x64: move multiplication lowering

Since the lowering of `imul` complicated the other ALU operations it was
matched with and since future commits will alter the multiplication
lowering further, this change moves the `imul` lowering to its own match
block.
This commit is contained in:
Andrew Brown
2021-05-10 14:50:41 -07:00
parent fa1faf5d22
commit c982d2be65

View File

@@ -1511,7 +1511,6 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
| Opcode::Isub
| Opcode::SsubSat
| Opcode::UsubSat
| Opcode::Imul
| Opcode::AvgRound
| Opcode::Band
| Opcode::Bor
@@ -1553,112 +1552,6 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
types::I16X8 => SseOpcode::Psubusw,
_ => panic!("Unsupported type for packed usub_sat instruction: {}", ty),
},
Opcode::Imul => match ty {
types::I16X8 => SseOpcode::Pmullw,
types::I32X4 => SseOpcode::Pmulld,
types::I64X2 => {
// Note for I64X2 we describe a lane A as being composed of a
// 32-bit upper half "Ah" and a 32-bit lower half "Al".
// The 32-bit long hand multiplication can then be written as:
// Ah Al
// * Bh Bl
// -----
// Al * Bl
// + (Ah * Bl) << 32
// + (Al * Bh) << 32
//
// So for each lane we will compute:
// A * B = (Al * Bl) + ((Ah * Bl) + (Al * Bh)) << 32
//
// Note, the algorithm will use pmuldq which operates directly on
// the lower 32-bit (Al or Bl) of a lane and writes the result
// to the full 64-bits of the lane of the destination. For this
// reason we don't need shifts to isolate the lower 32-bits, however
// we will need to use shifts to isolate the high 32-bits when doing
// calculations, i.e. Ah == A >> 32
//
// The full sequence then is as follows:
// A' = A
// A' = A' >> 32
// A' = Ah' * Bl
// B' = B
// B' = B' >> 32
// B' = Bh' * Al
// B' = B' + A'
// B' = B' << 32
// A' = A
// A' = Al' * Bl
// A' = A' + B'
// dst = A'
// Get inputs rhs=A and lhs=B and the dst register
let lhs = put_input_in_reg(ctx, inputs[0]);
let rhs = put_input_in_reg(ctx, inputs[1]);
let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
// A' = A
let rhs_1 = ctx.alloc_tmp(types::I64X2).only_reg().unwrap();
ctx.emit(Inst::gen_move(rhs_1, rhs, ty));
// A' = A' >> 32
// A' = Ah' * Bl
ctx.emit(Inst::xmm_rmi_reg(
SseOpcode::Psrlq,
RegMemImm::imm(32),
rhs_1,
));
ctx.emit(Inst::xmm_rm_r(
SseOpcode::Pmuludq,
RegMem::reg(lhs.clone()),
rhs_1,
));
// B' = B
let lhs_1 = ctx.alloc_tmp(types::I64X2).only_reg().unwrap();
ctx.emit(Inst::gen_move(lhs_1, lhs, ty));
// B' = B' >> 32
// B' = Bh' * Al
ctx.emit(Inst::xmm_rmi_reg(
SseOpcode::Psrlq,
RegMemImm::imm(32),
lhs_1,
));
ctx.emit(Inst::xmm_rm_r(SseOpcode::Pmuludq, RegMem::reg(rhs), lhs_1));
// B' = B' + A'
// B' = B' << 32
ctx.emit(Inst::xmm_rm_r(
SseOpcode::Paddq,
RegMem::reg(rhs_1.to_reg()),
lhs_1,
));
ctx.emit(Inst::xmm_rmi_reg(
SseOpcode::Psllq,
RegMemImm::imm(32),
lhs_1,
));
// A' = A
// A' = Al' * Bl
// A' = A' + B'
// dst = A'
ctx.emit(Inst::gen_move(rhs_1, rhs, ty));
ctx.emit(Inst::xmm_rm_r(
SseOpcode::Pmuludq,
RegMem::reg(lhs.clone()),
rhs_1,
));
ctx.emit(Inst::xmm_rm_r(
SseOpcode::Paddq,
RegMem::reg(lhs_1.to_reg()),
rhs_1,
));
ctx.emit(Inst::gen_move(dst, rhs_1.to_reg(), ty));
return Ok(());
}
_ => panic!("Unsupported type for packed imul instruction: {}", ty),
},
Opcode::AvgRound => match ty {
types::I8X16 => SseOpcode::Pavgb,
types::I16X8 => SseOpcode::Pavgw,
@@ -1692,8 +1585,6 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
let alu_ops = match op {
Opcode::Iadd => (AluRmiROpcode::Add, AluRmiROpcode::Adc),
Opcode::Isub => (AluRmiROpcode::Sub, AluRmiROpcode::Sbb),
// multiply handled specially below
Opcode::Imul => (AluRmiROpcode::Mul, AluRmiROpcode::Mul),
Opcode::Band => (AluRmiROpcode::And, AluRmiROpcode::And),
Opcode::Bor => (AluRmiROpcode::Or, AluRmiROpcode::Or),
Opcode::Bxor => (AluRmiROpcode::Xor, AluRmiROpcode::Xor),
@@ -1706,84 +1597,22 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
assert_eq!(rhs.len(), 2);
assert_eq!(dst.len(), 2);
if op != Opcode::Imul {
// add, sub, and, or, xor: just do ops on lower then upper half. Carry-flag
// propagation is implicit (add/adc, sub/sbb).
ctx.emit(Inst::gen_move(dst.regs()[0], lhs.regs()[0], types::I64));
ctx.emit(Inst::gen_move(dst.regs()[1], lhs.regs()[1], types::I64));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
alu_ops.0,
RegMemImm::reg(rhs.regs()[0]),
dst.regs()[0],
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
alu_ops.1,
RegMemImm::reg(rhs.regs()[1]),
dst.regs()[1],
));
} else {
// mul:
// dst_lo = lhs_lo * rhs_lo
// dst_hi = umulhi(lhs_lo, rhs_lo) + lhs_lo * rhs_hi + lhs_hi * rhs_lo
//
// so we emit:
// mov dst_lo, lhs_lo
// mul dst_lo, rhs_lo
// mov dst_hi, lhs_lo
// mul dst_hi, rhs_hi
// mov tmp, lhs_hi
// mul tmp, rhs_lo
// add dst_hi, tmp
// mov rax, lhs_lo
// umulhi rhs_lo // implicit rax arg/dst
// add dst_hi, rax
let tmp = ctx.alloc_tmp(types::I64).only_reg().unwrap();
ctx.emit(Inst::gen_move(dst.regs()[0], lhs.regs()[0], types::I64));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Mul,
RegMemImm::reg(rhs.regs()[0]),
dst.regs()[0],
));
ctx.emit(Inst::gen_move(dst.regs()[1], lhs.regs()[0], types::I64));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Mul,
RegMemImm::reg(rhs.regs()[1]),
dst.regs()[1],
));
ctx.emit(Inst::gen_move(tmp, lhs.regs()[1], types::I64));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Mul,
RegMemImm::reg(rhs.regs()[0]),
tmp,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Add,
RegMemImm::reg(tmp.to_reg()),
dst.regs()[1],
));
ctx.emit(Inst::gen_move(
Writable::from_reg(regs::rax()),
lhs.regs()[0],
types::I64,
));
ctx.emit(Inst::mul_hi(
OperandSize::Size64,
/* signed = */ false,
RegMem::reg(rhs.regs()[0]),
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Add,
RegMemImm::reg(regs::rdx()),
dst.regs()[1],
));
}
// For add, sub, and, or, xor: just do ops on lower then upper
// half. Carry-flag propagation is implicit (add/adc, sub/sbb).
ctx.emit(Inst::gen_move(dst.regs()[0], lhs.regs()[0], types::I64));
ctx.emit(Inst::gen_move(dst.regs()[1], lhs.regs()[1], types::I64));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
alu_ops.0,
RegMemImm::reg(rhs.regs()[0]),
dst.regs()[0],
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
alu_ops.1,
RegMemImm::reg(rhs.regs()[1]),
dst.regs()[1],
));
} else {
let size = if ty == types::I64 {
OperandSize::Size64
@@ -1793,7 +1622,6 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
let alu_op = match op {
Opcode::Iadd | Opcode::IaddIfcout => AluRmiROpcode::Add,
Opcode::Isub => AluRmiROpcode::Sub,
Opcode::Imul => AluRmiROpcode::Mul,
Opcode::Band => AluRmiROpcode::And,
Opcode::Bor => AluRmiROpcode::Or,
Opcode::Bxor => AluRmiROpcode::Xor,
@@ -1803,7 +1631,6 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
let (lhs, rhs) = match op {
Opcode::Iadd
| Opcode::IaddIfcout
| Opcode::Imul
| Opcode::Band
| Opcode::Bor
| Opcode::Bxor => {
@@ -1833,6 +1660,218 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
}
}
Opcode::Imul => {
let ty = ty.unwrap();
if ty == types::I64X2 {
// For I64X2 multiplication we describe a lane A as being
// composed of a 32-bit upper half "Ah" and a 32-bit lower half
// "Al". The 32-bit long hand multiplication can then be written
// as:
// Ah Al
// * Bh Bl
// -----
// Al * Bl
// + (Ah * Bl) << 32
// + (Al * Bh) << 32
//
// So for each lane we will compute:
// A * B = (Al * Bl) + ((Ah * Bl) + (Al * Bh)) << 32
//
// Note, the algorithm will use pmuldq which operates directly
// on the lower 32-bit (Al or Bl) of a lane and writes the
// result to the full 64-bits of the lane of the destination.
// For this reason we don't need shifts to isolate the lower
// 32-bits, however, we will need to use shifts to isolate the
// high 32-bits when doing calculations, i.e., Ah == A >> 32.
//
// The full sequence then is as follows:
// A' = A
// A' = A' >> 32
// A' = Ah' * Bl
// B' = B
// B' = B' >> 32
// B' = Bh' * Al
// B' = B' + A'
// B' = B' << 32
// A' = A
// A' = Al' * Bl
// A' = A' + B'
// dst = A'
// Get inputs rhs=A and lhs=B and the dst register
let lhs = put_input_in_reg(ctx, inputs[0]);
let rhs = put_input_in_reg(ctx, inputs[1]);
let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
// A' = A
let rhs_1 = ctx.alloc_tmp(types::I64X2).only_reg().unwrap();
ctx.emit(Inst::gen_move(rhs_1, rhs, ty));
// A' = A' >> 32
// A' = Ah' * Bl
ctx.emit(Inst::xmm_rmi_reg(
SseOpcode::Psrlq,
RegMemImm::imm(32),
rhs_1,
));
ctx.emit(Inst::xmm_rm_r(
SseOpcode::Pmuludq,
RegMem::reg(lhs.clone()),
rhs_1,
));
// B' = B
let lhs_1 = ctx.alloc_tmp(types::I64X2).only_reg().unwrap();
ctx.emit(Inst::gen_move(lhs_1, lhs, ty));
// B' = B' >> 32
// B' = Bh' * Al
ctx.emit(Inst::xmm_rmi_reg(
SseOpcode::Psrlq,
RegMemImm::imm(32),
lhs_1,
));
ctx.emit(Inst::xmm_rm_r(SseOpcode::Pmuludq, RegMem::reg(rhs), lhs_1));
// B' = B' + A'
// B' = B' << 32
ctx.emit(Inst::xmm_rm_r(
SseOpcode::Paddq,
RegMem::reg(rhs_1.to_reg()),
lhs_1,
));
ctx.emit(Inst::xmm_rmi_reg(
SseOpcode::Psllq,
RegMemImm::imm(32),
lhs_1,
));
// A' = A
// A' = Al' * Bl
// A' = A' + B'
// dst = A'
ctx.emit(Inst::gen_move(rhs_1, rhs, ty));
ctx.emit(Inst::xmm_rm_r(
SseOpcode::Pmuludq,
RegMem::reg(lhs.clone()),
rhs_1,
));
ctx.emit(Inst::xmm_rm_r(
SseOpcode::Paddq,
RegMem::reg(lhs_1.to_reg()),
rhs_1,
));
ctx.emit(Inst::gen_move(dst, rhs_1.to_reg(), ty));
} else if ty.lane_count() > 1 {
// Emit single instruction lowerings for the remaining vector
// multiplications.
let sse_op = match ty {
types::I16X8 => SseOpcode::Pmullw,
types::I32X4 => SseOpcode::Pmulld,
_ => panic!("Unsupported type for packed imul instruction: {}", ty),
};
let lhs = put_input_in_reg(ctx, inputs[0]);
let rhs = input_to_reg_mem(ctx, inputs[1]);
let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
// Move the `lhs` to the same register as `dst`.
ctx.emit(Inst::gen_move(dst, lhs, ty));
ctx.emit(Inst::xmm_rm_r(sse_op, rhs, dst));
} else if ty == types::I128 || ty == types::B128 {
// Handle 128-bit multiplications.
let lhs = put_input_in_regs(ctx, inputs[0]);
let rhs = put_input_in_regs(ctx, inputs[1]);
let dst = get_output_reg(ctx, outputs[0]);
assert_eq!(lhs.len(), 2);
assert_eq!(rhs.len(), 2);
assert_eq!(dst.len(), 2);
// mul:
// dst_lo = lhs_lo * rhs_lo
// dst_hi = umulhi(lhs_lo, rhs_lo) + lhs_lo * rhs_hi + lhs_hi * rhs_lo
//
// so we emit:
// mov dst_lo, lhs_lo
// mul dst_lo, rhs_lo
// mov dst_hi, lhs_lo
// mul dst_hi, rhs_hi
// mov tmp, lhs_hi
// mul tmp, rhs_lo
// add dst_hi, tmp
// mov rax, lhs_lo
// umulhi rhs_lo // implicit rax arg/dst
// add dst_hi, rax
let tmp = ctx.alloc_tmp(types::I64).only_reg().unwrap();
ctx.emit(Inst::gen_move(dst.regs()[0], lhs.regs()[0], types::I64));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Mul,
RegMemImm::reg(rhs.regs()[0]),
dst.regs()[0],
));
ctx.emit(Inst::gen_move(dst.regs()[1], lhs.regs()[0], types::I64));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Mul,
RegMemImm::reg(rhs.regs()[1]),
dst.regs()[1],
));
ctx.emit(Inst::gen_move(tmp, lhs.regs()[1], types::I64));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Mul,
RegMemImm::reg(rhs.regs()[0]),
tmp,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Add,
RegMemImm::reg(tmp.to_reg()),
dst.regs()[1],
));
ctx.emit(Inst::gen_move(
Writable::from_reg(regs::rax()),
lhs.regs()[0],
types::I64,
));
ctx.emit(Inst::mul_hi(
OperandSize::Size64,
/* signed = */ false,
RegMem::reg(rhs.regs()[0]),
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Add,
RegMemImm::reg(regs::rdx()),
dst.regs()[1],
));
} else {
let size = if ty == types::I64 {
OperandSize::Size64
} else {
OperandSize::Size32
};
let alu_op = AluRmiROpcode::Mul;
// For commutative operations, try to commute operands if one is
// an immediate or direct memory reference. Do so by converting
// LHS to RMI; if reg, then always convert RHS to RMI; else, use
// LHS as RMI and convert RHS to reg.
let lhs = input_to_reg_mem_imm(ctx, inputs[0]);
let (lhs, rhs) = if let RegMemImm::Reg { reg: lhs_reg } = lhs {
let rhs = input_to_reg_mem_imm(ctx, inputs[1]);
(lhs_reg, rhs)
} else {
let rhs_reg = put_input_in_reg(ctx, inputs[1]);
(rhs_reg, lhs)
};
let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
ctx.emit(Inst::mov_r_r(OperandSize::Size64, lhs, dst));
ctx.emit(Inst::alu_rmi_r(size, alu_op, rhs, dst));
}
}
Opcode::BandNot => {
let ty = ty.unwrap();
debug_assert!(ty.is_vector() && ty.bytes() == 16);