Rewrite for recursive safety
This commit rewrites the runtime crate to provide safety in the face of recursive calls to the guest. The basic principle is that `GuestMemory` is now a trait which dynamically returns the pointer/length pair. This also has an implicit contract (hence the `unsafe` trait) that the pointer/length pair point to a valid list of bytes in host memory "until something is reentrant". After this changes the various suite of `Guest*` types were rewritten. `GuestRef` and `GuestRefMut` were both removed since they cannot safely exist. The `GuestPtrMut` type was removed for simplicity, and the final `GuestPtr` type subsumes `GuestString` and `GuestArray`. This means that there's only one guest pointer type, `GuestPtr<'a, T>`, where `'a` is the borrow into host memory, basically borrowing the `GuestMemory` trait object itself. Some core utilities are exposed on `GuestPtr`, but they're all 100% safe. Unsafety is now entirely contained within a few small locations: * Implementations of the `GuestType` for primitive types (e.g. `i8`, `u8`, etc) use `unsafe` to read/write memory. The `unsafe` trait of `GuestMemory` though should prove that they're safe. * `GuestPtr<'_, str>` has a method which validates utf-8 contents, and this requires `unsafe` internally to read all the bytes. This is guaranteed to be safe however given the contract of `GuestMemory`. And that's it! Everything else is a bunch of safe combinators all built up on the various utilities provided by `GuestPtr`. The general idioms are roughly the same as before, with various tweaks here and there. A summary of expected idioms are: * For small values you'd `.read()` or `.write()` very quickly. You'd pass around the type itself. * For strings, you'd pass `GuestPtr<'_, str>` down to the point where it's actually consumed. At that moment you'd either decide to copy it out (a safe operation) or you'd get a raw view to the string (an unsafe operation) and assert that you won't call back into wasm while you're holding that pointer. * Arrays are similar to strings, passing around `GuestPtr<'_, [T]>`. Arrays also have a `iter()` method which yields an iterator of `GuestPtr<'_, T>` for convenience. Overall there's still a lot of missing documentation on the runtime crate specifically around the safety of the `GuestMemory` trait as well as how the utilities/methods are expected to be used. Additionally there's utilities which aren't currently implemented which would be easy to implement. For example there's no method to copy out a string or a slice, although that would be pretty easy to add. In any case I'm curious to get feedback on this approach and see what y'all think!
This commit is contained in:
@@ -1,13 +1,217 @@
|
||||
mod borrow;
|
||||
use std::cell::Cell;
|
||||
use std::slice;
|
||||
use std::str;
|
||||
use std::marker;
|
||||
use std::fmt;
|
||||
|
||||
mod error;
|
||||
mod guest_type;
|
||||
mod memory;
|
||||
mod region;
|
||||
|
||||
pub use error::GuestError;
|
||||
pub use guest_type::{GuestErrorType, GuestType, GuestTypeTransparent};
|
||||
pub use memory::{
|
||||
GuestArray, GuestMemory, GuestPtr, GuestPtrMut, GuestRef, GuestRefMut, GuestString,
|
||||
GuestStringRef,
|
||||
};
|
||||
pub use guest_type::{GuestErrorType, GuestType};
|
||||
pub use region::Region;
|
||||
|
||||
pub unsafe trait GuestMemory {
|
||||
fn base(&self) -> (*mut u8, u32);
|
||||
|
||||
fn validate_size_align(
|
||||
&self,
|
||||
offset: u32,
|
||||
align: usize,
|
||||
len: u32,
|
||||
) -> Result<*mut u8, GuestError> {
|
||||
let (base_ptr, base_len) = self.base();
|
||||
let region = Region { start: offset, len };
|
||||
|
||||
// Figure out our pointer to the start of memory
|
||||
let start = match (base_ptr as usize).checked_add(offset as usize) {
|
||||
Some(ptr) => ptr,
|
||||
None => return Err(GuestError::PtrOutOfBounds(region)),
|
||||
};
|
||||
// and use that to figure out the end pointer
|
||||
let end = match start.checked_add(len as usize) {
|
||||
Some(ptr) => ptr,
|
||||
None => return Err(GuestError::PtrOutOfBounds(region)),
|
||||
};
|
||||
// and then verify that our end doesn't reach past the end of our memory
|
||||
if end > (base_ptr as usize) + (base_len as usize) {
|
||||
return Err(GuestError::PtrOutOfBounds(region));
|
||||
}
|
||||
// and finally verify that the alignment is correct
|
||||
if start % align != 0 {
|
||||
return Err(GuestError::PtrNotAligned(region, align as u32));
|
||||
}
|
||||
Ok(start as *mut u8)
|
||||
}
|
||||
|
||||
fn ptr<'a, T>(&'a self, offset: T::Pointer) -> GuestPtr<'a, T>
|
||||
where
|
||||
Self: Sized,
|
||||
T: ?Sized + Pointee,
|
||||
{
|
||||
GuestPtr::new(self, offset)
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl<'a, T: ?Sized + GuestMemory> GuestMemory for &'a T {
|
||||
fn base(&self) -> (*mut u8, u32) {
|
||||
T::base(self)
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl<'a, T: ?Sized + GuestMemory> GuestMemory for &'a mut T {
|
||||
fn base(&self) -> (*mut u8, u32) {
|
||||
T::base(self)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct GuestPtr<'a, T: ?Sized + Pointee> {
|
||||
mem: &'a (dyn GuestMemory + 'a),
|
||||
pointer: T::Pointer,
|
||||
_marker: marker::PhantomData<&'a Cell<T>>,
|
||||
}
|
||||
|
||||
impl<'a, T: ?Sized + Pointee> GuestPtr<'a, T> {
|
||||
pub fn new(mem: &'a (dyn GuestMemory + 'a), pointer: T::Pointer) -> GuestPtr<'_, T> {
|
||||
GuestPtr {
|
||||
mem,
|
||||
pointer,
|
||||
_marker: marker::PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn offset(&self) -> T::Pointer {
|
||||
self.pointer
|
||||
}
|
||||
|
||||
pub fn mem(&self) -> &'a (dyn GuestMemory + 'a) {
|
||||
self.mem
|
||||
}
|
||||
|
||||
pub fn cast<U>(&self) -> GuestPtr<'a, U>
|
||||
where
|
||||
T: Pointee<Pointer = u32>,
|
||||
{
|
||||
GuestPtr::new(self.mem, self.pointer)
|
||||
}
|
||||
|
||||
pub fn read(&self) -> Result<T, GuestError>
|
||||
where
|
||||
T: GuestType<'a>,
|
||||
{
|
||||
T::read(self)
|
||||
}
|
||||
|
||||
pub fn write(&self, val: T) -> Result<(), GuestError>
|
||||
where
|
||||
T: GuestType<'a>,
|
||||
{
|
||||
T::write(self, val)
|
||||
}
|
||||
|
||||
pub fn add(&self, amt: u32) -> Result<GuestPtr<'a, T>, GuestError>
|
||||
where T: GuestType<'a> + Pointee<Pointer = u32>,
|
||||
{
|
||||
let offset = amt.checked_mul(T::guest_size())
|
||||
.and_then(|o| self.pointer.checked_add(o));
|
||||
let offset = match offset {
|
||||
Some(o) => o,
|
||||
None => return Err(GuestError::InvalidFlagValue("")),
|
||||
};
|
||||
Ok(GuestPtr::new(self.mem, offset))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T> GuestPtr<'a, [T]> {
|
||||
pub fn offset_base(&self) -> u32 {
|
||||
self.pointer.0
|
||||
}
|
||||
|
||||
pub fn len(&self) -> u32 {
|
||||
self.pointer.1
|
||||
}
|
||||
|
||||
pub fn iter<'b>(&'b self) -> impl ExactSizeIterator<Item = Result<GuestPtr<'a, T>, GuestError>> + 'b
|
||||
where
|
||||
T: GuestType<'a>,
|
||||
{
|
||||
let base = GuestPtr::new(self.mem, self.offset_base());
|
||||
(0..self.len()).map(move |i| base.add(i))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> GuestPtr<'a, str> {
|
||||
pub fn offset_base(&self) -> u32 {
|
||||
self.pointer.0
|
||||
}
|
||||
|
||||
pub fn len(&self) -> u32 {
|
||||
self.pointer.1
|
||||
}
|
||||
|
||||
pub fn as_bytes(&self) -> GuestPtr<'a, [u8]> {
|
||||
GuestPtr::new(self.mem, self.pointer)
|
||||
}
|
||||
|
||||
pub fn as_raw(&self) -> Result<*mut str, GuestError> {
|
||||
let ptr = self.mem.validate_size_align(self.pointer.0, 1, self.pointer.1)?;
|
||||
|
||||
// TODO: doc unsafety here
|
||||
unsafe {
|
||||
let s = slice::from_raw_parts_mut(ptr, self.pointer.1 as usize);
|
||||
match str::from_utf8_mut(s) {
|
||||
Ok(s) => Ok(s),
|
||||
Err(e) => Err(GuestError::InvalidUtf8(e))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ?Sized + Pointee> Clone for GuestPtr<'_, T> {
|
||||
fn clone(&self) -> Self {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ?Sized + Pointee> Copy for GuestPtr<'_, T> {}
|
||||
|
||||
impl<T: ?Sized + Pointee> fmt::Debug for GuestPtr<'_, T> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
T::debug(self.pointer, f)
|
||||
}
|
||||
}
|
||||
|
||||
mod private {
|
||||
pub trait Sealed {}
|
||||
impl<T> Sealed for T {}
|
||||
impl<T> Sealed for [T] {}
|
||||
impl Sealed for str {}
|
||||
}
|
||||
|
||||
pub trait Pointee: private::Sealed {
|
||||
#[doc(hidden)]
|
||||
type Pointer: Copy;
|
||||
#[doc(hidden)]
|
||||
fn debug(pointer: Self::Pointer, f: &mut fmt::Formatter) -> fmt::Result;
|
||||
}
|
||||
|
||||
impl<T> Pointee for T {
|
||||
type Pointer = u32;
|
||||
fn debug(pointer: Self::Pointer, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "*guest {:#x}", pointer)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Pointee for [T] {
|
||||
type Pointer = (u32, u32);
|
||||
fn debug(pointer: Self::Pointer, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "*guest {:#x}/{}", pointer.0, pointer.1)
|
||||
}
|
||||
}
|
||||
|
||||
impl Pointee for str {
|
||||
type Pointer = (u32, u32);
|
||||
fn debug(pointer: Self::Pointer, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
<[u8]>::debug(pointer, f)
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user