Add a calling convention to all function signatures.

A CallConv enum on every function signature makes it possible to
generate calls to functions with different calling conventions within
the same ISA / within a single function.

The calling conventions also serve as a way of customizing Cretonne's
behavior when embedded inside a VM. As an example, the SpiderWASM
calling convention is used to compile WebAssembly functions that run
inside the SpiderMonkey virtual machine.

All function signatures must have a calling convention at the end, so
this changes the textual IL syntax.

Before:

    sig1 = signature(i32, f64) -> f64

After

    sig1 = (i32, f64) -> f64 native
    sig2 = (i32) spiderwasm

When printing functions, the signature goes after the return types:

    function %r1() -> i32, f32 spiderwasm {
    ebb1:
        ...
    }

In the parser, this calling convention is optional and defaults to
"native". This is mostly to avoid updating all the existing test cases
under filetests/. When printing a function, the calling convention is
always included, including for "native" functions.
This commit is contained in:
Jakob Stoklund Olesen
2017-08-02 16:40:35 -07:00
committed by Jakob Stoklund Olesen
parent 5fa991e325
commit c96d4daa20
27 changed files with 211 additions and 144 deletions

View File

@@ -25,6 +25,9 @@ pub struct Signature {
/// Types returned from the function.
pub return_types: Vec<ArgumentType>,
/// Calling convention.
pub call_conv: CallConv,
/// When the signature has been legalized to a specific ISA, this holds the size of the
/// argument array on the stack. Before legalization, this is `None`.
///
@@ -35,10 +38,11 @@ pub struct Signature {
impl Signature {
/// Create a new blank signature.
pub fn new() -> Signature {
pub fn new(call_conv: CallConv) -> Signature {
Signature {
argument_types: Vec::new(),
return_types: Vec::new(),
call_conv,
argument_bytes: None,
}
}
@@ -94,7 +98,7 @@ impl<'a> fmt::Display for DisplaySignature<'a> {
write!(f, " -> ")?;
write_list(f, &self.0.return_types, self.1)?;
}
Ok(())
write!(f, " {}", self.0.call_conv)
}
}
@@ -278,6 +282,46 @@ impl fmt::Display for ExtFuncData {
}
}
/// A Calling convention.
///
/// A function's calling convention determines exactly how arguments and return values are passed,
/// and how stack frames are managed. Since all of these details depend on both the instruction set
/// architecture and possibly the operating system, a function's calling convention is only fully
/// determined by a `(TargetIsa, CallConv)` tuple.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum CallConv {
/// The C calling convention.
///
/// This is the native calling convention that a C compiler would use on the platform.
Native,
/// A JIT-compiled WebAssembly function in the SpiderMonkey VM.
SpiderWASM,
}
impl fmt::Display for CallConv {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use self::CallConv::*;
f.write_str(match *self {
Native => "native",
SpiderWASM => "spiderwasm",
})
}
}
impl FromStr for CallConv {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
use self::CallConv::*;
match s {
"native" => Ok(Native),
"spiderwasm" => Ok(SpiderWASM),
_ => Err(()),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
@@ -306,19 +350,26 @@ mod tests {
}
}
#[test]
fn call_conv() {
for &cc in &[CallConv::Native, CallConv::SpiderWASM] {
assert_eq!(Ok(cc), cc.to_string().parse())
}
}
#[test]
fn signatures() {
let mut sig = Signature::new();
assert_eq!(sig.to_string(), "()");
let mut sig = Signature::new(CallConv::SpiderWASM);
assert_eq!(sig.to_string(), "() spiderwasm");
sig.argument_types.push(ArgumentType::new(I32));
assert_eq!(sig.to_string(), "(i32)");
assert_eq!(sig.to_string(), "(i32) spiderwasm");
sig.return_types.push(ArgumentType::new(F32));
assert_eq!(sig.to_string(), "(i32) -> f32");
assert_eq!(sig.to_string(), "(i32) -> f32 spiderwasm");
sig.argument_types
.push(ArgumentType::new(I32.by(4).unwrap()));
assert_eq!(sig.to_string(), "(i32, i32x4) -> f32");
assert_eq!(sig.to_string(), "(i32, i32x4) -> f32 spiderwasm");
sig.return_types.push(ArgumentType::new(B8));
assert_eq!(sig.to_string(), "(i32, i32x4) -> f32, b8");
assert_eq!(sig.to_string(), "(i32, i32x4) -> f32, b8 spiderwasm");
// Test the offset computation algorithm.
assert_eq!(sig.argument_bytes, None);
@@ -332,6 +383,7 @@ mod tests {
assert_eq!(sig.argument_bytes, Some(28));
// Writing ABI-annotated signatures.
assert_eq!(sig.to_string(), "(i32 [24], i32x4 [8]) -> f32, b8");
assert_eq!(sig.to_string(),
"(i32 [24], i32x4 [8]) -> f32, b8 spiderwasm");
}
}

View File

@@ -4,7 +4,7 @@
//! instructions.
use entity_map::{EntityMap, PrimaryEntityData};
use ir::{FunctionName, Signature, JumpTableData, DataFlowGraph, Layout};
use ir::{FunctionName, CallConv, Signature, JumpTableData, DataFlowGraph, Layout};
use ir::{JumpTables, InstEncodings, ValueLocations, StackSlots, EbbOffsets};
use isa::TargetIsa;
use std::fmt;
@@ -67,9 +67,9 @@ impl Function {
}
}
/// Create a new empty, anonymous function.
/// Create a new empty, anonymous function with a native calling convention.
pub fn new() -> Function {
Self::with_name_signature(FunctionName::default(), Signature::new())
Self::with_name_signature(FunctionName::default(), Signature::new(CallConv::Native))
}
/// Return an object that can display this function with correct ISA-specific annotations.

View File

@@ -18,7 +18,8 @@ mod progpoint;
mod valueloc;
pub use ir::funcname::FunctionName;
pub use ir::extfunc::{Signature, ArgumentType, ArgumentExtension, ArgumentPurpose, ExtFuncData};
pub use ir::extfunc::{Signature, CallConv, ArgumentType, ArgumentExtension, ArgumentPurpose,
ExtFuncData};
pub use ir::types::Type;
pub use ir::entities::{Ebb, Inst, Value, StackSlot, JumpTable, FuncRef, SigRef};
pub use ir::instructions::{Opcode, InstructionData, VariableArgs, ValueList, ValueListPool};

View File

@@ -54,7 +54,7 @@ fn write_preamble(w: &mut Write,
for sig in func.dfg.signatures.keys() {
any = true;
writeln!(w,
" {} = signature{}",
" {} = {}",
sig,
func.dfg.signatures[sig].display(regs))?;
}
@@ -366,26 +366,27 @@ mod tests {
#[test]
fn basic() {
let mut f = Function::new();
assert_eq!(f.to_string(), "function %() {\n}\n");
assert_eq!(f.to_string(), "function %() native {\n}\n");
f.name = FunctionName::new("foo");
assert_eq!(f.to_string(), "function %foo() {\n}\n");
assert_eq!(f.to_string(), "function %foo() native {\n}\n");
f.stack_slots
.push(StackSlotData::new(StackSlotKind::Local, 4));
assert_eq!(f.to_string(), "function %foo() {\n ss0 = local 4\n}\n");
assert_eq!(f.to_string(),
"function %foo() native {\n ss0 = local 4\n}\n");
let ebb = f.dfg.make_ebb();
f.layout.append_ebb(ebb);
assert_eq!(f.to_string(),
"function %foo() {\n ss0 = local 4\n\nebb0:\n}\n");
"function %foo() native {\n ss0 = local 4\n\nebb0:\n}\n");
f.dfg.append_ebb_arg(ebb, types::I8);
assert_eq!(f.to_string(),
"function %foo() {\n ss0 = local 4\n\nebb0(v0: i8):\n}\n");
"function %foo() native {\n ss0 = local 4\n\nebb0(v0: i8):\n}\n");
f.dfg.append_ebb_arg(ebb, types::F32.by(4).unwrap());
assert_eq!(f.to_string(),
"function %foo() {\n ss0 = local 4\n\nebb0(v0: i8, v1: f32x4):\n}\n");
"function %foo() native {\n ss0 = local 4\n\nebb0(v0: i8, v1: f32x4):\n}\n");
}
}