x64: move multiplication lowering
Since the lowering of `imul` complicated the other ALU operations it was matched with and since future commits will alter the multiplication lowering further, this change moves the `imul` lowering to its own match block.
This commit is contained in:
@@ -1511,7 +1511,6 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
|
||||
| Opcode::Isub
|
||||
| Opcode::SsubSat
|
||||
| Opcode::UsubSat
|
||||
| Opcode::Imul
|
||||
| Opcode::AvgRound
|
||||
| Opcode::Band
|
||||
| Opcode::Bor
|
||||
@@ -1553,13 +1552,121 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
|
||||
types::I16X8 => SseOpcode::Psubusw,
|
||||
_ => panic!("Unsupported type for packed usub_sat instruction: {}", ty),
|
||||
},
|
||||
Opcode::Imul => match ty {
|
||||
types::I16X8 => SseOpcode::Pmullw,
|
||||
types::I32X4 => SseOpcode::Pmulld,
|
||||
types::I64X2 => {
|
||||
// Note for I64X2 we describe a lane A as being composed of a
|
||||
// 32-bit upper half "Ah" and a 32-bit lower half "Al".
|
||||
// The 32-bit long hand multiplication can then be written as:
|
||||
Opcode::AvgRound => match ty {
|
||||
types::I8X16 => SseOpcode::Pavgb,
|
||||
types::I16X8 => SseOpcode::Pavgw,
|
||||
_ => panic!("Unsupported type for packed avg_round instruction: {}", ty),
|
||||
},
|
||||
Opcode::Band => match ty {
|
||||
types::F32X4 => SseOpcode::Andps,
|
||||
types::F64X2 => SseOpcode::Andpd,
|
||||
_ => SseOpcode::Pand,
|
||||
},
|
||||
Opcode::Bor => match ty {
|
||||
types::F32X4 => SseOpcode::Orps,
|
||||
types::F64X2 => SseOpcode::Orpd,
|
||||
_ => SseOpcode::Por,
|
||||
},
|
||||
Opcode::Bxor => match ty {
|
||||
types::F32X4 => SseOpcode::Xorps,
|
||||
types::F64X2 => SseOpcode::Xorpd,
|
||||
_ => SseOpcode::Pxor,
|
||||
},
|
||||
_ => panic!("Unsupported packed instruction: {}", op),
|
||||
};
|
||||
let lhs = put_input_in_reg(ctx, inputs[0]);
|
||||
let rhs = input_to_reg_mem(ctx, inputs[1]);
|
||||
let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
|
||||
|
||||
// Move the `lhs` to the same register as `dst`.
|
||||
ctx.emit(Inst::gen_move(dst, lhs, ty));
|
||||
ctx.emit(Inst::xmm_rm_r(sse_op, rhs, dst));
|
||||
} else if ty == types::I128 || ty == types::B128 {
|
||||
let alu_ops = match op {
|
||||
Opcode::Iadd => (AluRmiROpcode::Add, AluRmiROpcode::Adc),
|
||||
Opcode::Isub => (AluRmiROpcode::Sub, AluRmiROpcode::Sbb),
|
||||
Opcode::Band => (AluRmiROpcode::And, AluRmiROpcode::And),
|
||||
Opcode::Bor => (AluRmiROpcode::Or, AluRmiROpcode::Or),
|
||||
Opcode::Bxor => (AluRmiROpcode::Xor, AluRmiROpcode::Xor),
|
||||
_ => panic!("Unsupported opcode with 128-bit integers: {:?}", op),
|
||||
};
|
||||
let lhs = put_input_in_regs(ctx, inputs[0]);
|
||||
let rhs = put_input_in_regs(ctx, inputs[1]);
|
||||
let dst = get_output_reg(ctx, outputs[0]);
|
||||
assert_eq!(lhs.len(), 2);
|
||||
assert_eq!(rhs.len(), 2);
|
||||
assert_eq!(dst.len(), 2);
|
||||
|
||||
// For add, sub, and, or, xor: just do ops on lower then upper
|
||||
// half. Carry-flag propagation is implicit (add/adc, sub/sbb).
|
||||
ctx.emit(Inst::gen_move(dst.regs()[0], lhs.regs()[0], types::I64));
|
||||
ctx.emit(Inst::gen_move(dst.regs()[1], lhs.regs()[1], types::I64));
|
||||
ctx.emit(Inst::alu_rmi_r(
|
||||
OperandSize::Size64,
|
||||
alu_ops.0,
|
||||
RegMemImm::reg(rhs.regs()[0]),
|
||||
dst.regs()[0],
|
||||
));
|
||||
ctx.emit(Inst::alu_rmi_r(
|
||||
OperandSize::Size64,
|
||||
alu_ops.1,
|
||||
RegMemImm::reg(rhs.regs()[1]),
|
||||
dst.regs()[1],
|
||||
));
|
||||
} else {
|
||||
let size = if ty == types::I64 {
|
||||
OperandSize::Size64
|
||||
} else {
|
||||
OperandSize::Size32
|
||||
};
|
||||
let alu_op = match op {
|
||||
Opcode::Iadd | Opcode::IaddIfcout => AluRmiROpcode::Add,
|
||||
Opcode::Isub => AluRmiROpcode::Sub,
|
||||
Opcode::Band => AluRmiROpcode::And,
|
||||
Opcode::Bor => AluRmiROpcode::Or,
|
||||
Opcode::Bxor => AluRmiROpcode::Xor,
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
let (lhs, rhs) = match op {
|
||||
Opcode::Iadd
|
||||
| Opcode::IaddIfcout
|
||||
| Opcode::Band
|
||||
| Opcode::Bor
|
||||
| Opcode::Bxor => {
|
||||
// For commutative operations, try to commute operands if one is an
|
||||
// immediate or direct memory reference. Do so by converting LHS to RMI; if
|
||||
// reg, then always convert RHS to RMI; else, use LHS as RMI and convert
|
||||
// RHS to reg.
|
||||
let lhs = input_to_reg_mem_imm(ctx, inputs[0]);
|
||||
if let RegMemImm::Reg { reg: lhs_reg } = lhs {
|
||||
let rhs = input_to_reg_mem_imm(ctx, inputs[1]);
|
||||
(lhs_reg, rhs)
|
||||
} else {
|
||||
let rhs_reg = put_input_in_reg(ctx, inputs[1]);
|
||||
(rhs_reg, lhs)
|
||||
}
|
||||
}
|
||||
Opcode::Isub => (
|
||||
put_input_in_reg(ctx, inputs[0]),
|
||||
input_to_reg_mem_imm(ctx, inputs[1]),
|
||||
),
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
|
||||
ctx.emit(Inst::mov_r_r(OperandSize::Size64, lhs, dst));
|
||||
ctx.emit(Inst::alu_rmi_r(size, alu_op, rhs, dst));
|
||||
}
|
||||
}
|
||||
|
||||
Opcode::Imul => {
|
||||
let ty = ty.unwrap();
|
||||
if ty == types::I64X2 {
|
||||
// For I64X2 multiplication we describe a lane A as being
|
||||
// composed of a 32-bit upper half "Ah" and a 32-bit lower half
|
||||
// "Al". The 32-bit long hand multiplication can then be written
|
||||
// as:
|
||||
// Ah Al
|
||||
// * Bh Bl
|
||||
// -----
|
||||
@@ -1570,12 +1677,12 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
|
||||
// So for each lane we will compute:
|
||||
// A * B = (Al * Bl) + ((Ah * Bl) + (Al * Bh)) << 32
|
||||
//
|
||||
// Note, the algorithm will use pmuldq which operates directly on
|
||||
// the lower 32-bit (Al or Bl) of a lane and writes the result
|
||||
// to the full 64-bits of the lane of the destination. For this
|
||||
// reason we don't need shifts to isolate the lower 32-bits, however
|
||||
// we will need to use shifts to isolate the high 32-bits when doing
|
||||
// calculations, i.e. Ah == A >> 32
|
||||
// Note, the algorithm will use pmuldq which operates directly
|
||||
// on the lower 32-bit (Al or Bl) of a lane and writes the
|
||||
// result to the full 64-bits of the lane of the destination.
|
||||
// For this reason we don't need shifts to isolate the lower
|
||||
// 32-bits, however, we will need to use shifts to isolate the
|
||||
// high 32-bits when doing calculations, i.e., Ah == A >> 32.
|
||||
//
|
||||
// The full sequence then is as follows:
|
||||
// A' = A
|
||||
@@ -1655,31 +1762,13 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
|
||||
rhs_1,
|
||||
));
|
||||
ctx.emit(Inst::gen_move(dst, rhs_1.to_reg(), ty));
|
||||
return Ok(());
|
||||
}
|
||||
} else if ty.lane_count() > 1 {
|
||||
// Emit single instruction lowerings for the remaining vector
|
||||
// multiplications.
|
||||
let sse_op = match ty {
|
||||
types::I16X8 => SseOpcode::Pmullw,
|
||||
types::I32X4 => SseOpcode::Pmulld,
|
||||
_ => panic!("Unsupported type for packed imul instruction: {}", ty),
|
||||
},
|
||||
Opcode::AvgRound => match ty {
|
||||
types::I8X16 => SseOpcode::Pavgb,
|
||||
types::I16X8 => SseOpcode::Pavgw,
|
||||
_ => panic!("Unsupported type for packed avg_round instruction: {}", ty),
|
||||
},
|
||||
Opcode::Band => match ty {
|
||||
types::F32X4 => SseOpcode::Andps,
|
||||
types::F64X2 => SseOpcode::Andpd,
|
||||
_ => SseOpcode::Pand,
|
||||
},
|
||||
Opcode::Bor => match ty {
|
||||
types::F32X4 => SseOpcode::Orps,
|
||||
types::F64X2 => SseOpcode::Orpd,
|
||||
_ => SseOpcode::Por,
|
||||
},
|
||||
Opcode::Bxor => match ty {
|
||||
types::F32X4 => SseOpcode::Xorps,
|
||||
types::F64X2 => SseOpcode::Xorpd,
|
||||
_ => SseOpcode::Pxor,
|
||||
},
|
||||
_ => panic!("Unsupported packed instruction: {}", op),
|
||||
};
|
||||
let lhs = put_input_in_reg(ctx, inputs[0]);
|
||||
let rhs = input_to_reg_mem(ctx, inputs[1]);
|
||||
@@ -1689,16 +1778,7 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
|
||||
ctx.emit(Inst::gen_move(dst, lhs, ty));
|
||||
ctx.emit(Inst::xmm_rm_r(sse_op, rhs, dst));
|
||||
} else if ty == types::I128 || ty == types::B128 {
|
||||
let alu_ops = match op {
|
||||
Opcode::Iadd => (AluRmiROpcode::Add, AluRmiROpcode::Adc),
|
||||
Opcode::Isub => (AluRmiROpcode::Sub, AluRmiROpcode::Sbb),
|
||||
// multiply handled specially below
|
||||
Opcode::Imul => (AluRmiROpcode::Mul, AluRmiROpcode::Mul),
|
||||
Opcode::Band => (AluRmiROpcode::And, AluRmiROpcode::And),
|
||||
Opcode::Bor => (AluRmiROpcode::Or, AluRmiROpcode::Or),
|
||||
Opcode::Bxor => (AluRmiROpcode::Xor, AluRmiROpcode::Xor),
|
||||
_ => panic!("Unsupported opcode with 128-bit integers: {:?}", op),
|
||||
};
|
||||
// Handle 128-bit multiplications.
|
||||
let lhs = put_input_in_regs(ctx, inputs[0]);
|
||||
let rhs = put_input_in_regs(ctx, inputs[1]);
|
||||
let dst = get_output_reg(ctx, outputs[0]);
|
||||
@@ -1706,24 +1786,6 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
|
||||
assert_eq!(rhs.len(), 2);
|
||||
assert_eq!(dst.len(), 2);
|
||||
|
||||
if op != Opcode::Imul {
|
||||
// add, sub, and, or, xor: just do ops on lower then upper half. Carry-flag
|
||||
// propagation is implicit (add/adc, sub/sbb).
|
||||
ctx.emit(Inst::gen_move(dst.regs()[0], lhs.regs()[0], types::I64));
|
||||
ctx.emit(Inst::gen_move(dst.regs()[1], lhs.regs()[1], types::I64));
|
||||
ctx.emit(Inst::alu_rmi_r(
|
||||
OperandSize::Size64,
|
||||
alu_ops.0,
|
||||
RegMemImm::reg(rhs.regs()[0]),
|
||||
dst.regs()[0],
|
||||
));
|
||||
ctx.emit(Inst::alu_rmi_r(
|
||||
OperandSize::Size64,
|
||||
alu_ops.1,
|
||||
RegMemImm::reg(rhs.regs()[1]),
|
||||
dst.regs()[1],
|
||||
));
|
||||
} else {
|
||||
// mul:
|
||||
// dst_lo = lhs_lo * rhs_lo
|
||||
// dst_hi = umulhi(lhs_lo, rhs_lo) + lhs_lo * rhs_hi + lhs_hi * rhs_lo
|
||||
@@ -1783,48 +1845,25 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
|
||||
RegMemImm::reg(regs::rdx()),
|
||||
dst.regs()[1],
|
||||
));
|
||||
}
|
||||
} else {
|
||||
let size = if ty == types::I64 {
|
||||
OperandSize::Size64
|
||||
} else {
|
||||
OperandSize::Size32
|
||||
};
|
||||
let alu_op = match op {
|
||||
Opcode::Iadd | Opcode::IaddIfcout => AluRmiROpcode::Add,
|
||||
Opcode::Isub => AluRmiROpcode::Sub,
|
||||
Opcode::Imul => AluRmiROpcode::Mul,
|
||||
Opcode::Band => AluRmiROpcode::And,
|
||||
Opcode::Bor => AluRmiROpcode::Or,
|
||||
Opcode::Bxor => AluRmiROpcode::Xor,
|
||||
_ => unreachable!(),
|
||||
};
|
||||
let alu_op = AluRmiROpcode::Mul;
|
||||
|
||||
let (lhs, rhs) = match op {
|
||||
Opcode::Iadd
|
||||
| Opcode::IaddIfcout
|
||||
| Opcode::Imul
|
||||
| Opcode::Band
|
||||
| Opcode::Bor
|
||||
| Opcode::Bxor => {
|
||||
// For commutative operations, try to commute operands if one is an
|
||||
// immediate or direct memory reference. Do so by converting LHS to RMI; if
|
||||
// reg, then always convert RHS to RMI; else, use LHS as RMI and convert
|
||||
// RHS to reg.
|
||||
// For commutative operations, try to commute operands if one is
|
||||
// an immediate or direct memory reference. Do so by converting
|
||||
// LHS to RMI; if reg, then always convert RHS to RMI; else, use
|
||||
// LHS as RMI and convert RHS to reg.
|
||||
let lhs = input_to_reg_mem_imm(ctx, inputs[0]);
|
||||
if let RegMemImm::Reg { reg: lhs_reg } = lhs {
|
||||
let (lhs, rhs) = if let RegMemImm::Reg { reg: lhs_reg } = lhs {
|
||||
let rhs = input_to_reg_mem_imm(ctx, inputs[1]);
|
||||
(lhs_reg, rhs)
|
||||
} else {
|
||||
let rhs_reg = put_input_in_reg(ctx, inputs[1]);
|
||||
(rhs_reg, lhs)
|
||||
}
|
||||
}
|
||||
Opcode::Isub => (
|
||||
put_input_in_reg(ctx, inputs[0]),
|
||||
input_to_reg_mem_imm(ctx, inputs[1]),
|
||||
),
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
|
||||
|
||||
Reference in New Issue
Block a user