Add a minimalistic reload pass.

The reload pass inserts spill and fill instructions as needed so
instructions that operate on registers will never see a value with stack
affinity.

This is a very basic implementation, and we can't write good test cases
until we have a spilling pass.
This commit is contained in:
Jakob Stoklund Olesen
2017-05-24 09:28:15 -07:00
parent ac1db6e3c9
commit d94bd8c236
5 changed files with 306 additions and 1 deletions

View File

@@ -323,6 +323,16 @@ pub enum ValueDef {
Arg(Ebb, usize), Arg(Ebb, usize),
} }
impl ValueDef {
/// Unwrap the instruction where the value was defined, or panic.
pub fn unwrap_inst(&self) -> Inst {
match self {
&ValueDef::Res(inst, _) => inst,
_ => panic!("Value is not an instruction result"),
}
}
}
// Internal table storage for extended values. // Internal table storage for extended values.
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
enum ValueData { enum ValueData {

View File

@@ -64,6 +64,14 @@ impl Affinity {
} }
} }
/// Is this the `Stack` affinity?
pub fn is_stack(self) -> bool {
match self {
Affinity::Stack => true,
_ => false,
}
}
/// Merge an operand constraint into this affinity. /// Merge an operand constraint into this affinity.
/// ///
/// Note that this does not guarantee that the register allocator will pick a register that /// Note that this does not guarantee that the register allocator will pick a register that

View File

@@ -11,6 +11,7 @@ use isa::TargetIsa;
use regalloc::coloring::Coloring; use regalloc::coloring::Coloring;
use regalloc::live_value_tracker::LiveValueTracker; use regalloc::live_value_tracker::LiveValueTracker;
use regalloc::liveness::Liveness; use regalloc::liveness::Liveness;
use regalloc::reload::Reload;
use result::CtonResult; use result::CtonResult;
use topo_order::TopoOrder; use topo_order::TopoOrder;
use verifier::{verify_context, verify_liveness}; use verifier::{verify_context, verify_liveness};
@@ -20,6 +21,7 @@ pub struct Context {
liveness: Liveness, liveness: Liveness,
topo: TopoOrder, topo: TopoOrder,
tracker: LiveValueTracker, tracker: LiveValueTracker,
reload: Reload,
coloring: Coloring, coloring: Coloring,
} }
@@ -33,6 +35,7 @@ impl Context {
liveness: Liveness::new(), liveness: Liveness::new(),
topo: TopoOrder::new(), topo: TopoOrder::new(),
tracker: LiveValueTracker::new(), tracker: LiveValueTracker::new(),
reload: Reload::new(),
coloring: Coloring::new(), coloring: Coloring::new(),
} }
} }
@@ -61,7 +64,21 @@ impl Context {
// TODO: Second pass: Spilling. // TODO: Second pass: Spilling.
// Third pass: Reload and coloring. // Third pass: Reload.
self.reload
.run(isa,
func,
domtree,
&mut self.liveness,
&mut self.topo,
&mut self.tracker);
if isa.flags().enable_verifier() {
verify_context(func, cfg, domtree, Some(isa))?;
verify_liveness(isa, func, cfg, &self.liveness)?;
}
// Fourth pass: Coloring.
self.coloring self.coloring
.run(isa, .run(isa,
func, func,

View File

@@ -12,6 +12,7 @@ mod affinity;
mod context; mod context;
mod diversion; mod diversion;
mod pressure; mod pressure;
mod reload;
mod solver; mod solver;
pub use self::allocatable_set::AllocatableSet; pub use self::allocatable_set::AllocatableSet;

View File

@@ -0,0 +1,269 @@
//! Reload pass
//!
//! The reload pass runs between the spilling and coloring passes. Its primary responsibility is to
//! insert `spill` and `fill` instructions such that instruction operands expecting a register will
//! get a value with register affinity, and operands expecting a stack slot will get a value with
//! stack affinity.
//!
//! The secondary responsibility of the reload pass is to reuse values in registers as much as
//! possible to minimize the number of `fill` instructions needed. This must not cause the register
//! pressure limits to be exceeded.
use dominator_tree::DominatorTree;
use ir::{Ebb, Inst, Value, Function, DataFlowGraph};
use ir::layout::{Cursor, CursorPosition};
use ir::{InstBuilder, ArgumentLoc};
use isa::RegClass;
use isa::{TargetIsa, Encoding, EncInfo, ConstraintKind};
use regalloc::affinity::Affinity;
use regalloc::live_value_tracker::{LiveValue, LiveValueTracker};
use regalloc::liveness::Liveness;
use sparse_map::{SparseMap, SparseMapValue};
use topo_order::TopoOrder;
/// Reusable data structures for the reload pass.
pub struct Reload {
candidates: Vec<ReloadCandidate>,
reloads: SparseMap<Value, ReloadedValue>,
}
/// Context data structure that gets instantiated once per pass.
struct Context<'a> {
// Cached ISA information.
// We save it here to avoid frequent virtual function calls on the `TargetIsa` trait object.
encinfo: EncInfo,
// References to contextual data structures we need.
domtree: &'a DominatorTree,
liveness: &'a mut Liveness,
topo: &'a mut TopoOrder,
candidates: &'a mut Vec<ReloadCandidate>,
reloads: &'a mut SparseMap<Value, ReloadedValue>,
}
impl Reload {
/// Create a new blank reload pass.
pub fn new() -> Reload {
Reload {
candidates: Vec::new(),
reloads: SparseMap::new(),
}
}
/// Run the reload algorithm over `func`.
pub fn run(&mut self,
isa: &TargetIsa,
func: &mut Function,
domtree: &DominatorTree,
liveness: &mut Liveness,
topo: &mut TopoOrder,
tracker: &mut LiveValueTracker) {
let mut ctx = Context {
encinfo: isa.encoding_info(),
domtree,
liveness,
topo,
candidates: &mut self.candidates,
reloads: &mut self.reloads,
};
ctx.run(func, tracker)
}
}
/// A reload candidate.
///
/// This represents a stack value that is used by the current instruction where a register is
/// needed.
struct ReloadCandidate {
value: Value,
regclass: RegClass,
}
/// A Reloaded value.
///
/// This represents a value that has been reloaded into a register value from the stack.
struct ReloadedValue {
stack: Value,
reg: Value,
}
impl SparseMapValue<Value> for ReloadedValue {
fn key(&self) -> Value {
self.stack
}
}
impl<'a> Context<'a> {
fn run(&mut self, func: &mut Function, tracker: &mut LiveValueTracker) {
self.topo.reset(func.layout.ebbs());
while let Some(ebb) = self.topo.next(&func.layout, self.domtree) {
self.visit_ebb(ebb, func, tracker);
}
}
fn visit_ebb(&mut self, ebb: Ebb, func: &mut Function, tracker: &mut LiveValueTracker) {
dbg!("Reloading {}:", ebb);
let start_from = self.visit_ebb_header(ebb, func, tracker);
tracker.drop_dead_args();
let mut pos = Cursor::new(&mut func.layout);
pos.set_position(start_from);
while let Some(inst) = pos.current_inst() {
let encoding = func.encodings[inst];
if encoding.is_legal() {
self.visit_inst(ebb, inst, encoding, &mut pos, &mut func.dfg, tracker);
tracker.drop_dead(inst);
} else {
pos.next_inst();
}
}
}
/// Process the EBB parameters. Return the next instruction in the EBB to be processed
fn visit_ebb_header(&self,
ebb: Ebb,
func: &mut Function,
tracker: &mut LiveValueTracker)
-> CursorPosition {
let (liveins, args) =
tracker.ebb_top(ebb, &func.dfg, self.liveness, &func.layout, self.domtree);
if func.layout.entry_block() == Some(ebb) {
assert_eq!(liveins.len(), 0);
self.visit_entry_args(ebb, func, args)
} else {
self.visit_ebb_args(ebb, func, args)
}
}
/// Visit the arguments to the entry block.
/// These values have ABI constraints from the function signature.
fn visit_entry_args(&self,
ebb: Ebb,
func: &mut Function,
args: &[LiveValue])
-> CursorPosition {
assert_eq!(func.signature.argument_types.len(), args.len());
let mut pos = Cursor::new(&mut func.layout);
pos.goto_top(ebb);
pos.next_inst();
for (abi, arg) in func.signature.argument_types.iter().zip(args) {
match abi.location {
ArgumentLoc::Reg(_) => {
if arg.affinity.is_stack() {
// An incoming register parameter was spilled. Replace the parameter value
// with a temporary register value that is immediately spilled.
let reg = func.dfg.replace_ebb_arg(arg.value, abi.value_type);
func.dfg.ins(&mut pos).with_result(arg.value).spill(reg);
// TODO: Update live ranges.
}
}
ArgumentLoc::Stack(_) => {
assert!(arg.affinity.is_stack());
}
ArgumentLoc::Unassigned => panic!("Unexpected ABI location"),
}
}
pos.position()
}
fn visit_ebb_args(&self, ebb: Ebb, func: &mut Function, _args: &[LiveValue]) -> CursorPosition {
let mut pos = Cursor::new(&mut func.layout);
pos.goto_top(ebb);
pos.next_inst();
pos.position()
}
/// Process the instruction pointed to by `pos`, and advance the cursor to the next instruction
/// that needs processing.
fn visit_inst(&mut self,
ebb: Ebb,
inst: Inst,
encoding: Encoding,
pos: &mut Cursor,
dfg: &mut DataFlowGraph,
tracker: &mut LiveValueTracker) {
// Get the operand constraints for `inst` that we are trying to satisfy.
let constraints = self.encinfo
.operand_constraints(encoding)
.expect("Missing instruction encoding");
assert!(self.candidates.is_empty());
// Identify reload candidates.
for (op, &arg) in constraints.ins.iter().zip(dfg.inst_args(inst)) {
if op.kind != ConstraintKind::Stack {
let lv = self.liveness.get(arg).expect("Missing live range for arg");
if lv.affinity.is_stack() {
self.candidates
.push(ReloadCandidate {
value: arg,
regclass: op.regclass,
})
}
}
}
// Insert fill instructions before `inst`.
while let Some(cand) = self.candidates.pop() {
if let Some(_reload) = self.reloads.get_mut(cand.value) {
continue;
}
let reg = dfg.ins(pos).fill(cand.value);
self.reloads
.insert(ReloadedValue {
stack: cand.value,
reg: reg,
});
// Create a live range for the new reload.
let affinity = Affinity::Reg(cand.regclass.into());
self.liveness.create_dead(reg, dfg.value_def(reg), affinity);
self.liveness.extend_locally(reg, ebb, inst, &pos.layout);
}
// Rewrite arguments.
for arg in dfg.inst_args_mut(inst) {
if let Some(reload) = self.reloads.get(*arg) {
*arg = reload.reg;
}
}
// TODO: Reuse reloads for future instructions.
self.reloads.clear();
let (_throughs, _kills, defs) = tracker.process_inst(inst, dfg, self.liveness);
// Advance to the next instruction so we can insert any spills after the instruction.
pos.next_inst();
// Rewrite register defs that need to be spilled.
//
// Change:
//
// v2 = inst ...
//
// Into:
//
// v7 = inst ...
// v2 = spill v7
//
// That way, we don't need to rewrite all future uses of v2.
for (lv, op) in defs.iter().zip(constraints.outs) {
if lv.affinity.is_stack() && op.kind != ConstraintKind::Stack {
let value_type = dfg.value_type(lv.value);
let reg = dfg.replace_result(lv.value, value_type);
dfg.ins(pos).with_result(lv.value).spill(reg);
let spill = dfg.value_def(lv.value).unwrap_inst();
// Create a live range for reg.
self.liveness.create_dead(reg, inst, Affinity::new(op));
self.liveness.extend_locally(reg, ebb, spill, &pos.layout);
self.liveness.move_def_locally(lv.value, spill);
}
}
}
}