Add a fold_redundant_jumps() pass to the branch relaxation phase. (#887)

This commit is contained in:
Sean Stangl
2019-08-09 15:30:11 -06:00
committed by GitHub
parent e6e274a3aa
commit c7b4b98cac
8 changed files with 178 additions and 41 deletions

View File

@@ -29,7 +29,9 @@
use crate::binemit::{CodeInfo, CodeOffset};
use crate::cursor::{Cursor, FuncCursor};
use crate::ir::{Function, InstructionData, Opcode};
use crate::dominator_tree::DominatorTree;
use crate::flowgraph::ControlFlowGraph;
use crate::ir::{Ebb, Function, Inst, InstructionData, Opcode, Value, ValueList};
use crate::isa::{EncInfo, TargetIsa};
use crate::iterators::IteratorExtras;
use crate::regalloc::RegDiversions;
@@ -40,7 +42,12 @@ use log::debug;
/// Relax branches and compute the final layout of EBB headers in `func`.
///
/// Fill in the `func.offsets` table so the function is ready for binary emission.
pub fn relax_branches(func: &mut Function, isa: &dyn TargetIsa) -> CodegenResult<CodeInfo> {
pub fn relax_branches(
func: &mut Function,
cfg: &mut ControlFlowGraph,
domtree: &mut DominatorTree,
isa: &dyn TargetIsa,
) -> CodegenResult<CodeInfo> {
let _tt = timing::relax_branches();
let encinfo = isa.encoding_info();
@@ -49,7 +56,10 @@ pub fn relax_branches(func: &mut Function, isa: &dyn TargetIsa) -> CodegenResult
func.offsets.clear();
func.offsets.resize(func.dfg.num_ebbs());
// Start by inserting fall through instructions.
// Start by removing redundant jumps.
fold_redundant_jumps(func, cfg, domtree);
// Convert jumps to fallthrough instructions where possible.
fallthroughs(func);
let mut offset = 0;
@@ -79,7 +89,6 @@ pub fn relax_branches(func: &mut Function, isa: &dyn TargetIsa) -> CodegenResult
let mut cur = FuncCursor::new(func);
while let Some(ebb) = cur.next_ebb() {
divert.clear();
// Record the offset for `ebb` and make sure we iterate until offsets are stable.
if cur.func.offsets[ebb] != offset {
cur.func.offsets[ebb] = offset;
@@ -134,6 +143,131 @@ pub fn relax_branches(func: &mut Function, isa: &dyn TargetIsa) -> CodegenResult
})
}
/// Folds an instruction if it is a redundant jump.
/// Returns whether folding was performed (which invalidates the CFG).
fn try_fold_redundant_jump(
func: &mut Function,
cfg: &mut ControlFlowGraph,
ebb: Ebb,
first_inst: Inst,
) -> bool {
let first_dest = match func.dfg[first_inst].branch_destination() {
Some(ebb) => ebb, // The instruction was a single-target branch.
None => {
return false; // The instruction was either multi-target or not a branch.
}
};
// Look at the first instruction of the first branch's destination.
// If it is an unconditional branch, maybe the second jump can be bypassed.
let second_inst = func.layout.first_inst(first_dest).expect("Instructions");
if func.dfg[second_inst].opcode() != Opcode::Jump {
return false;
}
// Now we need to fix up first_inst's ebb parameters to match second_inst's,
// without changing the branch-specific arguments.
//
// The intermediary block is allowed to reference any SSA value that dominates it,
// but that SSA value may not necessarily also dominate the instruction that's
// being patched.
// Get the arguments and parameters passed by the first branch.
let num_fixed = func.dfg[first_inst]
.opcode()
.constraints()
.num_fixed_value_arguments();
let (first_args, first_params) = func.dfg[first_inst]
.arguments(&func.dfg.value_lists)
.split_at(num_fixed);
// Get the parameters passed by the second jump.
let num_fixed = func.dfg[second_inst]
.opcode()
.constraints()
.num_fixed_value_arguments();
let (_, second_params) = func.dfg[second_inst]
.arguments(&func.dfg.value_lists)
.split_at(num_fixed);
let mut second_params = second_params.to_vec(); // Clone for rewriting below.
// For each parameter passed by the second jump, if any of those parameters
// was a block parameter, rewrite it to refer to the value that the first jump
// passed in its parameters. Otherwise, make sure it dominates first_inst.
//
// For example: if we `ebb0: jump ebb1(v1)` to `ebb1(v2): jump ebb2(v2)`,
// we want to rewrite the original jump to `jump ebb2(v1)`.
let ebb_params: &[Value] = func.dfg.ebb_params(first_dest);
debug_assert!(ebb_params.len() == first_params.len());
for value in second_params.iter_mut() {
if let Some((n, _)) = ebb_params.iter().enumerate().find(|(_, &p)| p == *value) {
// This value was the Nth parameter passed to the second_inst's ebb.
// Rewrite it as the Nth parameter passed by first_inst.
*value = first_params[n];
}
}
// Build a value list of first_args (unchanged) followed by second_params (rewritten).
let arguments_vec: std::vec::Vec<_> = first_args
.iter()
.chain(second_params.iter())
.map(|x| *x)
.collect();
let value_list = ValueList::from_slice(&arguments_vec, &mut func.dfg.value_lists);
func.dfg[first_inst].take_value_list(); // Drop the current list.
func.dfg[first_inst].put_value_list(value_list); // Put the new list.
// Bypass the second jump.
// This can disconnect the Ebb containing `second_inst`, to be cleaned up later.
let second_dest = func.dfg[second_inst].branch_destination().expect("Dest");
func.change_branch_destination(first_inst, second_dest);
cfg.recompute_ebb(func, ebb);
// The previously-intermediary Ebb may now be unreachable. Update CFG.
if cfg.pred_iter(first_dest).count() == 0 {
// Remove all instructions from that ebb.
while let Some(inst) = func.layout.first_inst(first_dest) {
func.layout.remove_inst(inst);
}
// Remove the block...
cfg.recompute_ebb(func, first_dest); // ...from predecessor lists.
func.layout.remove_ebb(first_dest); // ...from the layout.
}
return true;
}
/// Redirects `jump` instructions that point to other `jump` instructions to the final destination.
/// This transformation may orphan some blocks.
fn fold_redundant_jumps(
func: &mut Function,
cfg: &mut ControlFlowGraph,
domtree: &mut DominatorTree,
) {
let mut folded = false;
// Postorder iteration guarantees that a chain of jumps is visited from
// the end of the chain to the start of the chain.
for &ebb in domtree.cfg_postorder() {
// Only proceed if the first terminator instruction is a single-target branch.
let first_inst = func.layout.last_inst(ebb).expect("Ebb has no terminator");
folded |= try_fold_redundant_jump(func, cfg, ebb, first_inst);
// Also try the previous instruction.
if let Some(prev_inst) = func.layout.prev_inst(first_inst) {
folded |= try_fold_redundant_jump(func, cfg, ebb, prev_inst);
}
}
// Folding jumps invalidates the dominator tree.
if folded {
domtree.compute(func, cfg);
}
}
/// Convert `jump` instructions to `fallthrough` instructions where possible and verify that any
/// existing `fallthrough` instructions are correct.
fn fallthroughs(func: &mut Function) {

View File

@@ -329,7 +329,7 @@ impl Context {
/// Run the branch relaxation pass and return information about the function's code and
/// read-only data.
pub fn relax_branches(&mut self, isa: &dyn TargetIsa) -> CodegenResult<CodeInfo> {
let info = relax_branches(&mut self.func, isa)?;
let info = relax_branches(&mut self.func, &mut self.cfg, &mut self.domtree, isa)?;
self.verify_if(isa)?;
self.verify_locations_if(isa)?;
Ok(info)

View File

@@ -31,7 +31,7 @@ use crate::timing;
use core::mem;
/// A basic block denoted by its enclosing Ebb and last instruction.
#[derive(PartialEq, Eq)]
#[derive(Debug, PartialEq, Eq)]
pub struct BasicBlock {
/// Enclosing Ebb key.
pub ebb: Ebb,

View File

@@ -8,7 +8,7 @@ use crate::entity::{PrimaryMap, SecondaryMap};
use crate::ir;
use crate::ir::{DataFlowGraph, ExternalName, Layout, Signature};
use crate::ir::{
Ebb, ExtFuncData, FuncRef, GlobalValue, GlobalValueData, Heap, HeapData, JumpTable,
Ebb, ExtFuncData, FuncRef, GlobalValue, GlobalValueData, Heap, HeapData, Inst, JumpTable,
JumpTableData, SigRef, StackSlot, StackSlotData, Table, TableData,
};
use crate::ir::{EbbOffsets, InstEncodings, SourceLocs, StackSlots, ValueLocations};
@@ -20,7 +20,7 @@ use crate::write::write_function;
use core::fmt;
#[cfg(feature = "basic-blocks")]
use crate::ir::{Inst, Opcode};
use crate::ir::Opcode;
/// A function.
///
@@ -223,6 +223,15 @@ impl Function {
self.dfg.collect_debug_info();
}
/// Changes the destination of a jump or branch instruction.
/// Does nothing if called with a non-jump or non-branch instruction.
pub fn change_branch_destination(&mut self, inst: Inst, new_dest: Ebb) {
match self.dfg[inst].branch_destination_mut() {
None => (),
Some(inst_dest) => *inst_dest = new_dest,
}
}
/// Checks that the specified EBB can be encoded as a basic block.
///
/// On error, returns the first invalid instruction and an error message.

View File

@@ -88,7 +88,7 @@ fn create_pre_header(
{
// We only follow normal edges (not the back edges)
if !domtree.dominates(header, last_inst, &func.layout) {
change_branch_jump_destination(last_inst, pre_header, func);
func.change_branch_destination(last_inst, pre_header);
}
}
{
@@ -136,15 +136,6 @@ fn has_pre_header(
result
}
// Change the destination of a jump or branch instruction. Does nothing if called with a non-jump
// or non-branch instruction.
fn change_branch_jump_destination(inst: Inst, new_ebb: Ebb, func: &mut Function) {
match func.dfg[inst].branch_destination_mut() {
None => (),
Some(instruction_dest) => *instruction_dest = new_ebb,
}
}
/// Test whether the given opcode is unsafe to even consider for LICM.
fn trivially_unsafe_for_licm(opcode: Opcode) -> bool {
opcode.can_store()

View File

@@ -689,48 +689,48 @@ ebb0:
; asm: testq %rcx, %rcx
; asm: je ebb1
brz v1, ebb1 ; bin: 48 85 c9 74 1b
brz v1, ebb1 ; bin: 48 85 c9 74 19
fallthrough ebb3
ebb3:
; asm: testq %rsi, %rsi
; asm: je ebb1
brz v2, ebb1 ; bin: 48 85 f6 74 16
brz v2, ebb1 ; bin: 48 85 f6 74 14
fallthrough ebb4
ebb4:
; asm: testq %r10, %r10
; asm: je ebb1
brz v3, ebb1 ; bin: 4d 85 d2 74 11
brz v3, ebb1 ; bin: 4d 85 d2 74 0f
fallthrough ebb5
ebb5:
; asm: testq %rcx, %rcx
; asm: jne ebb1
brnz v1, ebb1 ; bin: 48 85 c9 75 0c
brnz v1, ebb1 ; bin: 48 85 c9 75 0a
fallthrough ebb6
ebb6:
; asm: testq %rsi, %rsi
; asm: jne ebb1
brnz v2, ebb1 ; bin: 48 85 f6 75 07
brnz v2, ebb1 ; bin: 48 85 f6 75 05
fallthrough ebb7
ebb7:
; asm: testq %r10, %r10
; asm: jne ebb1
brnz v3, ebb1 ; bin: 4d 85 d2 75 02
brnz v3, ebb1 ; bin: 4d 85 d2 75 00
; asm: jmp ebb2
jump ebb2 ; bin: eb 01
jump ebb2
; asm: ebb1:
ebb1:
return ; bin: c3
return
; asm: ebb2:
ebb2:
jump ebb1 ; bin: eb fd
jump ebb1
}
; CPU flag instructions.
@@ -1292,40 +1292,41 @@ ebb0:
; asm: testl %ecx, %ecx
; asm: je ebb1x
brz v1, ebb1 ; bin: 85 c9 74 18
brz v1, ebb1 ; bin: 85 c9 74 16
fallthrough ebb3
ebb3:
; asm: testl %esi, %esi
; asm: je ebb1x
brz v2, ebb1 ; bin: 85 f6 74 14
brz v2, ebb1 ; bin: 85 f6 74 12
fallthrough ebb4
ebb4:
; asm: testl %r10d, %r10d
; asm: je ebb1x
brz v3, ebb1 ; bin: 45 85 d2 74 0f
brz v3, ebb1 ; bin: 45 85 d2 74 0d
fallthrough ebb5
ebb5:
; asm: testl %ecx, %ecx
; asm: jne ebb1x
brnz v1, ebb1 ; bin: 85 c9 75 0b
brnz v1, ebb1 ; bin: 85 c9 75 09
fallthrough ebb6
ebb6:
; asm: testl %esi, %esi
; asm: jne ebb1x
brnz v2, ebb1 ; bin: 85 f6 75 07
brnz v2, ebb1 ; bin: 85 f6 75 05
fallthrough ebb7
ebb7:
; asm: testl %r10d, %r10d
; asm: jne ebb1x
brnz v3, ebb1 ; bin: 45 85 d2 75 02
brnz v3, ebb1 ; bin: 45 85 d2 75 00
; asm: jmp ebb2x
jump ebb2 ; bin: eb 01
; branch relaxation translates this into `fallthrough ebb1`
jump ebb2
; asm: ebb1x:
ebb1:

View File

@@ -11,9 +11,9 @@ function u0:0(i64) system_v {
ebb0(v0: i64):
v1 = stack_addr.i64 ss0
v2 = load.i8 v1
br_table v2, ebb2, jt0
br_table v2, ebb1, jt0
; check: $(oob=$V) = ifcmp_imm $(idx=$V), 1
; nextln: brif uge $oob, ebb2
; nextln: brif uge $oob, ebb1
; nextln: fallthrough $(inb=$EBB)
; check: $inb:
; nextln: $(final_idx=$V) = uextend.i64 $idx
@@ -22,9 +22,6 @@ ebb0(v0: i64):
; nextln: $(addr=$V) = iadd $base, $rel_addr
; nextln: indirect_jump_table_br $addr, jt0
ebb2:
jump ebb1
ebb1:
return
}

View File

@@ -7,6 +7,8 @@ use crate::match_directive::match_directive;
use crate::subtest::{Context, SubTest, SubtestResult};
use cranelift_codegen::binemit::{self, CodeInfo, CodeSink, RegDiversions};
use cranelift_codegen::dbg::DisplayList;
use cranelift_codegen::dominator_tree::DominatorTree;
use cranelift_codegen::flowgraph::ControlFlowGraph;
use cranelift_codegen::ir;
use cranelift_codegen::ir::entities::AnyEntity;
use cranelift_codegen::print_errors::pretty_error;
@@ -166,8 +168,11 @@ impl SubTest for TestBinEmit {
}
// Relax branches and compute EBB offsets based on the encodings.
let CodeInfo { total_size, .. } = binemit::relax_branches(&mut func, isa)
.map_err(|e| pretty_error(&func, context.isa, e))?;
let mut cfg = ControlFlowGraph::with_function(&func);
let mut domtree = DominatorTree::with_function(&func, &cfg);
let CodeInfo { total_size, .. } =
binemit::relax_branches(&mut func, &mut cfg, &mut domtree, isa)
.map_err(|e| pretty_error(&func, context.isa, e))?;
// Collect all of the 'bin:' directives on instructions.
let mut bins = HashMap::new();