[meta] Port Formats and Operands to the Rust crate;

This commit is contained in:
Benjamin Bouvier
2019-03-11 19:25:11 +01:00
parent 146e0bd2f5
commit d59bef1902
7 changed files with 978 additions and 0 deletions

View File

@@ -0,0 +1,246 @@
use crate::cdsl::operands::{Operand, OperandKind};
use std::collections::{HashMap, HashSet};
use std::fmt;
use std::slice;
use cranelift_entity::{entity_impl, PrimaryMap};
/// An immediate field in an instruction format.
///
/// This corresponds to a single member of a variant of the `InstructionData`
/// data type.
///
/// :param iform: Parent `InstructionFormat`.
/// :param kind: Immediate Operand kind.
/// :param member: Member name in `InstructionData` variant.
#[derive(Debug)]
pub struct FormatField {
/// Immediate operand number in parent.
immnum: usize,
/// Immediate operand kind.
pub kind: OperandKind,
/// Member name in InstructionDate variant.
pub member: &'static str,
}
/// Every instruction opcode has a corresponding instruction format which
/// determines the number of operands and their kinds. Instruction formats are
/// identified structurally, i.e., the format of an instruction is derived from
/// the kinds of operands used in its declaration.
///
/// The instruction format stores two separate lists of operands: Immediates
/// and values. Immediate operands (including entity references) are
/// represented as explicit members in the `InstructionData` variants. The
/// value operands are stored differently, depending on how many there are.
/// Beyond a certain point, instruction formats switch to an external value
/// list for storing value arguments. Value lists can hold an arbitrary number
/// of values.
///
/// All instruction formats must be predefined in the meta shared/formats module.
///
/// :param kinds: List of `OperandKind` objects describing the operands.
/// :param name: Instruction format name in CamelCase. This is used as a Rust
/// variant name in both the `InstructionData` and `InstructionFormat`
/// enums.
/// :param typevar_operand: Index of the value input operand that is used to
/// infer the controlling type variable. By default, this is `0`, the first
/// `value` operand. The index is relative to the values only, ignoring
/// immediate operands.
#[derive(Debug)]
pub struct InstructionFormat {
pub name: &'static str,
pub num_value_operands: usize,
pub has_value_list: bool,
pub imm_fields: Vec<FormatField>,
pub typevar_operand: Option<usize>,
}
impl fmt::Display for InstructionFormat {
fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
let args = self
.imm_fields
.iter()
.map(|field| format!("{}: {}", field.member, field.kind.name))
.collect::<Vec<_>>()
.join(", ");
fmt.write_fmt(format_args!(
"{}(imms=({}), vals={})",
self.name, args, self.num_value_operands
))?;
Ok(())
}
}
pub struct InstructionFormatBuilder {
name: &'static str,
num_value_operands: usize,
has_value_list: bool,
imm_fields: Vec<FormatField>,
typevar_operand: Option<usize>,
}
pub struct ImmParameter {
kind: OperandKind,
member: &'static str,
}
impl Into<ImmParameter> for (&'static str, &OperandKind) {
fn into(self) -> ImmParameter {
ImmParameter {
kind: self.1.clone(),
member: self.0,
}
}
}
impl Into<ImmParameter> for &OperandKind {
fn into(self) -> ImmParameter {
ImmParameter {
kind: self.clone(),
member: self.default_member.unwrap(),
}
}
}
impl InstructionFormatBuilder {
pub fn new(name: &'static str) -> Self {
Self {
name,
num_value_operands: 0,
has_value_list: false,
imm_fields: Vec::new(),
typevar_operand: None,
}
}
pub fn value(mut self) -> Self {
self.num_value_operands += 1;
self
}
pub fn varargs(mut self) -> Self {
self.has_value_list = true;
self
}
pub fn imm(mut self, param: impl Into<ImmParameter>) -> Self {
let imm_param = param.into();
let field = FormatField {
immnum: self.imm_fields.len(),
kind: imm_param.kind,
member: imm_param.member,
};
self.imm_fields.push(field);
self
}
pub fn typevar_operand(mut self, operand_index: usize) -> Self {
assert!(self.typevar_operand.is_none());
assert!(self.has_value_list || operand_index < self.num_value_operands);
self.typevar_operand = Some(operand_index);
self
}
pub fn finish(self) -> InstructionFormat {
let typevar_operand = if self.typevar_operand.is_some() {
self.typevar_operand
} else if self.has_value_list || self.num_value_operands > 0 {
// Default to the first value operand, if there's one.
Some(0)
} else {
None
};
InstructionFormat {
name: self.name,
num_value_operands: self.num_value_operands,
has_value_list: self.has_value_list,
imm_fields: self.imm_fields,
typevar_operand,
}
}
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct InstructionFormatIndex(u32);
entity_impl!(InstructionFormatIndex);
pub struct FormatRegistry {
/// Map (immediate kinds names, number of values, has varargs) to an instruction format index
/// in the actual map.
sig_to_index: HashMap<(Vec<String>, usize, bool), InstructionFormatIndex>,
map: PrimaryMap<InstructionFormatIndex, InstructionFormat>,
name_set: HashSet<&'static str>,
}
impl FormatRegistry {
pub fn new() -> Self {
Self {
sig_to_index: HashMap::new(),
map: PrimaryMap::new(),
name_set: HashSet::new(),
}
}
/// Find an existing instruction format that matches the given lists of instruction inputs and
/// outputs.
pub fn lookup(&self, operands_in: &Vec<Operand>) -> InstructionFormatIndex {
let mut imm_keys = Vec::new();
let mut num_values = 0;
let mut has_varargs = false;
for operand in operands_in.iter() {
if operand.is_value() {
num_values += 1;
}
has_varargs = has_varargs || operand.is_varargs();
if let Some(imm_key) = operand.kind.imm_key() {
imm_keys.push(imm_key);
}
}
let sig = (imm_keys, num_values, has_varargs);
*self
.sig_to_index
.get(&sig)
.expect("unknown InstructionFormat; please define it in shared/formats.rs first")
}
pub fn get(&self, index: InstructionFormatIndex) -> &InstructionFormat {
self.map.get(index).unwrap()
}
pub fn insert(&mut self, inst_format: InstructionFormatBuilder) {
let name = &inst_format.name;
if !self.name_set.insert(name) {
panic!(
"Trying to add an InstructionFormat named {}, but it already exists!",
name
);
}
let format = inst_format.finish();
// Compute key.
let imm_keys = format
.imm_fields
.iter()
.map(|field| field.kind.imm_key().unwrap())
.collect();
let key = (imm_keys, format.num_value_operands, format.has_value_list);
let index = self.map.push(format);
if let Some(already_inserted) = self.sig_to_index.insert(key, index) {
panic!(
"duplicate InstructionFormat: trying to insert '{}' while '{}' already has the same structure.",
self.map.get(index).unwrap().name,
self.map.get(already_inserted).unwrap().name
);
}
}
pub fn iter(&self) -> slice::Iter<InstructionFormat> {
self.map.values()
}
}

View File

@@ -3,7 +3,9 @@
//! This module defines the classes that are used to define Cranelift
//! instructions and other entities.
pub mod formats;
pub mod isa;
pub mod operands;
pub mod regs;
pub mod settings;
pub mod types;

View File

@@ -0,0 +1,285 @@
use std::collections::HashMap;
use crate::cdsl::camel_case;
use crate::cdsl::typevar::TypeVar;
/// An instruction operand can be an *immediate*, an *SSA value*, or an *entity reference*. The
/// type of the operand is one of:
///
/// 1. A `ValueType` instance indicates an SSA value operand with a concrete type.
///
/// 2. A `TypeVar` instance indicates an SSA value operand, and the instruction is polymorphic over
/// the possible concrete types that the type variable can assume.
///
/// 3. An `ImmediateKind` instance indicates an immediate operand whose value is encoded in the
/// instruction itself rather than being passed as an SSA value.
///
/// 4. An `EntityRefKind` instance indicates an operand that references another entity in the
/// function, typically something declared in the function preamble.
#[derive(Clone, Debug)]
pub struct Operand {
pub name: &'static str,
pub doc: Option<String>,
pub kind: OperandKind,
}
impl Operand {
pub fn is_value(&self) -> bool {
match self.kind.fields {
OperandKindFields::TypeVar(_) => true,
_ => false,
}
}
pub fn type_var(&self) -> Option<&TypeVar> {
match &self.kind.fields {
OperandKindFields::TypeVar(typevar) => Some(typevar),
_ => None,
}
}
pub fn is_varargs(&self) -> bool {
match self.kind.fields {
OperandKindFields::VariableArgs => true,
_ => false,
}
}
/// Returns true if the operand has an immediate kind or is an EntityRef.
// TODO inherited name from the python, rename to is_immediate_or_entityref later.
pub fn is_immediate(&self) -> bool {
match self.kind.fields {
OperandKindFields::ImmEnum(_)
| OperandKindFields::ImmValue
| OperandKindFields::EntityRef => true,
_ => false,
}
}
/// Returns true if the operand has an immediate kind.
pub fn is_pure_immediate(&self) -> bool {
match self.kind.fields {
OperandKindFields::ImmEnum(_) | OperandKindFields::ImmValue => true,
_ => false,
}
}
pub fn is_cpu_flags(&self) -> bool {
match &self.kind.fields {
OperandKindFields::TypeVar(type_var)
if type_var.name == "iflags" || type_var.name == "fflags" =>
{
true
}
_ => false,
}
}
}
pub struct OperandBuilder {
name: &'static str,
doc: Option<String>,
kind: OperandKind,
}
impl OperandBuilder {
pub fn new(name: &'static str, kind: OperandKind) -> Self {
Self {
name,
doc: None,
kind,
}
}
pub fn doc(mut self, doc: impl Into<String>) -> Self {
assert!(self.doc.is_none());
self.doc = Some(doc.into());
self
}
pub fn finish(self) -> Operand {
let doc = match self.doc {
Some(doc) => Some(doc),
None => match &self.kind.fields {
OperandKindFields::TypeVar(tvar) => Some(tvar.doc.clone()),
_ => self.kind.doc.clone(),
},
};
Operand {
name: self.name,
doc,
kind: self.kind,
}
}
}
type EnumValues = HashMap<&'static str, &'static str>;
#[derive(Clone, Debug)]
pub enum OperandKindFields {
EntityRef,
VariableArgs,
ImmValue,
ImmEnum(EnumValues),
TypeVar(TypeVar),
}
#[derive(Clone, Debug)]
pub struct OperandKind {
pub name: &'static str,
doc: Option<String>,
pub default_member: Option<&'static str>,
/// The camel-cased name of an operand kind is also the Rust type used to represent it.
pub rust_type: String,
fields: OperandKindFields,
}
impl OperandKind {
pub fn imm_key(&self) -> Option<String> {
match self.fields {
OperandKindFields::ImmEnum(_)
| OperandKindFields::ImmValue
| OperandKindFields::EntityRef => Some(self.name.to_string()),
_ => None,
}
}
pub fn type_var(&self) -> TypeVar {
match &self.fields {
OperandKindFields::TypeVar(tvar) => tvar.clone(),
_ => panic!("not a typevar"),
}
}
}
pub struct OperandKindBuilder {
name: &'static str,
doc: Option<String>,
default_member: Option<&'static str>,
/// The camel-cased name of an operand kind is also the Rust type used to represent it.
rust_type: Option<String>,
fields: OperandKindFields,
}
impl OperandKindBuilder {
pub fn new(name: &'static str, fields: OperandKindFields) -> Self {
Self {
name,
doc: None,
default_member: None,
rust_type: None,
fields,
}
}
pub fn new_imm(name: &'static str) -> Self {
Self {
name,
doc: None,
default_member: None,
rust_type: None,
fields: OperandKindFields::ImmValue,
}
}
pub fn new_enum(name: &'static str, values: EnumValues) -> Self {
Self {
name,
doc: None,
default_member: None,
rust_type: None,
fields: OperandKindFields::ImmEnum(values),
}
}
pub fn doc(mut self, doc: &'static str) -> Self {
assert!(self.doc.is_none());
self.doc = Some(doc.to_string());
self
}
pub fn default_member(mut self, default_member: &'static str) -> Self {
assert!(self.default_member.is_none());
self.default_member = Some(default_member);
self
}
pub fn rust_type(mut self, rust_type: &'static str) -> Self {
assert!(self.rust_type.is_none());
self.rust_type = Some(rust_type.to_string());
self
}
pub fn finish(self) -> OperandKind {
let default_member = match self.default_member {
Some(default_member) => Some(default_member),
None => match &self.fields {
OperandKindFields::ImmEnum(_) | OperandKindFields::ImmValue => Some("imm"),
OperandKindFields::TypeVar(_) | OperandKindFields::EntityRef => Some(self.name),
OperandKindFields::VariableArgs => None,
},
};
let rust_type = match self.rust_type {
Some(rust_type) => rust_type.to_string(),
None => match &self.fields {
OperandKindFields::ImmEnum(_) | OperandKindFields::ImmValue => {
format!("ir::immediates::{}", camel_case(self.name))
}
OperandKindFields::VariableArgs => "&[Value]".to_string(),
OperandKindFields::TypeVar(_) | OperandKindFields::EntityRef => {
format!("ir::{}", camel_case(self.name))
}
},
};
let doc = match self.doc {
Some(doc) => Some(doc),
None => match &self.fields {
OperandKindFields::TypeVar(type_var) => Some(type_var.doc.clone()),
OperandKindFields::ImmEnum(_)
| OperandKindFields::ImmValue
| OperandKindFields::EntityRef
| OperandKindFields::VariableArgs => None,
},
};
OperandKind {
name: self.name,
doc,
default_member,
rust_type,
fields: self.fields,
}
}
}
impl Into<OperandKind> for &TypeVar {
fn into(self) -> OperandKind {
OperandKindBuilder::new("value", OperandKindFields::TypeVar(self.into())).finish()
}
}
impl Into<OperandKind> for &OperandKind {
fn into(self) -> OperandKind {
self.clone()
}
}
/// Helper to create an operand in definitions files.
pub fn create_operand(name: &'static str, kind: impl Into<OperandKind>) -> Operand {
OperandBuilder::new(name, kind.into()).finish()
}
/// Helper to create an operand with a documentation in definitions files.
pub fn create_operand_doc(
name: &'static str,
kind: impl Into<OperandKind>,
doc: &'static str,
) -> Operand {
OperandBuilder::new(name, kind.into()).doc(doc).finish()
}

View File

@@ -0,0 +1,65 @@
use crate::cdsl::operands::{OperandKind, OperandKindBuilder as Builder, OperandKindFields};
/// Small helper to initialize an OperandBuilder with the right kind, for a given name and doc.
fn create(name: &'static str, doc: &'static str) -> Builder {
Builder::new(name, OperandKindFields::EntityRef).doc(doc)
}
pub fn define() -> Vec<OperandKind> {
let mut kinds = Vec::new();
// A reference to an extended basic block in the same function.
// This is primarliy used in control flow instructions.
let ebb = create("ebb", "An extended basic block in the same function.")
.default_member("destination")
.finish();
kinds.push(ebb);
// A reference to a stack slot declared in the function preamble.
let stack_slot = create("stack_slot", "A stack slot").finish();
kinds.push(stack_slot);
// A reference to a global value.
let global_value = create("global_value", "A global value.").finish();
kinds.push(global_value);
// A reference to a function signature declared in the function preamble.
// This is used to provide the call signature in a call_indirect instruction.
let sig_ref = create("sig_ref", "A function signature.").finish();
kinds.push(sig_ref);
// A reference to an external function declared in the function preamble.
// This is used to provide the callee and signature in a call instruction.
let func_ref = create("func_ref", "An external function.").finish();
kinds.push(func_ref);
// A reference to a jump table declared in the function preamble.
let jump_table = create("jump_table", "A jump table.")
.default_member("table")
.finish();
kinds.push(jump_table);
// A reference to a heap declared in the function preamble.
let heap = create("heap", "A heap.").finish();
kinds.push(heap);
// A reference to a table declared in the function preamble.
let table = create("table", "A table.").finish();
kinds.push(table);
// A variable-sized list of value operands. Use for Ebb and function call arguments.
let varargs = Builder::new("variable_args", OperandKindFields::VariableArgs)
.doc(
r#"
A variable size list of `value` operands.
Use this to represent arguments passed to a function call, arguments
passed to an extended basic block, or a variable number of results
returned from an instruction.
"#,
)
.finish();
kinds.push(varargs);
return kinds;
}

View File

@@ -0,0 +1,184 @@
use crate::cdsl::formats::{FormatRegistry, InstructionFormatBuilder as Builder};
use crate::shared::OperandKinds;
pub fn define(immediates: &OperandKinds, entities: &OperandKinds) -> FormatRegistry {
// Shorthands for immediates.
let uimm8 = immediates.by_name("uimm8");
let uimm32 = immediates.by_name("uimm32");
let imm64 = immediates.by_name("imm64");
let ieee32 = immediates.by_name("ieee32");
let ieee64 = immediates.by_name("ieee64");
let boolean = immediates.by_name("boolean");
let intcc = immediates.by_name("intcc");
let floatcc = immediates.by_name("floatcc");
let memflags = immediates.by_name("memflags");
let offset32 = immediates.by_name("offset32");
let trapcode = immediates.by_name("trapcode");
let regunit = immediates.by_name("regunit");
// Shorthands for entities.
let global_value = entities.by_name("global_value");
let ebb = entities.by_name("ebb");
let jump_table = entities.by_name("jump_table");
let func_ref = entities.by_name("func_ref");
let sig_ref = entities.by_name("sig_ref");
let stack_slot = entities.by_name("stack_slot");
let heap = entities.by_name("heap");
let table = entities.by_name("table");
let mut registry = FormatRegistry::new();
registry.insert(Builder::new("Unary").value());
registry.insert(Builder::new("UnaryImm").imm(imm64));
registry.insert(Builder::new("UnaryIeee32").imm(ieee32));
registry.insert(Builder::new("UnaryIeee64").imm(ieee64));
registry.insert(Builder::new("UnaryBool").imm(boolean));
registry.insert(Builder::new("UnaryGlobalValue").imm(global_value));
registry.insert(Builder::new("Binary").value().value());
registry.insert(Builder::new("BinaryImm").value().imm(imm64));
// The select instructions are controlled by the second VALUE operand.
// The first VALUE operand is the controlling flag which has a derived type.
// The fma instruction has the same constraint on all inputs.
registry.insert(
Builder::new("Ternary")
.value()
.value()
.value()
.typevar_operand(1),
);
// Catch-all for instructions with many outputs and inputs and no immediate
// operands.
registry.insert(Builder::new("MultiAry").varargs());
registry.insert(Builder::new("NullAry"));
registry.insert(
Builder::new("InsertLane")
.value()
.imm(("lane", uimm8))
.value(),
);
registry.insert(Builder::new("ExtractLane").value().imm(("lane", uimm8)));
registry.insert(Builder::new("IntCompare").imm(intcc).value().value());
registry.insert(Builder::new("IntCompareImm").imm(intcc).value().imm(imm64));
registry.insert(Builder::new("IntCond").imm(intcc).value());
registry.insert(Builder::new("FloatCompare").imm(floatcc).value().value());
registry.insert(Builder::new("FloatCond").imm(floatcc).value());;
registry.insert(Builder::new("IntSelect").imm(intcc).value().value().value());
registry.insert(Builder::new("Jump").imm(ebb).varargs());
registry.insert(Builder::new("Branch").value().imm(ebb).varargs());
registry.insert(
Builder::new("BranchInt")
.imm(intcc)
.value()
.imm(ebb)
.varargs(),
);
registry.insert(
Builder::new("BranchFloat")
.imm(floatcc)
.value()
.imm(ebb)
.varargs(),
);
registry.insert(
Builder::new("BranchIcmp")
.imm(intcc)
.value()
.value()
.imm(ebb)
.varargs(),
);
registry.insert(Builder::new("BranchTable").value().imm(ebb).imm(jump_table));
registry.insert(
Builder::new("BranchTableEntry")
.value()
.value()
.imm(uimm8)
.imm(jump_table),
);
registry.insert(Builder::new("BranchTableBase").imm(jump_table));
registry.insert(Builder::new("IndirectJump").value().imm(jump_table));
registry.insert(Builder::new("Call").imm(func_ref).varargs());
registry.insert(Builder::new("CallIndirect").imm(sig_ref).value().varargs());
registry.insert(Builder::new("FuncAddr").imm(func_ref));
registry.insert(Builder::new("Load").imm(memflags).value().imm(offset32));
registry.insert(
Builder::new("LoadComplex")
.imm(memflags)
.varargs()
.imm(offset32),
);
registry.insert(
Builder::new("Store")
.imm(memflags)
.value()
.value()
.imm(offset32),
);
registry.insert(
Builder::new("StoreComplex")
.imm(memflags)
.value()
.varargs()
.imm(offset32),
);
registry.insert(Builder::new("StackLoad").imm(stack_slot).imm(offset32));
registry.insert(
Builder::new("StackStore")
.value()
.imm(stack_slot)
.imm(offset32),
);
// Accessing a WebAssembly heap.
registry.insert(Builder::new("HeapAddr").imm(heap).value().imm(uimm32));
// Accessing a WebAssembly table.
registry.insert(Builder::new("TableAddr").imm(table).value().imm(offset32));
registry.insert(
Builder::new("RegMove")
.value()
.imm(("src", regunit))
.imm(("dst", regunit)),
);
registry.insert(
Builder::new("CopySpecial")
.imm(("src", regunit))
.imm(("dst", regunit)),
);
registry.insert(
Builder::new("RegSpill")
.value()
.imm(("src", regunit))
.imm(("dst", stack_slot)),
);
registry.insert(
Builder::new("RegFill")
.value()
.imm(("src", stack_slot))
.imm(("dst", regunit)),
);
registry.insert(Builder::new("Trap").imm(trapcode));
registry.insert(Builder::new("CondTrap").value().imm(trapcode));
registry.insert(Builder::new("IntCondTrap").imm(intcc).value().imm(trapcode));
registry.insert(
Builder::new("FloatCondTrap")
.imm(floatcc)
.value()
.imm(trapcode),
);
registry
}

View File

@@ -0,0 +1,145 @@
use crate::cdsl::operands::{OperandKind, OperandKindBuilder as Builder};
use std::collections::HashMap;
pub fn define() -> Vec<OperandKind> {
let mut kinds = Vec::new();
// A 64-bit immediate integer operand.
//
// This type of immediate integer can interact with SSA values with any
// IntType type.
let imm64 = Builder::new_imm("imm64")
.doc("A 64-bit immediate integer.")
.finish();
kinds.push(imm64);
// An unsigned 8-bit immediate integer operand.
//
// This small operand is used to indicate lane indexes in SIMD vectors and
// immediate bit counts on shift instructions.
let uimm8 = Builder::new_imm("uimm8")
.doc("An 8-bit immediate unsigned integer.")
.finish();
kinds.push(uimm8);
// An unsigned 32-bit immediate integer operand.
let uimm32 = Builder::new_imm("uimm32")
.doc("A 32-bit immediate unsigned integer.")
.finish();
kinds.push(uimm32);
// A 32-bit immediate signed offset.
//
// This is used to represent an immediate address offset in load/store
// instructions.
let offset32 = Builder::new_imm("offset32")
.doc("A 32-bit immediate signed offset.")
.default_member("offset")
.finish();
kinds.push(offset32);
// A 32-bit immediate floating point operand.
//
// IEEE 754-2008 binary32 interchange format.
let ieee32 = Builder::new_imm("ieee32")
.doc("A 32-bit immediate floating point number.")
.finish();
kinds.push(ieee32);
// A 64-bit immediate floating point operand.
//
// IEEE 754-2008 binary64 interchange format.
let ieee64 = Builder::new_imm("ieee64")
.doc("A 64-bit immediate floating point number.")
.finish();
kinds.push(ieee64);
// An immediate boolean operand.
//
// This type of immediate boolean can interact with SSA values with any
// BoolType type.
let boolean = Builder::new_imm("boolean")
.doc("An immediate boolean.")
.rust_type("bool")
.finish();
kinds.push(boolean);
// A condition code for comparing integer values.
// This enumerated operand kind is used for the `icmp` instruction and corresponds to the
// condcodes::IntCC` Rust type.
let mut intcc_values = HashMap::new();
intcc_values.insert("eq", "Equal");
intcc_values.insert("ne", "NotEqual");
intcc_values.insert("sge", "UnsignedGreaterThanOrEqual");
intcc_values.insert("sgt", "UnsignedGreaterThan");
intcc_values.insert("sle", "UnsignedLessThanOrEqual");
intcc_values.insert("slt", "UnsignedLessThan");
intcc_values.insert("uge", "UnsignedGreaterThanOrEqual");
intcc_values.insert("ugt", "UnsignedGreaterThan");
intcc_values.insert("ule", "UnsignedLessThanOrEqual");
intcc_values.insert("ult", "UnsignedLessThan");
let intcc = Builder::new_enum("intcc", intcc_values)
.doc("An integer comparison condition code.")
.default_member("cond")
.rust_type("ir::condcodes::IntCC")
.finish();
kinds.push(intcc);
// A condition code for comparing floating point values. This enumerated operand kind is used
// for the `fcmp` instruction and corresponds to the `condcodes::FloatCC` Rust type.
let mut floatcc_values = HashMap::new();
floatcc_values.insert("ord", "Ordered");
floatcc_values.insert("uno", "Unordered");
floatcc_values.insert("eq", "Equal");
floatcc_values.insert("ne", "NotEqual");
floatcc_values.insert("one", "OrderedNotEqual");
floatcc_values.insert("ueq", "UnorderedOrEqual");
floatcc_values.insert("lt", "LessThan");
floatcc_values.insert("le", "LessThanOrEqual");
floatcc_values.insert("gt", "GreaterThan");
floatcc_values.insert("ge", "GreaterThanOrEqual");
floatcc_values.insert("ult", "UnorderedOrLessThan");
floatcc_values.insert("ule", "UnorderedOrLessThanOrEqual");
floatcc_values.insert("ugt", "UnorderedOrGreaterThan");
floatcc_values.insert("uge", "UnorderedOrGreaterThanOrEqual");
let floatcc = Builder::new_enum("floatcc", floatcc_values)
.doc("A floating point comparison condition code")
.default_member("cond")
.rust_type("ir::condcodes::FloatCC")
.finish();
kinds.push(floatcc);
// Flags for memory operations like :clif:inst:`load` and :clif:inst:`store`.
let memflags = Builder::new_imm("memflags")
.doc("Memory operation flags")
.default_member("flags")
.rust_type("ir::MemFlags")
.finish();
kinds.push(memflags);
// A register unit in the current target ISA.
let regunit = Builder::new_imm("regunit")
.doc("A register unit in the target ISA")
.rust_type("isa::RegUnit")
.finish();
kinds.push(regunit);
// A trap code indicating the reason for trapping.
//
// The Rust enum type also has a `User(u16)` variant for user-provided trap
// codes.
let mut trapcode_values = HashMap::new();
trapcode_values.insert("stk_ovf", "StackOverflow");
trapcode_values.insert("heap_oob", "HeapOutOfBounds");
trapcode_values.insert("int_ovf", "IntegerOverflow");
trapcode_values.insert("int_divz", "IntegerDivisionByZero");
let trapcode = Builder::new_enum("trapcode", trapcode_values)
.doc("A trap reason code.")
.default_member("code")
.rust_type("ir::TrapCode")
.finish();
kinds.push(trapcode);
return kinds;
}

View File

@@ -1,4 +1,55 @@
//! Shared definitions for the Cranelift intermediate language.
pub mod entities;
pub mod formats;
pub mod immediates;
pub mod settings;
pub mod types;
use crate::cdsl::formats::FormatRegistry;
use crate::cdsl::operands::OperandKind;
use crate::cdsl::settings::SettingGroup;
pub struct Definitions {
pub settings: SettingGroup,
pub operand_kinds: OperandKinds,
pub format_registry: FormatRegistry,
}
pub struct OperandKinds(Vec<OperandKind>);
impl OperandKinds {
pub fn new() -> Self {
Self(Vec::new())
}
pub fn by_name(&self, name: &'static str) -> &OperandKind {
self.0
.iter()
.find(|op| op.name == name)
.expect(&format!("unknown Operand name: {}", name))
}
pub fn push(&mut self, operand_kind: OperandKind) {
assert!(
self.0
.iter()
.find(|existing| existing.name == operand_kind.name)
.is_none(),
"trying to insert operand kind '{}' for the second time",
operand_kind.name
);
self.0.push(operand_kind);
}
}
pub fn define() -> Definitions {
let immediates = OperandKinds(immediates::define());
let entities = OperandKinds(entities::define());
let format_registry = formats::define(&immediates, &entities);
Definitions {
settings: settings::define(),
operand_kinds: immediates,
format_registry,
}
}