,
};
use cranelift_codegen::isa::TargetFrontendConfig;
use cranelift_entity::EntityRef;
use cranelift_wasm::{
self, FuncIndex, GlobalIndex, GlobalVariable, MemoryIndex, SignatureIndex, TableIndex,
WasmResult,
};
use std::vec::Vec;
/// Compute an `ir::ExternalName` for a given wasm function index.
pub fn get_func_name(func_index: FuncIndex) -> ir::ExternalName {
ir::ExternalName::user(0, func_index.as_u32())
}
/// Compute an `ir::ExternalName` for the `memory.grow` libcall for
/// 32-bit locally-defined memories.
pub fn get_memory32_grow_name() -> ir::ExternalName {
ir::ExternalName::user(1, 0)
}
/// Compute an `ir::ExternalName` for the `memory.grow` libcall for
/// 32-bit imported memories.
pub fn get_imported_memory32_grow_name() -> ir::ExternalName {
ir::ExternalName::user(1, 1)
}
/// Compute an `ir::ExternalName` for the `memory.size` libcall for
/// 32-bit locally-defined memories.
pub fn get_memory32_size_name() -> ir::ExternalName {
ir::ExternalName::user(1, 2)
}
/// Compute an `ir::ExternalName` for the `memory.size` libcall for
/// 32-bit imported memories.
pub fn get_imported_memory32_size_name() -> ir::ExternalName {
ir::ExternalName::user(1, 3)
}
/// The `FuncEnvironment` implementation for use by the `ModuleEnvironment`.
pub struct FuncEnvironment<'module_environment> {
/// Target-specified configuration.
target_config: TargetFrontendConfig,
/// The module-level environment which this function-level environment belongs to.
module: &'module_environment Module,
/// The Cranelift global holding the vmctx address.
vmctx: Option<ir::GlobalValue>,
/// The external function declaration for implementing wasm's `memory.size`
/// for locally-defined 32-bit memories.
memory32_size_extfunc: Option<FuncRef>,
/// The external function declaration for implementing wasm's `memory.size`
/// for imported 32-bit memories.
imported_memory32_size_extfunc: Option<FuncRef>,
/// The external function declaration for implementing wasm's `memory.grow`
/// for locally-defined memories.
memory_grow_extfunc: Option<FuncRef>,
/// The external function declaration for implementing wasm's `memory.grow`
/// for imported memories.
imported_memory_grow_extfunc: Option<FuncRef>,
/// Offsets to struct fields accessed by JIT code.
offsets: VMOffsets,
}
impl<'module_environment> FuncEnvironment<'module_environment> {
pub fn new(target_config: TargetFrontendConfig, module: &'module_environment Module) -> Self {
Self {
target_config,
module,
vmctx: None,
memory32_size_extfunc: None,
imported_memory32_size_extfunc: None,
memory_grow_extfunc: None,
imported_memory_grow_extfunc: None,
offsets: VMOffsets::new(target_config.pointer_bytes(), module),
}
}
fn pointer_type(&self) -> ir::Type {
self.target_config.pointer_type()
}
fn vmctx(&mut self, func: &mut Function) -> ir::GlobalValue {
self.vmctx.unwrap_or_else(|| {
let vmctx = func.create_global_value(ir::GlobalValueData::VMContext);
self.vmctx = Some(vmctx);
vmctx
})
}
fn get_memory_grow_sig(&self, func: &mut Function) -> ir::SigRef {
func.import_signature(Signature {
params: vec![
AbiParam::special(self.pointer_type(), ArgumentPurpose::VMContext),
AbiParam::new(I32),
AbiParam::new(I32),
],
returns: vec![AbiParam::new(I32)],
call_conv: self.target_config.default_call_conv,
})
}
/// Return the memory.grow function to call for the given index, along with the
/// translated index value to pass to it.
fn get_memory_grow_func(
&mut self,
func: &mut Function,
index: MemoryIndex,
) -> (FuncRef, usize) {
if self.module.is_imported_memory(index) {
let extfunc = self.imported_memory_grow_extfunc.unwrap_or_else(|| {
let sig_ref = self.get_memory_grow_sig(func);
func.import_function(ExtFuncData {
name: get_imported_memory32_grow_name(),
signature: sig_ref,
// We currently allocate all code segments independently, so nothing
// is colocated.
colocated: false,
})
});
self.imported_memory_grow_extfunc = Some(extfunc);
(extfunc, index.index())
} else {
let extfunc = self.memory_grow_extfunc.unwrap_or_else(|| {
let sig_ref = self.get_memory_grow_sig(func);
func.import_function(ExtFuncData {
name: get_memory32_grow_name(),
signature: sig_ref,
// We currently allocate all code segments independently, so nothing
// is colocated.
colocated: false,
})
});
self.memory_grow_extfunc = Some(extfunc);
(
extfunc,
self.module.defined_memory_index(index).unwrap().index(),
)
}
}
fn get_memory32_size_sig(&self, func: &mut Function) -> ir::SigRef {
func.import_signature(Signature {
params: vec![
AbiParam::special(self.pointer_type(), ArgumentPurpose::VMContext),
AbiParam::new(I32),
],
returns: vec![AbiParam::new(I32)],
call_conv: self.target_config.default_call_conv,
})
}
/// Return the memory.size function to call for the given index, along with the
/// translated index value to pass to it.
fn get_memory_size_func(
&mut self,
func: &mut Function,
index: MemoryIndex,
) -> (FuncRef, usize) {
if self.module.is_imported_memory(index) {
let extfunc = self.imported_memory32_size_extfunc.unwrap_or_else(|| {
let sig_ref = self.get_memory32_size_sig(func);
func.import_function(ExtFuncData {
name: get_imported_memory32_size_name(),
signature: sig_ref,
// We currently allocate all code segments independently, so nothing
// is colocated.
colocated: false,
})
});
self.imported_memory32_size_extfunc = Some(extfunc);
(extfunc, index.index())
} else {
let extfunc = self.memory32_size_extfunc.unwrap_or_else(|| {
let sig_ref = self.get_memory32_size_sig(func);
func.import_function(ExtFuncData {
name: get_memory32_size_name(),
signature: sig_ref,
// We currently allocate all code segments independently, so nothing
// is colocated.
colocated: false,
})
});
self.memory32_size_extfunc = Some(extfunc);
(
extfunc,
self.module.defined_memory_index(index).unwrap().index(),
)
}
}
}
impl<'module_environment> cranelift_wasm::FuncEnvironment for FuncEnvironment<'module_environment> {
fn target_config(&self) -> TargetFrontendConfig {
self.target_config
}
fn make_table(&mut self, func: &mut ir::Function, index: TableIndex) -> ir::Table {
let pointer_type = self.pointer_type();
let (ptr, base_offset, current_elements_offset) = {
let vmctx = self.vmctx(func);
if let Some(def_index) = self.module.defined_table_index(index) {
let base_offset =
cast::i32(self.offsets.vmctx_vmtable_definition_base(def_index)).unwrap();
let current_elements_offset = cast::i32(
self.offsets
.vmctx_vmtable_definition_current_elements(def_index),
)
.unwrap();
(vmctx, base_offset, current_elements_offset)
} else {
let from_offset = self.offsets.vmctx_vmtable_import_from(index);
let table = func.create_global_value(ir::GlobalValueData::Load {
base: vmctx,
offset: Offset32::new(cast::i32(from_offset).unwrap()),
global_type: pointer_type,
readonly: true,
});
let base_offset = i32::from(self.offsets.vmtable_definition_base());
let current_elements_offset =
i32::from(self.offsets.vmtable_definition_current_elements());
(table, base_offset, current_elements_offset)
}
};
let base_gv = func.create_global_value(ir::GlobalValueData::Load {
base: ptr,
offset: Offset32::new(base_offset),
global_type: pointer_type,
readonly: false,
});
let bound_gv = func.create_global_value(ir::GlobalValueData::Load {
base: ptr,
offset: Offset32::new(current_elements_offset),
global_type: self.offsets.type_of_vmtable_definition_current_elements(),
readonly: false,
});
let element_size = match self.module.table_plans[index].style {
TableStyle::CallerChecksSignature => {
u64::from(self.offsets.size_of_vmcaller_checked_anyfunc())
}
};
func.create_table(ir::TableData {
base_gv,
min_size: Uimm64::new(0),
bound_gv,
element_size: Uimm64::new(element_size),
index_type: I32,
})
}
fn make_heap(&mut self, func: &mut ir::Function, index: MemoryIndex) -> ir::Heap {
let pointer_type = self.pointer_type();
let (ptr, base_offset, current_length_offset) = {
let vmctx = self.vmctx(func);
if let Some(def_index) = self.module.defined_memory_index(index) {
let base_offset =
cast::i32(self.offsets.vmctx_vmmemory_definition_base(def_index)).unwrap();
let current_length_offset = cast::i32(
self.offsets
.vmctx_vmmemory_definition_current_length(def_index),
)
.unwrap();
(vmctx, base_offset, current_length_offset)
} else {
let from_offset = self.offsets.vmctx_vmmemory_import_from(index);
let memory = func.create_global_value(ir::GlobalValueData::Load {
base: vmctx,
offset: Offset32::new(cast::i32(from_offset).unwrap()),
global_type: pointer_type,
readonly: true,
});
let base_offset = i32::from(self.offsets.vmmemory_definition_base());
let current_length_offset =
i32::from(self.offsets.vmmemory_definition_current_length());
(memory, base_offset, current_length_offset)
}
};
// If we have a declared maximum, we can make this a "static" heap, which is
// allocated up front and never moved.
let (offset_guard_size, heap_style, readonly_base) = match self.module.memory_plans[index] {
MemoryPlan {
memory: _,
style: MemoryStyle::Dynamic,
offset_guard_size,
} => {
let heap_bound = func.create_global_value(ir::GlobalValueData::Load {
base: ptr,
offset: Offset32::new(current_length_offset),
global_type: self.offsets.type_of_vmmemory_definition_current_length(),
readonly: false,
});
(
Uimm64::new(offset_guard_size),
ir::HeapStyle::Dynamic {
bound_gv: heap_bound,
},
false,
)
}
MemoryPlan {
memory: _,
style: MemoryStyle::Static { bound },
offset_guard_size,
} => (
Uimm64::new(offset_guard_size),
ir::HeapStyle::Static {
bound: Uimm64::new(u64::from(bound) * u64::from(WASM_PAGE_SIZE)),
},
true,
),
};
let heap_base = func.create_global_value(ir::GlobalValueData::Load {
base: ptr,
offset: Offset32::new(base_offset),
global_type: pointer_type,
readonly: readonly_base,
});
func.create_heap(ir::HeapData {
base: heap_base,
min_size: 0.into(),
offset_guard_size,
style: heap_style,
index_type: I32,
})
}
fn make_global(&mut self, func: &mut ir::Function, index: GlobalIndex) -> GlobalVariable {
let pointer_type = self.pointer_type();
let (ptr, offset) = {
let vmctx = self.vmctx(func);
if let Some(def_index) = self.module.defined_global_index(index) {
let offset = cast::i32(self.offsets.vmctx_vmglobal_definition(def_index)).unwrap();
(vmctx, offset)
} else {
let from_offset = self.offsets.vmctx_vmglobal_import_from(index);
let global = func.create_global_value(ir::GlobalValueData::Load {
base: vmctx,
offset: Offset32::new(cast::i32(from_offset).unwrap()),
global_type: pointer_type,
readonly: true,
});
(global, 0)
}
};
GlobalVariable::Memory {
gv: ptr,
offset: offset.into(),
ty: self.module.globals[index].ty,
}
}
fn make_indirect_sig(&mut self, func: &mut ir::Function, index: SignatureIndex) -> ir::SigRef {
func.import_signature(self.module.signatures[index].clone())
}
fn make_direct_func(&mut self, func: &mut ir::Function, index: FuncIndex) -> ir::FuncRef {
let sigidx = self.module.functions[index];
let signature = func.import_signature(self.module.signatures[sigidx].clone());
let name = get_func_name(index);
func.import_function(ir::ExtFuncData {
name,
signature,
// We currently allocate all code segments independently, so nothing
// is colocated.
colocated: false,
})
}
fn translate_call_indirect(
&mut self,
mut pos: FuncCursor<'_>,
table_index: TableIndex,
table: ir::Table,
sig_index: SignatureIndex,
sig_ref: ir::SigRef,
callee: ir::Value,
call_args: &[ir::Value],
) -> WasmResult<ir::Inst> {
let pointer_type = self.pointer_type();
let table_entry_addr = pos.ins().table_addr(pointer_type, table, callee, 0);
// If necessary, check the signature.
match self.module.table_plans[table_index].style {
TableStyle::CallerChecksSignature => {
let sig_id_size = self.offsets.size_of_vmshared_signature_index();
let sig_id_type = Type::int(u16::from(sig_id_size) * 8).unwrap();
let vmctx = self.vmctx(pos.func);
let base = pos.ins().global_value(pointer_type, vmctx);
let offset =
cast::i32(self.offsets.vmctx_vmshared_signature_id(sig_index)).unwrap();
// Load the caller ID.
let mut mem_flags = ir::MemFlags::trusted();
mem_flags.set_readonly();
let caller_sig_id = pos.ins().load(sig_id_type, mem_flags, base, offset);
// Load the callee ID.
let mem_flags = ir::MemFlags::trusted();
let callee_sig_id = pos.ins().load(
sig_id_type,
mem_flags,
table_entry_addr,
i32::from(self.offsets.vmcaller_checked_anyfunc_type_index()),
);
// Check that they match.
let cmp = pos.ins().icmp(IntCC::Equal, callee_sig_id, caller_sig_id);
pos.ins().trapz(cmp, ir::TrapCode::BadSignature);
}
}
// Dereference table_entry_addr to get the function address.
let mem_flags = ir::MemFlags::trusted();
let func_addr = pos.ins().load(
pointer_type,
mem_flags,
table_entry_addr,
i32::from(self.offsets.vmcaller_checked_anyfunc_func_ptr()),
);
let mut real_call_args = Vec::with_capacity(call_args.len() + 1);
// First append the callee vmctx address.
let vmctx = pos.ins().load(
pointer_type,
mem_flags,
table_entry_addr,
i32::from(self.offsets.vmcaller_checked_anyfunc_vmctx()),
);
real_call_args.push(vmctx);
// Then append the regular call arguments.
real_call_args.extend_from_slice(call_args);
Ok(pos.ins().call_indirect(sig_ref, func_addr, &real_call_args))
}
fn translate_call(
&mut self,
mut pos: FuncCursor<'_>,
callee_index: FuncIndex,
callee: ir::FuncRef,
call_args: &[ir::Value],
) -> WasmResult<ir::Inst> {
let mut real_call_args = Vec::with_capacity(call_args.len() + 1);
// Handle direct calls to locally-defined functions.
if !self.module.is_imported_function(callee_index) {
// First append the callee vmctx address.
real_call_args.push(pos.func.special_param(ArgumentPurpose::VMContext).unwrap());
// Then append the regular call arguments.
real_call_args.extend_from_slice(call_args);
return Ok(pos.ins().call(callee, &real_call_args));
}
// Handle direct calls to imported functions. We use an indirect call
// so that we don't have to patch the code at runtime.
let pointer_type = self.pointer_type();
let sig_ref = pos.func.dfg.ext_funcs[callee].signature;
let vmctx = self.vmctx(&mut pos.func);
let base = pos.ins().global_value(pointer_type, vmctx);
let mem_flags = ir::MemFlags::trusted();
// Load the callee address.
let body_offset =
cast::i32(self.offsets.vmctx_vmfunction_import_body(callee_index)).unwrap();
let func_addr = pos.ins().load(pointer_type, mem_flags, base, body_offset);
// First append the callee vmctx address.
let vmctx_offset =
cast::i32(self.offsets.vmctx_vmfunction_import_vmctx(callee_index)).unwrap();
let vmctx = pos.ins().load(pointer_type, mem_flags, base, vmctx_offset);
real_call_args.push(vmctx);
// Then append the regular call arguments.
real_call_args.extend_from_slice(call_args);
Ok(pos.ins().call_indirect(sig_ref, func_addr, &real_call_args))
}
fn translate_memory_grow(
&mut self,
mut pos: FuncCursor<'_>,
index: MemoryIndex,
_heap: ir::Heap,
val: ir::Value,
) -> WasmResult<ir::Value> {
let (memory_grow_func, index_arg) = self.get_memory_grow_func(&mut pos.func, index);
let memory_index = pos.ins().iconst(I32, index_arg as i64);
let vmctx = pos.func.special_param(ArgumentPurpose::VMContext).unwrap();
let call_inst = pos
.ins()
.call(memory_grow_func, &[vmctx, val, memory_index]);
Ok(*pos.func.dfg.inst_results(call_inst).first().unwrap())
}
fn translate_memory_size(
&mut self,
mut pos: FuncCursor<'_>,
index: MemoryIndex,
_heap: ir::Heap,
) -> WasmResult<ir::Value> {
let (memory_size_func, index_arg) = self.get_memory_size_func(&mut pos.func, index);
let memory_index = pos.ins().iconst(I32, index_arg as i64);
let vmctx = pos.func.special_param(ArgumentPurpose::VMContext).unwrap();
let call_inst = pos.ins().call(memory_size_func, &[vmctx, memory_index]);
Ok(*pos.func.dfg.inst_results(call_inst).first().unwrap())
}
}

View File

@@ -0,0 +1,70 @@
//! Standalone environment for WebAssembly using Cranelift. Provides functions to translate
//! `get_global`, `set_global`, `memory.size`, `memory.grow`, `call_indirect` that hardcode in
//! the translation the base addresses of regions of memory that will hold the globals, tables and
//! linear memories.
#![deny(missing_docs, trivial_numeric_casts, unused_extern_crates)]
#![warn(unused_import_braces)]
#![cfg_attr(feature = "std", deny(unstable_features))]
#![cfg_attr(feature = "clippy", plugin(clippy(conf_file = "../../clippy.toml")))]
#![cfg_attr(
feature = "cargo-clippy",
allow(clippy::new_without_default, clippy::new_without_default_derive)
)]
#![cfg_attr(
feature = "cargo-clippy",
warn(
clippy::float_arithmetic,
clippy::mut_mut,
clippy::nonminimal_bool,
clippy::option_map_unwrap_or,
clippy::option_map_unwrap_or_else,
clippy::print_stdout,
clippy::unicode_not_nfc,
clippy::use_self
)
)]
#![no_std]
#![cfg_attr(not(feature = "std"), feature(alloc))]
#[cfg(not(feature = "std"))]
#[macro_use]
extern crate alloc as std;
#[cfg(feature = "std")]
#[macro_use]
extern crate std;
#[macro_use]
extern crate failure_derive;
mod compilation;
mod func_environ;
mod module;
mod module_environ;
mod tunables;
mod vmoffsets;
pub mod cranelift;
pub use crate::compilation::{
AddressTransforms, Compilation, CompileError, InstructionAddressTransform, Relocation,
RelocationTarget, Relocations,
};
pub use crate::module::{
Export, MemoryPlan, MemoryStyle, Module, TableElements, TablePlan, TableStyle,
};
pub use crate::module_environ::{
translate_signature, DataInitializer, DataInitializerLocation, FunctionBodyData,
ModuleEnvironment, ModuleTranslation,
};
pub use crate::tunables::Tunables;
pub use crate::vmoffsets::{TargetSharedSignatureIndex, VMOffsets};
/// WebAssembly page sizes are defined to be 64KiB.
pub const WASM_PAGE_SIZE: u32 = 0x10000;
/// The number of pages we can have before we run out of byte index space.
pub const WASM_MAX_PAGES: u32 = 0x10000;
/// Version number of this crate.
pub const VERSION: &str = env!("CARGO_PKG_VERSION");

View File

@@ -0,0 +1,281 @@
//! Data structures for representing decoded wasm modules.
use crate::tunables::Tunables;
use cranelift_codegen::ir;
use cranelift_entity::{EntityRef, PrimaryMap};
use cranelift_wasm::{
DefinedFuncIndex, DefinedGlobalIndex, DefinedMemoryIndex, DefinedTableIndex, FuncIndex, Global,
GlobalIndex, Memory, MemoryIndex, SignatureIndex, Table, TableIndex,
};
use indexmap::IndexMap;
use std::boxed::Box;
use std::string::String;
use std::vec::Vec;
/// A WebAssembly table initializer.
#[derive(Clone, Debug)]
pub struct TableElements {
/// The index of a table to initialize.
pub table_index: TableIndex,
/// Optionally, a global variable giving a base index.
pub base: Option<GlobalIndex>,
/// The offset to add to the base.
pub offset: usize,
/// The values to write into the table elements.
pub elements: Box<[FuncIndex]>,
}
/// An entity to export.
#[derive(Clone, Debug)]
pub enum Export {
/// Function export.
Function(FuncIndex),
/// Table export.
Table(TableIndex),
/// Memory export.
Memory(MemoryIndex),
/// Global export.
Global(GlobalIndex),
}
/// Implemenation styles for WebAssembly linear memory.
#[derive(Debug, Clone)]
pub enum MemoryStyle {
/// The actual memory can be resized and moved.
Dynamic,
/// Addresss space is allocated up front.
Static {
/// The number of mapped and unmapped pages.
bound: u32,
},
}
impl MemoryStyle {
/// Decide on an implementation style for the given `Memory`.
pub fn for_memory(memory: Memory, tunables: &Tunables) -> (Self, u64) {
if let Some(maximum) = memory.maximum {
if maximum <= tunables.static_memory_bound {
// A heap with a declared maximum can be immovable, so make
// it static.
assert!(tunables.static_memory_bound >= memory.minimum);
return (
MemoryStyle::Static {
bound: tunables.static_memory_bound,
},
tunables.static_memory_offset_guard_size,
);
}
}
// Otherwise, make it dynamic.
(
MemoryStyle::Dynamic,
tunables.dynamic_memory_offset_guard_size,
)
}
}
/// A WebAssembly linear memory description along with our chosen style for
/// implementing it.
#[derive(Debug, Clone)]
pub struct MemoryPlan {
/// The WebAssembly linear memory description.
pub memory: Memory,
/// Our chosen implementation style.
pub style: MemoryStyle,
/// Our chosen offset-guard size.
pub offset_guard_size: u64,
}
impl MemoryPlan {
/// Draw up a plan for implementing a `Memory`.
pub fn for_memory(memory: Memory, tunables: &Tunables) -> Self {
let (style, offset_guard_size) = MemoryStyle::for_memory(memory, tunables);
Self {
memory,
style,
offset_guard_size,
}
}
}
/// Implemenation styles for WebAssembly tables.
#[derive(Debug, Clone)]
pub enum TableStyle {
/// Signatures are stored in the table and checked in the caller.
CallerChecksSignature,
}
impl TableStyle {
/// Decide on an implementation style for the given `Table`.
pub fn for_table(_table: Table, _tunables: &Tunables) -> Self {
TableStyle::CallerChecksSignature
}
}
/// A WebAssembly table description along with our chosen style for
/// implementing it.
#[derive(Debug, Clone)]
pub struct TablePlan {
/// The WebAssembly table description.
pub table: cranelift_wasm::Table,
/// Our chosen implementation style.
pub style: TableStyle,
}
impl TablePlan {
/// Draw up a plan for implementing a `Table`.
pub fn for_table(table: Table, tunables: &Tunables) -> Self {
let style = TableStyle::for_table(table, tunables);
Self { table, style }
}
}
/// A translated WebAssembly module, excluding the function bodies and
/// memory initializers.
#[derive(Debug)]
pub struct Module {
/// Unprocessed signatures exactly as provided by `declare_signature()`.
pub signatures: PrimaryMap<SignatureIndex, ir::Signature>,
/// Names of imported functions.
pub imported_funcs: PrimaryMap<FuncIndex, (String, String)>,
/// Names of imported tables.
pub imported_tables: PrimaryMap<TableIndex, (String, String)>,
/// Names of imported memories.
pub imported_memories: PrimaryMap<MemoryIndex, (String, String)>,
/// Names of imported globals.
pub imported_globals: PrimaryMap<GlobalIndex, (String, String)>,
/// Types of functions, imported and local.
pub functions: PrimaryMap<FuncIndex, SignatureIndex>,
/// WebAssembly tables.
pub table_plans: PrimaryMap<TableIndex, TablePlan>,
/// WebAssembly linear memory plans.
pub memory_plans: PrimaryMap<MemoryIndex, MemoryPlan>,
/// WebAssembly global variables.
pub globals: PrimaryMap<GlobalIndex, Global>,
/// Exported entities.
pub exports: IndexMap<String, Export>,
/// The module "start" function, if present.
pub start_func: Option<FuncIndex>,
/// WebAssembly table initializers.
pub table_elements: Vec<TableElements>,
}
impl Module {
/// Allocates the module data structures.
pub fn new() -> Self {
Self {
signatures: PrimaryMap::new(),
imported_funcs: PrimaryMap::new(),
imported_tables: PrimaryMap::new(),
imported_memories: PrimaryMap::new(),
imported_globals: PrimaryMap::new(),
functions: PrimaryMap::new(),
table_plans: PrimaryMap::new(),
memory_plans: PrimaryMap::new(),
globals: PrimaryMap::new(),
exports: IndexMap::new(),
start_func: None,
table_elements: Vec::new(),
}
}
/// Convert a `DefinedFuncIndex` into a `FuncIndex`.
pub fn func_index(&self, defined_func: DefinedFuncIndex) -> FuncIndex {
FuncIndex::new(self.imported_funcs.len() + defined_func.index())
}
/// Convert a `FuncIndex` into a `DefinedFuncIndex`. Returns None if the
/// index is an imported function.
pub fn defined_func_index(&self, func: FuncIndex) -> Option<DefinedFuncIndex> {
if func.index() < self.imported_funcs.len() {
None
} else {
Some(DefinedFuncIndex::new(
func.index() - self.imported_funcs.len(),
))
}
}
/// Test whether the given function index is for an imported function.
pub fn is_imported_function(&self, index: FuncIndex) -> bool {
index.index() < self.imported_funcs.len()
}
/// Convert a `DefinedTableIndex` into a `TableIndex`.
pub fn table_index(&self, defined_table: DefinedTableIndex) -> TableIndex {
TableIndex::new(self.imported_tables.len() + defined_table.index())
}
/// Convert a `TableIndex` into a `DefinedTableIndex`. Returns None if the
/// index is an imported table.
pub fn defined_table_index(&self, table: TableIndex) -> Option<DefinedTableIndex> {
if table.index() < self.imported_tables.len() {
None
} else {
Some(DefinedTableIndex::new(
table.index() - self.imported_tables.len(),
))
}
}
/// Test whether the given table index is for an imported table.
pub fn is_imported_table(&self, index: TableIndex) -> bool {
index.index() < self.imported_tables.len()
}
/// Convert a `DefinedMemoryIndex` into a `MemoryIndex`.
pub fn memory_index(&self, defined_memory: DefinedMemoryIndex) -> MemoryIndex {
MemoryIndex::new(self.imported_memories.len() + defined_memory.index())
}
/// Convert a `MemoryIndex` into a `DefinedMemoryIndex`. Returns None if the
/// index is an imported memory.
pub fn defined_memory_index(&self, memory: MemoryIndex) -> Option<DefinedMemoryIndex> {
if memory.index() < self.imported_memories.len() {
None
} else {
Some(DefinedMemoryIndex::new(
memory.index() - self.imported_memories.len(),
))
}
}
/// Test whether the given memory index is for an imported memory.
pub fn is_imported_memory(&self, index: MemoryIndex) -> bool {
index.index() < self.imported_memories.len()
}
/// Convert a `DefinedGlobalIndex` into a `GlobalIndex`.
pub fn global_index(&self, defined_global: DefinedGlobalIndex) -> GlobalIndex {
GlobalIndex::new(self.imported_globals.len() + defined_global.index())
}
/// Convert a `GlobalIndex` into a `DefinedGlobalIndex`. Returns None if the
/// index is an imported global.
pub fn defined_global_index(&self, global: GlobalIndex) -> Option<DefinedGlobalIndex> {
if global.index() < self.imported_globals.len() {
None
} else {
Some(DefinedGlobalIndex::new(
global.index() - self.imported_globals.len(),
))
}
}
/// Test whether the given global index is for an imported global.
pub fn is_imported_global(&self, index: GlobalIndex) -> bool {
index.index() < self.imported_globals.len()
}
}

View File

@@ -0,0 +1,339 @@
use crate::func_environ::FuncEnvironment;
use crate::module::{Export, MemoryPlan, Module, TableElements, TablePlan};
use crate::tunables::Tunables;
use cranelift_codegen::ir;
use cranelift_codegen::ir::{AbiParam, ArgumentPurpose};
use cranelift_codegen::isa::TargetFrontendConfig;
use cranelift_entity::PrimaryMap;
use cranelift_wasm::{
self, translate_module, DefinedFuncIndex, FuncIndex, Global, GlobalIndex, Memory, MemoryIndex,
SignatureIndex, Table, TableIndex, WasmResult,
};
use std::boxed::Box;
use std::string::String;
use std::vec::Vec;
/// Contains function data: byte code and its offset in the module.
pub struct FunctionBodyData<'a> {
/// Body byte code.
pub data: &'a [u8],
/// Body offset in the module file.
pub module_offset: usize,
}
/// The result of translating via `ModuleEnvironment`. Function bodies are not
/// yet translated, and data initializers have not yet been copied out of the
/// original buffer.
pub struct ModuleTranslation<'data> {
/// Compilation setting flags.
pub target_config: TargetFrontendConfig,
/// Module information.
pub module: Module,
/// References to the function bodies.
pub function_body_inputs: PrimaryMap<DefinedFuncIndex, FunctionBodyData<'data>>,
/// References to the data initializers.
pub data_initializers: Vec<DataInitializer<'data>>,
/// Tunable parameters.
pub tunables: Tunables,
}
impl<'data> ModuleTranslation<'data> {
/// Return a new `FuncEnvironment` for translating a function.
pub fn func_env(&self) -> FuncEnvironment<'_> {
FuncEnvironment::new(self.target_config, &self.module)
}
}
/// Object containing the standalone environment information.
pub struct ModuleEnvironment<'data> {
/// The result to be filled in.
result: ModuleTranslation<'data>,
}
impl<'data> ModuleEnvironment<'data> {
/// Allocates the enironment data structures.
pub fn new(target_config: TargetFrontendConfig, tunables: Tunables) -> Self {
Self {
result: ModuleTranslation {
target_config,
module: Module::new(),
function_body_inputs: PrimaryMap::new(),
data_initializers: Vec::new(),
tunables,
},
}
}
fn pointer_type(&self) -> ir::Type {
self.result.target_config.pointer_type()
}
/// Translate a wasm module using this environment. This consumes the
/// `ModuleEnvironment` and produces a `ModuleTranslation`.
pub fn translate(mut self, data: &'data [u8]) -> WasmResult<ModuleTranslation<'data>> {
translate_module(data, &mut self)?;
Ok(self.result)
}
}
/// This trait is useful for `translate_module` because it tells how to translate
/// enironment-dependent wasm instructions. These functions should not be called by the user.
impl<'data> cranelift_wasm::ModuleEnvironment<'data> for ModuleEnvironment<'data> {
fn target_config(&self) -> TargetFrontendConfig {
self.result.target_config
}
fn reserve_signatures(&mut self, num: u32) {
self.result
.module
.signatures
.reserve_exact(cast::usize(num));
}
fn declare_signature(&mut self, sig: ir::Signature) {
let sig = translate_signature(sig, self.pointer_type());
// TODO: Deduplicate signatures.
self.result.module.signatures.push(sig);
}
fn declare_func_import(&mut self, sig_index: SignatureIndex, module: &str, field: &str) {
debug_assert_eq!(
self.result.module.functions.len(),
self.result.module.imported_funcs.len(),
"Imported functions must be declared first"
);
self.result.module.functions.push(sig_index);
self.result
.module
.imported_funcs
.push((String::from(module), String::from(field)));
}
fn declare_table_import(&mut self, table: Table, module: &str, field: &str) {
debug_assert_eq!(
self.result.module.table_plans.len(),
self.result.module.imported_tables.len(),
"Imported tables must be declared first"
);
let plan = TablePlan::for_table(table, &self.result.tunables);
self.result.module.table_plans.push(plan);
self.result
.module
.imported_tables
.push((String::from(module), String::from(field)));
}
fn declare_memory_import(&mut self, memory: Memory, module: &str, field: &str) {
debug_assert_eq!(
self.result.module.memory_plans.len(),
self.result.module.imported_memories.len(),
"Imported memories must be declared first"
);
let plan = MemoryPlan::for_memory(memory, &self.result.tunables);
self.result.module.memory_plans.push(plan);
self.result
.module
.imported_memories
.push((String::from(module), String::from(field)));
}
fn declare_global_import(&mut self, global: Global, module: &str, field: &str) {
debug_assert_eq!(
self.result.module.globals.len(),
self.result.module.imported_globals.len(),
"Imported globals must be declared first"
);
self.result.module.globals.push(global);
self.result
.module
.imported_globals
.push((String::from(module), String::from(field)));
}
fn finish_imports(&mut self) {
self.result.module.imported_funcs.shrink_to_fit();
self.result.module.imported_tables.shrink_to_fit();
self.result.module.imported_memories.shrink_to_fit();
self.result.module.imported_globals.shrink_to_fit();
}
fn reserve_func_types(&mut self, num: u32) {
self.result.module.functions.reserve_exact(cast::usize(num));
self.result
.function_body_inputs
.reserve_exact(cast::usize(num));
}
fn declare_func_type(&mut self, sig_index: SignatureIndex) {
self.result.module.functions.push(sig_index);
}
fn reserve_tables(&mut self, num: u32) {
self.result
.module
.table_plans
.reserve_exact(cast::usize(num));
}
fn declare_table(&mut self, table: Table) {
let plan = TablePlan::for_table(table, &self.result.tunables);
self.result.module.table_plans.push(plan);
}
fn reserve_memories(&mut self, num: u32) {
self.result
.module
.memory_plans
.reserve_exact(cast::usize(num));
}
fn declare_memory(&mut self, memory: Memory) {
let plan = MemoryPlan::for_memory(memory, &self.result.tunables);
self.result.module.memory_plans.push(plan);
}
fn reserve_globals(&mut self, num: u32) {
self.result.module.globals.reserve_exact(cast::usize(num));
}
fn declare_global(&mut self, global: Global) {
self.result.module.globals.push(global);
}
fn reserve_exports(&mut self, num: u32) {
self.result.module.exports.reserve(cast::usize(num));
}
fn declare_func_export(&mut self, func_index: FuncIndex, name: &str) {
self.result
.module
.exports
.insert(String::from(name), Export::Function(func_index));
}
fn declare_table_export(&mut self, table_index: TableIndex, name: &str) {
self.result
.module
.exports
.insert(String::from(name), Export::Table(table_index));
}
fn declare_memory_export(&mut self, memory_index: MemoryIndex, name: &str) {
self.result
.module
.exports
.insert(String::from(name), Export::Memory(memory_index));
}
fn declare_global_export(&mut self, global_index: GlobalIndex, name: &str) {
self.result
.module
.exports
.insert(String::from(name), Export::Global(global_index));
}
fn declare_start_func(&mut self, func_index: FuncIndex) {
debug_assert!(self.result.module.start_func.is_none());
self.result.module.start_func = Some(func_index);
}
fn reserve_table_elements(&mut self, num: u32) {
self.result
.module
.table_elements
.reserve_exact(cast::usize(num));
}
fn declare_table_elements(
&mut self,
table_index: TableIndex,
base: Option<GlobalIndex>,
offset: usize,
elements: Box<[FuncIndex]>,
) {
self.result.module.table_elements.push(TableElements {
table_index,
base,
offset,
elements,
});
}
fn define_function_body(
&mut self,
body_bytes: &'data [u8],
body_offset: usize,
) -> WasmResult<()> {
self.result.function_body_inputs.push(FunctionBodyData {
data: body_bytes,
module_offset: body_offset,
});
Ok(())
}
fn reserve_data_initializers(&mut self, num: u32) {
self.result
.data_initializers
.reserve_exact(cast::usize(num));
}
fn declare_data_initialization(
&mut self,
memory_index: MemoryIndex,
base: Option<GlobalIndex>,
offset: usize,
data: &'data [u8],
) {
self.result.data_initializers.push(DataInitializer {
location: DataInitializerLocation {
memory_index,
base,
offset,
},
data,
});
}
}
/// Add environment-specific function parameters.
pub fn translate_signature(mut sig: ir::Signature, pointer_type: ir::Type) -> ir::Signature {
// Prepend the vmctx argument.
sig.params.insert(
0,
AbiParam::special(pointer_type, ArgumentPurpose::VMContext),
);
sig
}
/// A memory index and offset within that memory where a data initialization
/// should is to be performed.
#[derive(Clone)]
pub struct DataInitializerLocation {
/// The index of the memory to initialize.
pub memory_index: MemoryIndex,
/// Optionally a globalvar base to initialize at.
pub base: Option<GlobalIndex>,
/// A constant offset to initialize at.
pub offset: usize,
}
/// A data initializer for linear memory.
pub struct DataInitializer<'data> {
/// The location where the initialization is to be performed.
pub location: DataInitializerLocation,
/// The initialization data.
pub data: &'data [u8],
}

View File

@@ -0,0 +1,44 @@
/// Tunable parameters for WebAssembly compilation.
#[derive(Clone)]
pub struct Tunables {
/// For static heaps, the size of the heap protected by bounds checking.
pub static_memory_bound: u32,
/// The size of the offset guard for static heaps.
pub static_memory_offset_guard_size: u64,
/// The size of the offset guard for dynamic heaps.
pub dynamic_memory_offset_guard_size: u64,
}
impl Default for Tunables {
fn default() -> Self {
Self {
#[cfg(target_pointer_width = "32")]
/// Size in wasm pages of the bound for static memories.
static_memory_bound: 0x4000,
#[cfg(target_pointer_width = "64")]
/// Size in wasm pages of the bound for static memories.
///
/// When we allocate 4 GiB of address space, we can avoid the
/// need for explicit bounds checks.
static_memory_bound: 0x1_0000,
#[cfg(target_pointer_width = "32")]
/// Size in bytes of the offset guard for static memories.
static_memory_offset_guard_size: 0x1_0000,
#[cfg(target_pointer_width = "64")]
/// Size in bytes of the offset guard for static memories.
///
/// Allocating 2 GiB of address space lets us translate wasm
/// offsets into x86 offsets as aggressively as we can.
static_memory_offset_guard_size: 0x8000_0000,
/// Size in bytes of the offset guard for dynamic memories.
///
/// Allocate a small guard to optimize common cases but without
/// wasting too much memor.
dynamic_memory_offset_guard_size: 0x1_0000,
}
}
}

View File

@@ -0,0 +1,536 @@
//! Offsets and sizes of various structs in wasmtime-runtime's vmcontext
//! module.
use crate::module::Module;
use cast;
use cranelift_codegen::ir;
use cranelift_wasm::{
DefinedGlobalIndex, DefinedMemoryIndex, DefinedTableIndex, FuncIndex, GlobalIndex, MemoryIndex,
SignatureIndex, TableIndex,
};
#[cfg(target_pointer_width = "32")]
fn cast_to_u32(sz: usize) -> u32 {
cast::u32(sz)
}
#[cfg(target_pointer_width = "64")]
fn cast_to_u32(sz: usize) -> u32 {
match cast::u32(sz) {
Ok(x) => x,
Err(_) => panic!("overflow in cast from usize to u32"),
}
}
/// This class computes offsets to fields within `VMContext` and other
/// related structs that JIT code accesses directly.
pub struct VMOffsets {
/// The size in bytes of a pointer on the target.
pub pointer_size: u8,
/// The number of signature declarations in the module.
pub num_signature_ids: u32,
/// The number of imported functions in the module.
pub num_imported_functions: u32,
/// The number of imported tables in the module.
pub num_imported_tables: u32,
/// The number of imported memories in the module.
pub num_imported_memories: u32,
/// The number of imported globals in the module.
pub num_imported_globals: u32,
/// The number of defined tables in the module.
pub num_defined_tables: u32,
/// The number of defined memories in the module.
pub num_defined_memories: u32,
/// The number of defined globals in the module.
pub num_defined_globals: u32,
}
impl VMOffsets {
/// Return a new `VMOffsets` instance, for a given pointer size.
pub fn new(pointer_size: u8, module: &Module) -> Self {
Self {
pointer_size,
num_signature_ids: cast_to_u32(module.signatures.len()),
num_imported_functions: cast_to_u32(module.imported_funcs.len()),
num_imported_tables: cast_to_u32(module.imported_tables.len()),
num_imported_memories: cast_to_u32(module.imported_memories.len()),
num_imported_globals: cast_to_u32(module.imported_globals.len()),
num_defined_tables: cast_to_u32(module.table_plans.len()),
num_defined_memories: cast_to_u32(module.memory_plans.len()),
num_defined_globals: cast_to_u32(module.globals.len()),
}
}
}
/// Offsets for `VMFunctionImport`.
impl VMOffsets {
/// The offset of the `body` field.
#[allow(clippy::erasing_op)]
pub fn vmfunction_import_body(&self) -> u8 {
0 * self.pointer_size
}
/// The offset of the `vmctx` field.
#[allow(clippy::identity_op)]
pub fn vmfunction_import_vmctx(&self) -> u8 {
1 * self.pointer_size
}
/// Return the size of `VMFunctionImport`.
pub fn size_of_vmfunction_import(&self) -> u8 {
2 * self.pointer_size
}
}
/// Offsets for `*const VMFunctionBody`.
impl VMOffsets {
/// The size of the `current_elements` field.
#[allow(clippy::identity_op)]
pub fn size_of_vmfunction_body_ptr(&self) -> u8 {
1 * self.pointer_size
}
}
/// Offsets for `VMTableImport`.
impl VMOffsets {
/// The offset of the `from` field.
#[allow(clippy::erasing_op)]
pub fn vmtable_import_from(&self) -> u8 {
0 * self.pointer_size
}
/// The offset of the `vmctx` field.
#[allow(clippy::identity_op)]
pub fn vmtable_import_vmctx(&self) -> u8 {
1 * self.pointer_size
}
/// Return the size of `VMTableImport`.
pub fn size_of_vmtable_import(&self) -> u8 {
2 * self.pointer_size
}
}
/// Offsets for `VMTableDefinition`.
impl VMOffsets {
/// The offset of the `base` field.
#[allow(clippy::erasing_op)]
pub fn vmtable_definition_base(&self) -> u8 {
0 * self.pointer_size
}
/// The offset of the `current_elements` field.
#[allow(clippy::identity_op)]
pub fn vmtable_definition_current_elements(&self) -> u8 {
1 * self.pointer_size
}
/// The size of the `current_elements` field.
pub fn size_of_vmtable_definition_current_elements(&self) -> u8 {
4
}
/// Return the size of `VMTableDefinition`.
pub fn size_of_vmtable_definition(&self) -> u8 {
2 * self.pointer_size
}
/// The type of the `current_elements` field.
pub fn type_of_vmtable_definition_current_elements(&self) -> ir::Type {
ir::Type::int(u16::from(self.size_of_vmtable_definition_current_elements()) * 8).unwrap()
}
}
/// Offsets for `VMMemoryImport`.
impl VMOffsets {
/// The offset of the `from` field.
#[allow(clippy::erasing_op)]
pub fn vmmemory_import_from(&self) -> u8 {
0 * self.pointer_size
}
/// The offset of the `vmctx` field.
#[allow(clippy::identity_op)]
pub fn vmmemory_import_vmctx(&self) -> u8 {
1 * self.pointer_size
}
/// Return the size of `VMMemoryImport`.
pub fn size_of_vmmemory_import(&self) -> u8 {
2 * self.pointer_size
}
}
/// Offsets for `VMMemoryDefinition`.
impl VMOffsets {
/// The offset of the `base` field.
#[allow(clippy::erasing_op)]
pub fn vmmemory_definition_base(&self) -> u8 {
0 * self.pointer_size
}
/// The offset of the `current_length` field.
#[allow(clippy::identity_op)]
pub fn vmmemory_definition_current_length(&self) -> u8 {
1 * self.pointer_size
}
/// The size of the `current_length` field.
pub fn size_of_vmmemory_definition_current_length(&self) -> u8 {
4
}
/// Return the size of `VMMemoryDefinition`.
pub fn size_of_vmmemory_definition(&self) -> u8 {
2 * self.pointer_size
}
/// The type of the `current_length` field.
pub fn type_of_vmmemory_definition_current_length(&self) -> ir::Type {
ir::Type::int(u16::from(self.size_of_vmmemory_definition_current_length()) * 8).unwrap()
}
}
/// Offsets for `VMGlobalImport`.
impl VMOffsets {
/// The offset of the `from` field.
#[allow(clippy::erasing_op)]
pub fn vmglobal_import_from(&self) -> u8 {
0 * self.pointer_size
}
/// Return the size of `VMGlobalImport`.
#[allow(clippy::identity_op)]
pub fn size_of_vmglobal_import(&self) -> u8 {
1 * self.pointer_size
}
}
/// Offsets for `VMGlobalDefinition`.
impl VMOffsets {
/// Return the size of `VMGlobalDefinition`.
pub fn size_of_vmglobal_definition(&self) -> u8 {
8
}
}
/// Offsets for `VMSharedSignatureIndex`.
impl VMOffsets {
/// Return the size of `VMSharedSignatureIndex`.
pub fn size_of_vmshared_signature_index(&self) -> u8 {
4
}
}
/// Offsets for `VMCallerCheckedAnyfunc`.
impl VMOffsets {
/// The offset of the `func_ptr` field.
#[allow(clippy::erasing_op)]
pub fn vmcaller_checked_anyfunc_func_ptr(&self) -> u8 {
0 * self.pointer_size
}
/// The offset of the `type_index` field.
#[allow(clippy::identity_op)]
pub fn vmcaller_checked_anyfunc_type_index(&self) -> u8 {
1 * self.pointer_size
}
/// The offset of the `vmctx` field.
pub fn vmcaller_checked_anyfunc_vmctx(&self) -> u8 {
2 * self.pointer_size
}
/// Return the size of `VMCallerCheckedAnyfunc`.
pub fn size_of_vmcaller_checked_anyfunc(&self) -> u8 {
3 * self.pointer_size
}
}
/// Offsets for `VMContext`.
impl VMOffsets {
/// The offset of the `signature_ids` array.
pub fn vmctx_signature_ids_begin(&self) -> u32 {
0
}
/// The offset of the `tables` array.
#[allow(clippy::erasing_op)]
pub fn vmctx_imported_functions_begin(&self) -> u32 {
self.vmctx_signature_ids_begin()
.checked_add(
self.num_signature_ids
.checked_mul(u32::from(self.size_of_vmshared_signature_index()))
.unwrap(),
)
.unwrap()
}
/// The offset of the `tables` array.
#[allow(clippy::identity_op)]
pub fn vmctx_imported_tables_begin(&self) -> u32 {
self.vmctx_imported_functions_begin()
.checked_add(
self.num_imported_functions
.checked_mul(u32::from(self.size_of_vmfunction_import()))
.unwrap(),
)
.unwrap()
}
/// The offset of the `memories` array.
pub fn vmctx_imported_memories_begin(&self) -> u32 {
self.vmctx_imported_tables_begin()
.checked_add(
self.num_imported_tables
.checked_mul(u32::from(self.size_of_vmtable_import()))
.unwrap(),
)
.unwrap()
}
/// The offset of the `globals` array.
pub fn vmctx_imported_globals_begin(&self) -> u32 {
self.vmctx_imported_memories_begin()
.checked_add(
self.num_imported_memories
.checked_mul(u32::from(self.size_of_vmmemory_import()))
.unwrap(),
)
.unwrap()
}
/// The offset of the `tables` array.
pub fn vmctx_tables_begin(&self) -> u32 {
self.vmctx_imported_globals_begin()
.checked_add(
self.num_imported_globals
.checked_mul(u32::from(self.size_of_vmglobal_import()))
.unwrap(),
)
.unwrap()
}
/// The offset of the `memories` array.
pub fn vmctx_memories_begin(&self) -> u32 {
self.vmctx_tables_begin()
.checked_add(
self.num_defined_tables
.checked_mul(u32::from(self.size_of_vmtable_definition()))
.unwrap(),
)
.unwrap()
}
/// The offset of the `globals` array.
pub fn vmctx_globals_begin(&self) -> u32 {
self.vmctx_memories_begin()
.checked_add(
self.num_defined_memories
.checked_mul(u32::from(self.size_of_vmmemory_definition()))
.unwrap(),
)
.unwrap()
}
/// Return the size of the `VMContext` allocation.
#[allow(dead_code)]
pub fn size_of_vmctx(&self) -> u32 {
self.vmctx_globals_begin()
.checked_add(
self.num_defined_globals
.checked_mul(u32::from(self.size_of_vmglobal_definition()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to `VMSharedSignatureId` index `index`.
pub fn vmctx_vmshared_signature_id(&self, index: SignatureIndex) -> u32 {
assert!(index.as_u32() < self.num_signature_ids);
self.vmctx_signature_ids_begin()
.checked_add(
index
.as_u32()
.checked_mul(u32::from(self.size_of_vmshared_signature_index()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to `VMFunctionImport` index `index`.
pub fn vmctx_vmfunction_import(&self, index: FuncIndex) -> u32 {
assert!(index.as_u32() < self.num_imported_functions);
self.vmctx_imported_functions_begin()
.checked_add(
index
.as_u32()
.checked_mul(u32::from(self.size_of_vmfunction_import()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to `VMTableImport` index `index`.
pub fn vmctx_vmtable_import(&self, index: TableIndex) -> u32 {
assert!(index.as_u32() < self.num_imported_tables);
self.vmctx_imported_tables_begin()
.checked_add(
index
.as_u32()
.checked_mul(u32::from(self.size_of_vmtable_import()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to `VMMemoryImport` index `index`.
pub fn vmctx_vmmemory_import(&self, index: MemoryIndex) -> u32 {
assert!(index.as_u32() < self.num_imported_memories);
self.vmctx_imported_memories_begin()
.checked_add(
index
.as_u32()
.checked_mul(u32::from(self.size_of_vmmemory_import()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to `VMGlobalImport` index `index`.
pub fn vmctx_vmglobal_import(&self, index: GlobalIndex) -> u32 {
assert!(index.as_u32() < self.num_imported_globals);
self.vmctx_imported_globals_begin()
.checked_add(
index
.as_u32()
.checked_mul(u32::from(self.size_of_vmglobal_import()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to `VMTableDefinition` index `index`.
pub fn vmctx_vmtable_definition(&self, index: DefinedTableIndex) -> u32 {
assert!(index.as_u32() < self.num_defined_tables);
self.vmctx_tables_begin()
.checked_add(
index
.as_u32()
.checked_mul(u32::from(self.size_of_vmtable_definition()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to `VMMemoryDefinition` index `index`.
pub fn vmctx_vmmemory_definition(&self, index: DefinedMemoryIndex) -> u32 {
assert!(index.as_u32() < self.num_defined_memories);
self.vmctx_memories_begin()
.checked_add(
index
.as_u32()
.checked_mul(u32::from(self.size_of_vmmemory_definition()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to the `VMGlobalDefinition` index `index`.
pub fn vmctx_vmglobal_definition(&self, index: DefinedGlobalIndex) -> u32 {
assert!(index.as_u32() < self.num_defined_globals);
self.vmctx_globals_begin()
.checked_add(
index
.as_u32()
.checked_mul(u32::from(self.size_of_vmglobal_definition()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to the `body` field in `*const VMFunctionBody` index `index`.
pub fn vmctx_vmfunction_import_body(&self, index: FuncIndex) -> u32 {
self.vmctx_vmfunction_import(index)
.checked_add(u32::from(self.vmfunction_import_body()))
.unwrap()
}
/// Return the offset to the `vmctx` field in `*const VMFunctionBody` index `index`.
pub fn vmctx_vmfunction_import_vmctx(&self, index: FuncIndex) -> u32 {
self.vmctx_vmfunction_import(index)
.checked_add(u32::from(self.vmfunction_import_vmctx()))
.unwrap()
}
/// Return the offset to the `from` field in `VMTableImport` index `index`.
pub fn vmctx_vmtable_import_from(&self, index: TableIndex) -> u32 {
self.vmctx_vmtable_import(index)
.checked_add(u32::from(self.vmtable_import_from()))
.unwrap()
}
/// Return the offset to the `base` field in `VMTableDefinition` index `index`.
pub fn vmctx_vmtable_definition_base(&self, index: DefinedTableIndex) -> u32 {
self.vmctx_vmtable_definition(index)
.checked_add(u32::from(self.vmtable_definition_base()))
.unwrap()
}
/// Return the offset to the `current_elements` field in `VMTableDefinition` index `index`.
pub fn vmctx_vmtable_definition_current_elements(&self, index: DefinedTableIndex) -> u32 {
self.vmctx_vmtable_definition(index)
.checked_add(u32::from(self.vmtable_definition_current_elements()))
.unwrap()
}
/// Return the offset to the `from` field in `VMMemoryImport` index `index`.
pub fn vmctx_vmmemory_import_from(&self, index: MemoryIndex) -> u32 {
self.vmctx_vmmemory_import(index)
.checked_add(u32::from(self.vmmemory_import_from()))
.unwrap()
}
/// Return the offset to the `vmctx` field in `VMMemoryImport` index `index`.
pub fn vmctx_vmmemory_import_vmctx(&self, index: MemoryIndex) -> u32 {
self.vmctx_vmmemory_import(index)
.checked_add(u32::from(self.vmmemory_import_vmctx()))
.unwrap()
}
/// Return the offset to the `base` field in `VMMemoryDefinition` index `index`.
pub fn vmctx_vmmemory_definition_base(&self, index: DefinedMemoryIndex) -> u32 {
self.vmctx_vmmemory_definition(index)
.checked_add(u32::from(self.vmmemory_definition_base()))
.unwrap()
}
/// Return the offset to the `current_length` field in `VMMemoryDefinition` index `index`.
pub fn vmctx_vmmemory_definition_current_length(&self, index: DefinedMemoryIndex) -> u32 {
self.vmctx_vmmemory_definition(index)
.checked_add(u32::from(self.vmmemory_definition_current_length()))
.unwrap()
}
/// Return the offset to the `from` field in `VMGlobalImport` index `index`.
pub fn vmctx_vmglobal_import_from(&self, index: GlobalIndex) -> u32 {
self.vmctx_vmglobal_import(index)
.checked_add(u32::from(self.vmglobal_import_from()))
.unwrap()
}
}
/// Target specific type for shared signature index.
#[derive(Debug, Copy, Clone)]
pub struct TargetSharedSignatureIndex(u32);
impl TargetSharedSignatureIndex {
/// Constructs `TargetSharedSignatureIndex`.
pub fn new(value: u32) -> Self {
TargetSharedSignatureIndex(value)
}
/// Returns index value.
pub fn index(&self) -> u32 {
self.0
}
}