Improve uimm128 parsing
This commit changes 128-bit constant parsing in two ways: - it adds the ability to use underscores to separate digits when writing a 128-bit constant in hexadecimal; e.g. `0x00010203...` can now be written as `0x0001_0203_...` - it adds a new mechanism for parsing 128-bit constants using integer/float/boolean literals; e.g. `vconst.i32x4 [1 2 3 4]`. Note that currently the controlling type of the instruction dictates how many literals to parse inside the brackets.
This commit is contained in:
@@ -5,9 +5,29 @@
|
||||
//! `cranelift-codegen/meta/src/shared/immediates` crate in the meta language.
|
||||
|
||||
use core::fmt::{self, Display, Formatter};
|
||||
use core::iter::FromIterator;
|
||||
use core::mem;
|
||||
use core::str::FromStr;
|
||||
use core::str::{from_utf8, FromStr};
|
||||
use core::{i32, u32};
|
||||
use std::vec::Vec;
|
||||
|
||||
/// Convert a type into a vector of bytes; all implementors in this file must use little-endian
|
||||
/// orderings of bytes to match WebAssembly's little-endianness.
|
||||
trait IntoBytes {
|
||||
fn into_bytes(self) -> Vec<u8>;
|
||||
}
|
||||
|
||||
impl IntoBytes for u8 {
|
||||
fn into_bytes(self) -> Vec<u8> {
|
||||
vec![self]
|
||||
}
|
||||
}
|
||||
|
||||
impl IntoBytes for i32 {
|
||||
fn into_bytes(self) -> Vec<u8> {
|
||||
self.to_le_bytes().to_vec()
|
||||
}
|
||||
}
|
||||
|
||||
/// 64-bit immediate signed integer operand.
|
||||
///
|
||||
@@ -34,6 +54,12 @@ impl Into<i64> for Imm64 {
|
||||
}
|
||||
}
|
||||
|
||||
impl IntoBytes for Imm64 {
|
||||
fn into_bytes(self) -> Vec<u8> {
|
||||
self.0.to_le_bytes().to_vec()
|
||||
}
|
||||
}
|
||||
|
||||
impl From<i64> for Imm64 {
|
||||
fn from(x: i64) -> Self {
|
||||
Imm64(x)
|
||||
@@ -270,6 +296,23 @@ impl FromStr for Uimm32 {
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
|
||||
pub struct Uimm128(pub [u8; 16]);
|
||||
|
||||
impl Uimm128 {
|
||||
/// Iterate over the bytes in the constant
|
||||
pub fn bytes(&self) -> impl Iterator<Item = &u8> {
|
||||
self.0.iter()
|
||||
}
|
||||
|
||||
/// Convert the immediate into a vector
|
||||
pub fn to_vec(self) -> Vec<u8> {
|
||||
self.0.to_vec()
|
||||
}
|
||||
|
||||
/// Convert the immediate into a slice
|
||||
pub fn as_slice(&self) -> &[u8] {
|
||||
&self.0[..]
|
||||
}
|
||||
}
|
||||
|
||||
impl Display for Uimm128 {
|
||||
// print a 128-bit vector in hexadecimal, e.g. 0x000102030405060708090a0b0c0d0e0f
|
||||
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
|
||||
@@ -314,24 +357,84 @@ impl FromStr for Uimm128 {
|
||||
fn from_str(s: &str) -> Result<Self, &'static str> {
|
||||
if s.len() <= 2 || &s[0..2] != "0x" {
|
||||
Err("Expected a hexadecimal string, e.g. 0x1234")
|
||||
} else if s.len() % 2 != 0 {
|
||||
} else {
|
||||
// clean and check the string
|
||||
let cleaned: Vec<u8> = s[2..]
|
||||
.as_bytes()
|
||||
.iter()
|
||||
.filter(|&&b| b as char != '_')
|
||||
.cloned()
|
||||
.collect(); // remove 0x prefix and any intervening _ characters
|
||||
|
||||
if cleaned.len() == 0 {
|
||||
Err("Hexadecimal string must have some digits")
|
||||
} else if cleaned.len() % 2 != 0 {
|
||||
Err("Hexadecimal string must have an even number of digits")
|
||||
} else if s.len() > 34 {
|
||||
} else if cleaned.len() > 32 {
|
||||
Err("Hexadecimal string has too many digits to fit in a 128-bit vector")
|
||||
} else {
|
||||
let mut buffer = [0; 16]; // zero-fill
|
||||
let start_at = s.len() / 2 - 1;
|
||||
for i in (2..s.len()).step_by(2) {
|
||||
let byte = u8::from_str_radix(&s[i..i + 2], 16)
|
||||
let mut buffer = [0; 16]; // zero-fill the buffer
|
||||
let mut position = cleaned.len() / 2 - 1; // since Uimm128 is little-endian but the string is not, we write from back to front but must start at the highest position required by the string
|
||||
for i in (0..cleaned.len()).step_by(2) {
|
||||
let pair = from_utf8(&cleaned[i..i + 2])
|
||||
.or_else(|_| Err("Unable to parse hexadecimal pair as UTF-8"))?;
|
||||
let byte = u8::from_str_radix(pair, 16)
|
||||
.or_else(|_| Err("Unable to parse as hexadecimal"))?;
|
||||
let position = start_at - (i / 2);
|
||||
buffer[position] = byte;
|
||||
position = position.wrapping_sub(1); // should only wrap on the last iteration
|
||||
}
|
||||
|
||||
Ok(Uimm128(buffer))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Implement a way to convert an iterator of immediates to a Uimm128:
|
||||
/// - this expects the items in reverse order (e.g. last lane first) which is the natural output of pushing items into a vector
|
||||
/// - this may not fully consume the iterator or may fail if it cannot take the expected number of items
|
||||
/// - this requires the input type (i.e. $ty) to implement ToBytes
|
||||
macro_rules! construct_uimm128_from_iterator_of {
|
||||
( $ty:ident, $lanes:expr ) => {
|
||||
impl FromIterator<$ty> for Uimm128 {
|
||||
fn from_iter<T: IntoIterator<Item = $ty>>(iter: T) -> Self {
|
||||
let mut buffer: [u8; 16] = [0; 16];
|
||||
iter.into_iter()
|
||||
.take($lanes)
|
||||
.map(|f| f.into_bytes())
|
||||
.flat_map(|b| b)
|
||||
.enumerate()
|
||||
.for_each(|(i, b)| buffer[i] = b);
|
||||
Uimm128(buffer)
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/// Special case for booleans since we have to decide the bit-width based on the number of items
|
||||
impl FromIterator<bool> for Uimm128 {
|
||||
fn from_iter<T: IntoIterator<Item = bool>>(iter: T) -> Self {
|
||||
let bools = Vec::from_iter(iter);
|
||||
let count = bools.len();
|
||||
assert!(count > 0 && count <= 16); // ensure we don't have too many booleans
|
||||
assert_eq!(count & (count - 1), 0); // ensure count is a power of two, see https://stackoverflow.com/questions/600293
|
||||
let mut buffer: [u8; 16] = [0; 16];
|
||||
let step = 16 / count;
|
||||
bools
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(i, &b)| (i * step, if b { 1 } else { 0 }))
|
||||
.for_each(|(i, b)| buffer[i] = b);
|
||||
Uimm128(buffer)
|
||||
}
|
||||
}
|
||||
|
||||
construct_uimm128_from_iterator_of!(u8, 16);
|
||||
construct_uimm128_from_iterator_of!(i32, 4);
|
||||
construct_uimm128_from_iterator_of!(Ieee32, 4);
|
||||
construct_uimm128_from_iterator_of!(Imm64, 2);
|
||||
construct_uimm128_from_iterator_of!(Ieee64, 2);
|
||||
|
||||
/// 32-bit signed immediate offset.
|
||||
///
|
||||
/// This is used to encode an immediate offset for load/store instructions. All supported ISAs have
|
||||
@@ -739,6 +842,12 @@ impl From<f32> for Ieee32 {
|
||||
}
|
||||
}
|
||||
|
||||
impl IntoBytes for Ieee32 {
|
||||
fn into_bytes(self) -> Vec<u8> {
|
||||
self.0.to_le_bytes().to_vec()
|
||||
}
|
||||
}
|
||||
|
||||
impl Ieee64 {
|
||||
/// Create a new `Ieee64` containing the bits of `x`.
|
||||
pub fn with_bits(x: u64) -> Self {
|
||||
@@ -812,6 +921,12 @@ impl From<u64> for Ieee64 {
|
||||
}
|
||||
}
|
||||
|
||||
impl IntoBytes for Ieee64 {
|
||||
fn into_bytes(self) -> Vec<u8> {
|
||||
self.0.to_le_bytes().to_vec()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
@@ -968,9 +1083,10 @@ mod tests {
|
||||
parse_ok::<Uimm128>("0x00", "0x00");
|
||||
parse_ok::<Uimm128>("0x00000042", "0x42");
|
||||
parse_ok::<Uimm128>(
|
||||
"0x0102030405060708090a0b0c0d0e0f",
|
||||
"0x0102030405060708090a0b0c0d0e0f",
|
||||
"0x0102030405060708090a0b0c0d0e0f00",
|
||||
"0x0102030405060708090a0b0c0d0e0f00",
|
||||
);
|
||||
parse_ok::<Uimm128>("0x_0000_0043_21", "0x4321");
|
||||
|
||||
parse_err::<Uimm128>("", "Expected a hexadecimal string, e.g. 0x1234");
|
||||
parse_err::<Uimm128>("0x", "Expected a hexadecimal string, e.g. 0x1234");
|
||||
@@ -982,6 +1098,24 @@ mod tests {
|
||||
"0x00000000000000000000000000000000000000000000000000",
|
||||
"Hexadecimal string has too many digits to fit in a 128-bit vector",
|
||||
);
|
||||
parse_err::<Uimm128>("0xrstu", "Unable to parse as hexadecimal");
|
||||
parse_err::<Uimm128>("0x__", "Hexadecimal string must have some digits");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn uimm128_equivalence() {
|
||||
assert_eq!(
|
||||
"0x01".parse::<Uimm128>().unwrap().0,
|
||||
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
);
|
||||
assert_eq!(
|
||||
Uimm128::from_iter(vec![1, 0, 0, 0]).0,
|
||||
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
);
|
||||
assert_eq!(
|
||||
Uimm128::from(1).0,
|
||||
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -997,6 +1131,50 @@ mod tests {
|
||||
assert_eq!(
|
||||
"0x12345678".parse::<Uimm128>().unwrap().0,
|
||||
[0x78, 0x56, 0x34, 0x12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
);
|
||||
assert_eq!(
|
||||
"0x1234_5678".parse::<Uimm128>().unwrap().0,
|
||||
[0x78, 0x56, 0x34, 0x12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn uimm128_from_iter() {
|
||||
assert_eq!(
|
||||
Uimm128::from_iter(vec![4, 3, 2, 1]).0,
|
||||
[4, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
Uimm128::from_iter(vec![false, true]).0,
|
||||
[/* false */ 0, 0, 0, 0, 0, 0, 0, 0, /* true */ 1, 0, 0, 0, 0, 0, 0, 0]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
Uimm128::from_iter(vec![false, true, false, true, false, true, false, true]).0,
|
||||
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0]
|
||||
);
|
||||
|
||||
#[allow(trivial_numeric_casts)]
|
||||
let u8s = vec![
|
||||
1 as u8, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0,
|
||||
];
|
||||
assert_eq!(
|
||||
Uimm128::from_iter(u8s).0,
|
||||
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0]
|
||||
);
|
||||
|
||||
#[allow(trivial_numeric_casts)]
|
||||
let ieee32s: Vec<Ieee32> = vec![32.4 as f32, 0.0, 1.0, 6.6666]
|
||||
.iter()
|
||||
.map(|&f| Ieee32::from(f))
|
||||
.collect();
|
||||
assert_eq!(
|
||||
Uimm128::from_iter(ieee32s).0,
|
||||
[
|
||||
/* 32.4 == */ 0x9a, 0x99, 0x01, 0x42, /* 0 == */ 0, 0, 0, 0,
|
||||
/* 1 == */ 0, 0, 0x80, 0x3f, /* 6.6666 == */ 0xca, 0x54, 0xd5, 0x40,
|
||||
]
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
@@ -1,13 +0,0 @@
|
||||
test rodata
|
||||
set enable_simd=true
|
||||
set probestack_enabled=false
|
||||
target x86_64 haswell
|
||||
|
||||
; use baldrdash calling convention here for simplicity (avoids prologue, epilogue)
|
||||
function %test_vconst_i32() -> i32x4 baldrdash_system_v {
|
||||
ebb0:
|
||||
v0 = vconst.i32x4 0x1234
|
||||
return v0
|
||||
}
|
||||
|
||||
; sameln: [34, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
20
cranelift/filetests/filetests/isa/x86/vconst-rodata.clif
Normal file
20
cranelift/filetests/filetests/isa/x86/vconst-rodata.clif
Normal file
@@ -0,0 +1,20 @@
|
||||
test rodata
|
||||
set enable_simd=true
|
||||
set probestack_enabled=false
|
||||
target x86_64 haswell
|
||||
|
||||
function %test_vconst_i32() -> i32x4 {
|
||||
ebb0:
|
||||
v0 = vconst.i32x4 0x1234
|
||||
return v0
|
||||
}
|
||||
|
||||
; sameln: [34, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
|
||||
function %test_vconst_b16() -> b16x8 {
|
||||
ebb0:
|
||||
v0 = vconst.b16x8 [true false true false true false true true]
|
||||
return v0
|
||||
}
|
||||
|
||||
; sameln: [1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0]
|
||||
21
cranelift/filetests/filetests/isa/x86/vconst-run.clif
Normal file
21
cranelift/filetests/filetests/isa/x86/vconst-run.clif
Normal file
@@ -0,0 +1,21 @@
|
||||
test run
|
||||
set enable_simd
|
||||
|
||||
function %test_vconst_syntax() -> b1 {
|
||||
ebb0:
|
||||
v0 = vconst.i32x4 0x00000004_00000003_00000002_00000001 ; build constant using hexadecimal syntax
|
||||
v1 = vconst.i32x4 [1 2 3 4] ; build constant using literal list syntax
|
||||
|
||||
; verify lane 1 matches
|
||||
v2 = extractlane v0, 1
|
||||
v3 = extractlane v1, 1
|
||||
v4 = icmp eq v3, v2
|
||||
|
||||
; verify lane 1 has the correct value
|
||||
v5 = icmp_imm eq v3, 2
|
||||
|
||||
v6 = band v4, v5
|
||||
return v6
|
||||
}
|
||||
|
||||
; run
|
||||
@@ -12,6 +12,7 @@ use cranelift_codegen::ir::entities::AnyEntity;
|
||||
use cranelift_codegen::ir::immediates::{Ieee32, Ieee64, Imm64, Offset32, Uimm128, Uimm32, Uimm64};
|
||||
use cranelift_codegen::ir::instructions::{InstructionData, InstructionFormat, VariableArgs};
|
||||
use cranelift_codegen::ir::types::INVALID;
|
||||
use cranelift_codegen::ir::types::*;
|
||||
use cranelift_codegen::ir::{
|
||||
AbiParam, ArgumentExtension, ArgumentLoc, Ebb, ExtFuncData, ExternalName, FuncRef, Function,
|
||||
GlobalValue, GlobalValueData, Heap, HeapData, HeapStyle, JumpTable, JumpTableData, MemFlags,
|
||||
@@ -21,6 +22,7 @@ use cranelift_codegen::ir::{
|
||||
use cranelift_codegen::isa::{self, CallConv, Encoding, RegUnit, TargetIsa};
|
||||
use cranelift_codegen::packed_option::ReservedValue;
|
||||
use cranelift_codegen::{settings, timing};
|
||||
use std::iter::FromIterator;
|
||||
use std::mem;
|
||||
use std::str::FromStr;
|
||||
use std::{u16, u32};
|
||||
@@ -610,6 +612,19 @@ impl<'a> Parser<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
// Match and consume either a hexadecimal Uimm128 immediate (e.g. 0x000102...) or its literal list form (e.g. [0 1 2...])
|
||||
fn match_uimm128_or_literals(&mut self, controlling_type: Type) -> ParseResult<Uimm128> {
|
||||
if self.optional(Token::LBracket) {
|
||||
// parse using a list of values, e.g. vconst.i32x4 [0 1 2 3]
|
||||
let uimm128 = self.parse_literals_to_uimm128(controlling_type)?;
|
||||
self.match_token(Token::RBracket, "expected a terminating right bracket")?;
|
||||
Ok(uimm128)
|
||||
} else {
|
||||
// parse using a hexadecimal value
|
||||
self.match_uimm128("expected an immediate hexadecimal operand")
|
||||
}
|
||||
}
|
||||
|
||||
// Match and consume a Uimm64 immediate.
|
||||
fn match_uimm64(&mut self, err_msg: &str) -> ParseResult<Uimm64> {
|
||||
if let Some(Token::Integer(text)) = self.token() {
|
||||
@@ -821,6 +836,36 @@ impl<'a> Parser<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Parse a list of literals (i.e. integers, floats, booleans); e.g.
|
||||
fn parse_literals_to_uimm128(&mut self, ty: Type) -> ParseResult<Uimm128> {
|
||||
macro_rules! consume {
|
||||
( $ty:ident, $match_fn:expr ) => {{
|
||||
assert!($ty.is_vector());
|
||||
let mut v = Vec::with_capacity($ty.lane_count() as usize);
|
||||
for _ in 0..$ty.lane_count() {
|
||||
v.push($match_fn?);
|
||||
}
|
||||
Uimm128::from_iter(v)
|
||||
}};
|
||||
}
|
||||
|
||||
if !ty.is_vector() {
|
||||
err!(self.loc, "Expected a controlling vector type, not {}", ty)
|
||||
} else {
|
||||
let uimm128 = match ty.lane_type() {
|
||||
I8 => consume!(ty, self.match_uimm8("Expected an 8-bit unsigned integer")),
|
||||
I16 => unimplemented!(), // TODO no 16-bit match yet
|
||||
I32 => consume!(ty, self.match_imm32("Expected a 32-bit integer")),
|
||||
I64 => consume!(ty, self.match_imm64("Expected a 64-bit integer")),
|
||||
F32 => consume!(ty, self.match_ieee32("Expected a 32-bit float...")),
|
||||
F64 => consume!(ty, self.match_ieee64("Expected a 64-bit float")),
|
||||
b if b.is_bool() => consume!(ty, self.match_bool("Expected a boolean")),
|
||||
_ => return err!(self.loc, "Expected a type of: float, int, bool"),
|
||||
};
|
||||
Ok(uimm128)
|
||||
}
|
||||
}
|
||||
|
||||
/// Parse a list of test command passes specified in command line.
|
||||
pub fn parse_cmdline_passes(&mut self, passes: &'a [String]) -> Vec<TestCommand<'a>> {
|
||||
let mut list = Vec::new();
|
||||
@@ -1977,7 +2022,7 @@ impl<'a> Parser<'a> {
|
||||
};
|
||||
|
||||
// instruction ::= [inst-results "="] Opcode(opc) ["." Type] * ...
|
||||
let inst_data = self.parse_inst_operands(ctx, opcode)?;
|
||||
let inst_data = self.parse_inst_operands(ctx, opcode, explicit_ctrl_type)?;
|
||||
|
||||
// We're done parsing the instruction now.
|
||||
//
|
||||
@@ -2186,6 +2231,7 @@ impl<'a> Parser<'a> {
|
||||
&mut self,
|
||||
ctx: &mut Context,
|
||||
opcode: Opcode,
|
||||
explicit_control_type: Option<Type>,
|
||||
) -> ParseResult<InstructionData> {
|
||||
let idata = match opcode.format() {
|
||||
InstructionFormat::Unary => InstructionData::Unary {
|
||||
@@ -2196,14 +2242,23 @@ impl<'a> Parser<'a> {
|
||||
opcode,
|
||||
imm: self.match_imm64("expected immediate integer operand")?,
|
||||
},
|
||||
InstructionFormat::UnaryImm128 => {
|
||||
let uimm128 = self.match_uimm128("expected immediate hexadecimal operand")?;
|
||||
InstructionFormat::UnaryImm128 => match explicit_control_type {
|
||||
None => {
|
||||
return err!(
|
||||
self.loc,
|
||||
"Expected {:?} to have a controlling type variable, e.g. inst.i32x4",
|
||||
opcode
|
||||
)
|
||||
}
|
||||
Some(ty) => {
|
||||
let uimm128 = self.match_uimm128_or_literals(ty)?;
|
||||
let constant_handle = ctx.function.dfg.constants.insert(uimm128.0.to_vec());
|
||||
InstructionData::UnaryImm128 {
|
||||
opcode,
|
||||
imm: constant_handle,
|
||||
}
|
||||
}
|
||||
},
|
||||
InstructionFormat::UnaryIeee32 => InstructionData::UnaryIeee32 {
|
||||
opcode,
|
||||
imm: self.match_ieee32("expected immediate 32-bit float operand")?,
|
||||
@@ -3150,4 +3205,35 @@ mod tests {
|
||||
CallConv::Cold
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn uimm128() {
|
||||
macro_rules! parse_as_uimm128 {
|
||||
($text:expr, $type:expr) => {{
|
||||
Parser::new($text).parse_literals_to_uimm128($type)
|
||||
}};
|
||||
}
|
||||
macro_rules! can_parse_as_uimm128 {
|
||||
($text:expr, $type:expr) => {{
|
||||
assert!(parse_as_uimm128!($text, $type).is_ok())
|
||||
}};
|
||||
}
|
||||
macro_rules! cannot_parse_as_uimm128 {
|
||||
($text:expr, $type:expr) => {{
|
||||
assert!(parse_as_uimm128!($text, $type).is_err())
|
||||
}};
|
||||
}
|
||||
|
||||
can_parse_as_uimm128!("1 2 3 4", I32X4);
|
||||
can_parse_as_uimm128!("1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16", I8X16);
|
||||
can_parse_as_uimm128!("0x1.1 0x2.2 0x3.3 0x4.4", F32X4);
|
||||
can_parse_as_uimm128!("true false true false true false true false", B16X8);
|
||||
can_parse_as_uimm128!("0 -1", I64X2);
|
||||
can_parse_as_uimm128!("true false", B64X2);
|
||||
can_parse_as_uimm128!("true true true true true", B32X4); // note that parse_literals_to_uimm128 will leave extra tokens unconsumed
|
||||
|
||||
cannot_parse_as_uimm128!("0x0 0x1 0x2 0x3", I32X4);
|
||||
cannot_parse_as_uimm128!("1 2 3", I32X4);
|
||||
cannot_parse_as_uimm128!(" ", F32X4);
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user