Move the verifier into a verifier/mod.rs file.
Make room for verifier sub-modules in separate files.
This commit is contained in:
700
lib/cretonne/src/verifier/mod.rs
Normal file
700
lib/cretonne/src/verifier/mod.rs
Normal file
@@ -0,0 +1,700 @@
|
||||
//! A verifier for ensuring that functions are well formed.
|
||||
//! It verifies:
|
||||
//!
|
||||
//! EBB integrity
|
||||
//!
|
||||
//! - All instructions reached from the `ebb_insts` iterator must belong to
|
||||
//! the EBB as reported by `inst_ebb()`.
|
||||
//! - Every EBB must end in a terminator instruction, and no other instruction
|
||||
//! can be a terminator.
|
||||
//! - Every value in the `ebb_args` iterator belongs to the EBB as reported by `value_ebb`.
|
||||
//!
|
||||
//! Instruction integrity
|
||||
//!
|
||||
//! - The instruction format must match the opcode.
|
||||
//! - All result values must be created for multi-valued instructions.
|
||||
//! - All referenced entities must exist. (Values, EBBs, stack slots, ...)
|
||||
//!
|
||||
//! SSA form
|
||||
//!
|
||||
//! - Values must be defined by an instruction that exists and that is inserted in
|
||||
//! an EBB, or be an argument of an existing EBB.
|
||||
//! - Values used by an instruction must dominate the instruction.
|
||||
//!
|
||||
//! Control flow graph and dominator tree integrity:
|
||||
//!
|
||||
//! - All predecessors in the CFG must be branches to the EBB.
|
||||
//! - All branches to an EBB must be present in the CFG.
|
||||
//! - A recomputed dominator tree is identical to the existing one.
|
||||
//!
|
||||
//! Type checking
|
||||
//!
|
||||
//! - Compare input and output values against the opcode's type constraints.
|
||||
//! For polymorphic opcodes, determine the controlling type variable first.
|
||||
//! - Branches and jumps must pass arguments to destination EBBs that match the
|
||||
//! expected types exactly. The number of arguments must match.
|
||||
//! - All EBBs in a jump_table must take no arguments.
|
||||
//! - Function calls are type checked against their signature.
|
||||
//! - The entry block must take arguments that match the signature of the current
|
||||
//! function.
|
||||
//! - All return instructions must have return value operands matching the current
|
||||
//! function signature.
|
||||
//!
|
||||
//! TODO:
|
||||
//! Ad hoc checking
|
||||
//!
|
||||
//! - Stack slot loads and stores must be in-bounds.
|
||||
//! - Immediate constraints for certain opcodes, like `udiv_imm v3, 0`.
|
||||
//! - Extend / truncate instructions have more type constraints: Source type can't be
|
||||
//! larger / smaller than result type.
|
||||
//! - `Insertlane` and `extractlane` instructions have immediate lane numbers that must be in
|
||||
//! range for their polymorphic type.
|
||||
//! - Swizzle and shuffle instructions take a variable number of lane arguments. The number
|
||||
//! of arguments must match the destination type, and the lane indexes must be in range.
|
||||
|
||||
use dominator_tree::DominatorTree;
|
||||
use flowgraph::ControlFlowGraph;
|
||||
use ir::entities::AnyEntity;
|
||||
use ir::instructions::{InstructionFormat, BranchInfo, ResolvedConstraint, CallInfo};
|
||||
use ir::{types, Function, ValueDef, Ebb, Inst, SigRef, FuncRef, ValueList, JumpTable, StackSlot,
|
||||
Value, Type};
|
||||
use Context;
|
||||
use std::fmt::{self, Display, Formatter};
|
||||
use std::result;
|
||||
use std::collections::BTreeSet;
|
||||
|
||||
/// A verifier error.
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
pub struct Error {
|
||||
/// The entity causing the verifier error.
|
||||
pub location: AnyEntity,
|
||||
/// Error message.
|
||||
pub message: String,
|
||||
}
|
||||
|
||||
impl Display for Error {
|
||||
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
|
||||
write!(f, "{}: {}", self.location, self.message)
|
||||
}
|
||||
}
|
||||
|
||||
/// Verifier result.
|
||||
pub type Result<T> = result::Result<T, Error>;
|
||||
|
||||
// Create an `Err` variant of `Result<X>` from a location and `format!` arguments.
|
||||
macro_rules! err {
|
||||
( $loc:expr, $msg:expr ) => {
|
||||
Err(Error {
|
||||
location: $loc.into(),
|
||||
message: String::from($msg),
|
||||
})
|
||||
};
|
||||
|
||||
( $loc:expr, $fmt:expr, $( $arg:expr ),+ ) => {
|
||||
Err(Error {
|
||||
location: $loc.into(),
|
||||
message: format!( $fmt, $( $arg ),+ ),
|
||||
})
|
||||
};
|
||||
}
|
||||
|
||||
/// Verify `func`.
|
||||
pub fn verify_function(func: &Function) -> Result<()> {
|
||||
Verifier::new(func).run()
|
||||
}
|
||||
|
||||
/// Verify `ctx`.
|
||||
pub fn verify_context(ctx: &Context) -> Result<()> {
|
||||
let verifier = Verifier::new(&ctx.func);
|
||||
verifier.domtree_integrity(&ctx.domtree)?;
|
||||
verifier.cfg_integrity(&ctx.cfg)?;
|
||||
verifier.run()
|
||||
}
|
||||
|
||||
struct Verifier<'a> {
|
||||
func: &'a Function,
|
||||
cfg: ControlFlowGraph,
|
||||
domtree: DominatorTree,
|
||||
}
|
||||
|
||||
impl<'a> Verifier<'a> {
|
||||
pub fn new(func: &'a Function) -> Verifier {
|
||||
let cfg = ControlFlowGraph::with_function(func);
|
||||
let domtree = DominatorTree::with_function(func, &cfg);
|
||||
Verifier {
|
||||
func: func,
|
||||
cfg: cfg,
|
||||
domtree: domtree,
|
||||
}
|
||||
}
|
||||
|
||||
fn ebb_integrity(&self, ebb: Ebb, inst: Inst) -> Result<()> {
|
||||
|
||||
let is_terminator = self.func.dfg[inst].opcode().is_terminator();
|
||||
let is_last_inst = self.func.layout.last_inst(ebb) == Some(inst);
|
||||
|
||||
if is_terminator && !is_last_inst {
|
||||
// Terminating instructions only occur at the end of blocks.
|
||||
return err!(inst,
|
||||
"a terminator instruction was encountered before the end of {}",
|
||||
ebb);
|
||||
}
|
||||
if is_last_inst && !is_terminator {
|
||||
return err!(ebb, "block does not end in a terminator instruction!");
|
||||
}
|
||||
|
||||
// Instructions belong to the correct ebb.
|
||||
let inst_ebb = self.func.layout.inst_ebb(inst);
|
||||
if inst_ebb != Some(ebb) {
|
||||
return err!(inst, "should belong to {} not {:?}", ebb, inst_ebb);
|
||||
}
|
||||
|
||||
// Arguments belong to the correct ebb.
|
||||
for &arg in self.func.dfg.ebb_args(ebb) {
|
||||
match self.func.dfg.value_def(arg) {
|
||||
ValueDef::Arg(arg_ebb, _) => {
|
||||
if ebb != arg_ebb {
|
||||
return err!(arg, "does not belong to {}", ebb);
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
return err!(arg, "expected an argument, found a result");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn instruction_integrity(&self, inst: Inst) -> Result<()> {
|
||||
let inst_data = &self.func.dfg[inst];
|
||||
let dfg = &self.func.dfg;
|
||||
|
||||
// The instruction format matches the opcode
|
||||
if inst_data.opcode().format() != InstructionFormat::from(inst_data) {
|
||||
return err!(inst, "instruction opcode doesn't match instruction format");
|
||||
}
|
||||
|
||||
let fixed_results = inst_data.opcode().constraints().fixed_results();
|
||||
// var_results is 0 if we aren't a call instruction
|
||||
let var_results = dfg.call_signature(inst)
|
||||
.map(|sig| dfg.signatures[sig].return_types.len())
|
||||
.unwrap_or(0);
|
||||
let total_results = fixed_results + var_results;
|
||||
|
||||
// All result values for multi-valued instructions are created
|
||||
let got_results = dfg.inst_results(inst).len();
|
||||
if got_results != total_results {
|
||||
return err!(inst,
|
||||
"expected {} result values, found {}",
|
||||
total_results,
|
||||
got_results);
|
||||
}
|
||||
|
||||
self.verify_entity_references(inst)
|
||||
}
|
||||
|
||||
fn verify_entity_references(&self, inst: Inst) -> Result<()> {
|
||||
use ir::instructions::InstructionData::*;
|
||||
|
||||
for &arg in self.func.dfg.inst_args(inst) {
|
||||
self.verify_value(inst, arg)?;
|
||||
|
||||
// All used values must be attached to something.
|
||||
let original = self.func.dfg.resolve_aliases(arg);
|
||||
if !self.func.dfg.value_is_attached(original) {
|
||||
return err!(inst, "argument {} -> {} is not attached", arg, original);
|
||||
}
|
||||
}
|
||||
|
||||
for &res in self.func.dfg.inst_results(inst) {
|
||||
self.verify_value(inst, res)?;
|
||||
}
|
||||
|
||||
match &self.func.dfg[inst] {
|
||||
&MultiAry { ref args, .. } => {
|
||||
self.verify_value_list(inst, args)?;
|
||||
}
|
||||
&Jump {
|
||||
destination,
|
||||
ref args,
|
||||
..
|
||||
} |
|
||||
&Branch {
|
||||
destination,
|
||||
ref args,
|
||||
..
|
||||
} |
|
||||
&BranchIcmp {
|
||||
destination,
|
||||
ref args,
|
||||
..
|
||||
} => {
|
||||
self.verify_ebb(inst, destination)?;
|
||||
self.verify_value_list(inst, args)?;
|
||||
}
|
||||
&BranchTable { table, .. } => {
|
||||
self.verify_jump_table(inst, table)?;
|
||||
}
|
||||
&Call { func_ref, ref args, .. } => {
|
||||
self.verify_func_ref(inst, func_ref)?;
|
||||
self.verify_value_list(inst, args)?;
|
||||
}
|
||||
&IndirectCall { sig_ref, ref args, .. } => {
|
||||
self.verify_sig_ref(inst, sig_ref)?;
|
||||
self.verify_value_list(inst, args)?;
|
||||
}
|
||||
&StackLoad { stack_slot, .. } |
|
||||
&StackStore { stack_slot, .. } => {
|
||||
self.verify_stack_slot(inst, stack_slot)?;
|
||||
}
|
||||
|
||||
// Exhaustive list so we can't forget to add new formats
|
||||
&Nullary { .. } |
|
||||
&Unary { .. } |
|
||||
&UnaryImm { .. } |
|
||||
&UnaryIeee32 { .. } |
|
||||
&UnaryIeee64 { .. } |
|
||||
&Binary { .. } |
|
||||
&BinaryImm { .. } |
|
||||
&Ternary { .. } |
|
||||
&InsertLane { .. } |
|
||||
&ExtractLane { .. } |
|
||||
&IntCompare { .. } |
|
||||
&IntCompareImm { .. } |
|
||||
&FloatCompare { .. } |
|
||||
&HeapLoad { .. } |
|
||||
&HeapStore { .. } |
|
||||
&Load { .. } |
|
||||
&Store { .. } => {}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn verify_ebb(&self, inst: Inst, e: Ebb) -> Result<()> {
|
||||
if !self.func.dfg.ebb_is_valid(e) {
|
||||
err!(inst, "invalid ebb reference {}", e)
|
||||
} else {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
fn verify_sig_ref(&self, inst: Inst, s: SigRef) -> Result<()> {
|
||||
if !self.func.dfg.signatures.is_valid(s) {
|
||||
err!(inst, "invalid signature reference {}", s)
|
||||
} else {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
fn verify_func_ref(&self, inst: Inst, f: FuncRef) -> Result<()> {
|
||||
if !self.func.dfg.ext_funcs.is_valid(f) {
|
||||
err!(inst, "invalid function reference {}", f)
|
||||
} else {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
fn verify_stack_slot(&self, inst: Inst, ss: StackSlot) -> Result<()> {
|
||||
if !self.func.stack_slots.is_valid(ss) {
|
||||
err!(inst, "invalid stack slot {}", ss)
|
||||
} else {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
fn verify_value_list(&self, inst: Inst, l: &ValueList) -> Result<()> {
|
||||
if !l.is_valid(&self.func.dfg.value_lists) {
|
||||
err!(inst, "invalid value list reference {:?}", l)
|
||||
} else {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
fn verify_jump_table(&self, inst: Inst, j: JumpTable) -> Result<()> {
|
||||
if !self.func.jump_tables.is_valid(j) {
|
||||
err!(inst, "invalid jump table reference {}", j)
|
||||
} else {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
fn verify_value(&self, loc_inst: Inst, v: Value) -> Result<()> {
|
||||
let dfg = &self.func.dfg;
|
||||
if !dfg.value_is_valid(v) {
|
||||
return err!(loc_inst, "invalid value reference {}", v);
|
||||
}
|
||||
|
||||
// SSA form
|
||||
match dfg.value_def(v) {
|
||||
ValueDef::Res(def_inst, _) => {
|
||||
// Value is defined by an instruction that exists.
|
||||
if !dfg.inst_is_valid(def_inst) {
|
||||
return err!(loc_inst,
|
||||
"{} is defined by invalid instruction {}",
|
||||
v,
|
||||
def_inst);
|
||||
}
|
||||
// Defining instruction is inserted in an EBB.
|
||||
if self.func.layout.inst_ebb(def_inst) == None {
|
||||
return err!(loc_inst,
|
||||
"{} is defined by {} which has no EBB",
|
||||
v,
|
||||
def_inst);
|
||||
}
|
||||
// Defining instruction dominates the instruction that uses the value.
|
||||
if !self.domtree
|
||||
.dominates(def_inst, loc_inst, &self.func.layout) {
|
||||
return err!(loc_inst, "uses value from non-dominating {}", def_inst);
|
||||
}
|
||||
}
|
||||
ValueDef::Arg(ebb, _) => {
|
||||
// Value is defined by an existing EBB.
|
||||
if !dfg.ebb_is_valid(ebb) {
|
||||
return err!(loc_inst, "{} is defined by invalid EBB {}", v, ebb);
|
||||
}
|
||||
// Defining EBB is inserted in the layout
|
||||
if !self.func.layout.is_ebb_inserted(ebb) {
|
||||
return err!(loc_inst,
|
||||
"{} is defined by {} which is not in the layout",
|
||||
v,
|
||||
ebb);
|
||||
}
|
||||
// The defining EBB dominates the instruction using this value.
|
||||
if !self.domtree
|
||||
.ebb_dominates(ebb, loc_inst, &self.func.layout) {
|
||||
return err!(loc_inst, "uses value arg from non-dominating {}", ebb);
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn domtree_integrity(&self, domtree: &DominatorTree) -> Result<()> {
|
||||
// We consider two `DominatorTree`s to be equal if they return the same immediate
|
||||
// dominator for each EBB. Therefore the current domtree is valid if it matches the freshly
|
||||
// computed one.
|
||||
for ebb in self.func.layout.ebbs() {
|
||||
let expected = domtree.idom(ebb);
|
||||
let got = self.domtree.idom(ebb);
|
||||
if got != expected {
|
||||
return err!(ebb,
|
||||
"invalid domtree, expected idom({}) = {:?}, got {:?}",
|
||||
ebb,
|
||||
expected,
|
||||
got);
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn typecheck_entry_block_arguments(&self) -> Result<()> {
|
||||
if let Some(ebb) = self.func.layout.entry_block() {
|
||||
let expected_types = &self.func.signature.argument_types;
|
||||
let ebb_arg_count = self.func.dfg.num_ebb_args(ebb);
|
||||
|
||||
if ebb_arg_count != expected_types.len() {
|
||||
return err!(ebb, "entry block arguments must match function signature");
|
||||
}
|
||||
|
||||
for (i, &arg) in self.func.dfg.ebb_args(ebb).iter().enumerate() {
|
||||
let arg_type = self.func.dfg.value_type(arg);
|
||||
if arg_type != expected_types[i].value_type {
|
||||
return err!(ebb,
|
||||
"entry block argument {} expected to have type {}, got {}",
|
||||
i,
|
||||
expected_types[i],
|
||||
arg_type);
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn typecheck(&self, inst: Inst) -> Result<()> {
|
||||
let inst_data = &self.func.dfg[inst];
|
||||
let constraints = inst_data.opcode().constraints();
|
||||
|
||||
let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() {
|
||||
// For polymorphic opcodes, determine the controlling type variable first.
|
||||
let ctrl_type = self.func.dfg.ctrl_typevar(inst);
|
||||
|
||||
if !value_typeset.contains(ctrl_type) {
|
||||
return err!(inst, "has an invalid controlling type {}", ctrl_type);
|
||||
}
|
||||
|
||||
ctrl_type
|
||||
} else {
|
||||
// Non-polymorphic instructions don't check the controlling type variable, so `Option`
|
||||
// is unnecessary and we can just make it `VOID`.
|
||||
types::VOID
|
||||
};
|
||||
|
||||
self.typecheck_results(inst, ctrl_type)?;
|
||||
self.typecheck_fixed_args(inst, ctrl_type)?;
|
||||
self.typecheck_variable_args(inst)?;
|
||||
self.typecheck_return(inst)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn typecheck_results(&self, inst: Inst, ctrl_type: Type) -> Result<()> {
|
||||
let mut i = 0;
|
||||
for &result in self.func.dfg.inst_results(inst) {
|
||||
let result_type = self.func.dfg.value_type(result);
|
||||
let expected_type = self.func.dfg.compute_result_type(inst, i, ctrl_type);
|
||||
if let Some(expected_type) = expected_type {
|
||||
if result_type != expected_type {
|
||||
return err!(inst,
|
||||
"expected result {} ({}) to have type {}, found {}",
|
||||
i,
|
||||
result,
|
||||
expected_type,
|
||||
result_type);
|
||||
}
|
||||
} else {
|
||||
return err!(inst, "has more result values than expected");
|
||||
}
|
||||
i += 1;
|
||||
}
|
||||
|
||||
// There aren't any more result types left.
|
||||
if self.func.dfg.compute_result_type(inst, i, ctrl_type) != None {
|
||||
return err!(inst, "has fewer result values than expected");
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn typecheck_fixed_args(&self, inst: Inst, ctrl_type: Type) -> Result<()> {
|
||||
let constraints = self.func.dfg[inst].opcode().constraints();
|
||||
|
||||
for (i, &arg) in self.func.dfg.inst_fixed_args(inst).iter().enumerate() {
|
||||
let arg_type = self.func.dfg.value_type(arg);
|
||||
match constraints.value_argument_constraint(i, ctrl_type) {
|
||||
ResolvedConstraint::Bound(expected_type) => {
|
||||
if arg_type != expected_type {
|
||||
return err!(inst,
|
||||
"arg {} ({}) has type {}, expected {}",
|
||||
i,
|
||||
arg,
|
||||
arg_type,
|
||||
expected_type);
|
||||
}
|
||||
}
|
||||
ResolvedConstraint::Free(type_set) => {
|
||||
if !type_set.contains(arg_type) {
|
||||
return err!(inst,
|
||||
"arg {} ({}) with type {} failed to satisfy type set {:?}",
|
||||
i,
|
||||
arg,
|
||||
arg_type,
|
||||
type_set);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn typecheck_variable_args(&self, inst: Inst) -> Result<()> {
|
||||
match self.func.dfg[inst].analyze_branch(&self.func.dfg.value_lists) {
|
||||
BranchInfo::SingleDest(ebb, _) => {
|
||||
let iter = self.func
|
||||
.dfg
|
||||
.ebb_args(ebb)
|
||||
.iter()
|
||||
.map(|&v| self.func.dfg.value_type(v));
|
||||
self.typecheck_variable_args_iterator(inst, iter)?;
|
||||
}
|
||||
BranchInfo::Table(table) => {
|
||||
for (_, ebb) in self.func.jump_tables[table].entries() {
|
||||
let arg_count = self.func.dfg.num_ebb_args(ebb);
|
||||
if arg_count != 0 {
|
||||
return err!(inst,
|
||||
"takes no arguments, but had target {} with {} arguments",
|
||||
ebb,
|
||||
arg_count);
|
||||
}
|
||||
}
|
||||
}
|
||||
BranchInfo::NotABranch => {}
|
||||
}
|
||||
|
||||
match self.func.dfg[inst].analyze_call(&self.func.dfg.value_lists) {
|
||||
CallInfo::Direct(func_ref, _) => {
|
||||
let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
|
||||
let arg_types = self.func.dfg.signatures[sig_ref]
|
||||
.argument_types
|
||||
.iter()
|
||||
.map(|a| a.value_type);
|
||||
self.typecheck_variable_args_iterator(inst, arg_types)?;
|
||||
}
|
||||
CallInfo::Indirect(sig_ref, _) => {
|
||||
let arg_types = self.func.dfg.signatures[sig_ref]
|
||||
.argument_types
|
||||
.iter()
|
||||
.map(|a| a.value_type);
|
||||
self.typecheck_variable_args_iterator(inst, arg_types)?;
|
||||
}
|
||||
CallInfo::NotACall => {}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn typecheck_variable_args_iterator<I: Iterator<Item = Type>>(&self,
|
||||
inst: Inst,
|
||||
iter: I)
|
||||
-> Result<()> {
|
||||
let variable_args = self.func.dfg.inst_variable_args(inst);
|
||||
let mut i = 0;
|
||||
|
||||
for expected_type in iter {
|
||||
if i >= variable_args.len() {
|
||||
// Result count mismatch handled below, we want the full argument count first though
|
||||
i += 1;
|
||||
continue;
|
||||
}
|
||||
let arg = variable_args[i];
|
||||
let arg_type = self.func.dfg.value_type(arg);
|
||||
if expected_type != arg_type {
|
||||
return err!(inst,
|
||||
"arg {} ({}) has type {}, expected {}",
|
||||
i,
|
||||
variable_args[i],
|
||||
arg_type,
|
||||
expected_type);
|
||||
}
|
||||
i += 1;
|
||||
}
|
||||
if i != variable_args.len() {
|
||||
return err!(inst,
|
||||
"mismatched argument count, got {}, expected {}",
|
||||
variable_args.len(),
|
||||
i);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn typecheck_return(&self, inst: Inst) -> Result<()> {
|
||||
if self.func.dfg[inst].opcode().is_return() {
|
||||
let args = self.func.dfg.inst_variable_args(inst);
|
||||
let expected_types = &self.func.signature.return_types;
|
||||
if args.len() != expected_types.len() {
|
||||
return err!(inst, "arguments of return must match function signature");
|
||||
}
|
||||
for (i, (&arg, &expected_type)) in args.iter().zip(expected_types).enumerate() {
|
||||
let arg_type = self.func.dfg.value_type(arg);
|
||||
if arg_type != expected_type.value_type {
|
||||
return err!(inst,
|
||||
"arg {} ({}) has type {}, must match function signature of {}",
|
||||
i,
|
||||
arg,
|
||||
arg_type,
|
||||
expected_type);
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn cfg_integrity(&self, cfg: &ControlFlowGraph) -> Result<()> {
|
||||
let mut expected_succs = BTreeSet::<Ebb>::new();
|
||||
let mut got_succs = BTreeSet::<Ebb>::new();
|
||||
let mut expected_preds = BTreeSet::<Inst>::new();
|
||||
let mut got_preds = BTreeSet::<Inst>::new();
|
||||
|
||||
for ebb in self.func.layout.ebbs() {
|
||||
expected_succs.extend(self.cfg.get_successors(ebb));
|
||||
got_succs.extend(cfg.get_successors(ebb));
|
||||
|
||||
let missing_succs: Vec<Ebb> = expected_succs.difference(&got_succs).cloned().collect();
|
||||
if missing_succs.len() != 0 {
|
||||
return err!(ebb,
|
||||
"cfg lacked the following successor(s) {:?}",
|
||||
missing_succs);
|
||||
}
|
||||
|
||||
let excess_succs: Vec<Ebb> = got_succs.difference(&expected_succs).cloned().collect();
|
||||
if excess_succs.len() != 0 {
|
||||
return err!(ebb, "cfg had unexpected successor(s) {:?}", excess_succs);
|
||||
}
|
||||
|
||||
expected_preds.extend(self.cfg
|
||||
.get_predecessors(ebb)
|
||||
.iter()
|
||||
.map(|&(_, inst)| inst));
|
||||
got_preds.extend(cfg.get_predecessors(ebb).iter().map(|&(_, inst)| inst));
|
||||
|
||||
let missing_preds: Vec<Inst> = expected_preds.difference(&got_preds).cloned().collect();
|
||||
if missing_preds.len() != 0 {
|
||||
return err!(ebb,
|
||||
"cfg lacked the following predecessor(s) {:?}",
|
||||
missing_preds);
|
||||
}
|
||||
|
||||
let excess_preds: Vec<Inst> = got_preds.difference(&expected_preds).cloned().collect();
|
||||
if excess_preds.len() != 0 {
|
||||
return err!(ebb, "cfg had unexpected predecessor(s) {:?}", excess_preds);
|
||||
}
|
||||
|
||||
expected_succs.clear();
|
||||
got_succs.clear();
|
||||
expected_preds.clear();
|
||||
got_preds.clear();
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn run(&self) -> Result<()> {
|
||||
self.typecheck_entry_block_arguments()?;
|
||||
for ebb in self.func.layout.ebbs() {
|
||||
for inst in self.func.layout.ebb_insts(ebb) {
|
||||
self.ebb_integrity(ebb, inst)?;
|
||||
self.instruction_integrity(inst)?;
|
||||
self.typecheck(inst)?;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::{Verifier, Error};
|
||||
use ir::Function;
|
||||
use ir::instructions::{InstructionData, Opcode};
|
||||
|
||||
macro_rules! assert_err_with_msg {
|
||||
($e:expr, $msg:expr) => (
|
||||
match $e {
|
||||
Ok(_) => { panic!("Expected an error!") },
|
||||
Err(Error { message, .. } ) => {
|
||||
if !message.contains($msg) {
|
||||
panic!(format!("'{}' did not contain the substring '{}'", message, $msg));
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn empty() {
|
||||
let func = Function::new();
|
||||
let verifier = Verifier::new(&func);
|
||||
assert_eq!(verifier.run(), Ok(()));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bad_instruction_format() {
|
||||
let mut func = Function::new();
|
||||
let ebb0 = func.dfg.make_ebb();
|
||||
func.layout.append_ebb(ebb0);
|
||||
let nullary_with_bad_opcode =
|
||||
func.dfg
|
||||
.make_inst(InstructionData::Nullary { opcode: Opcode::Jump });
|
||||
func.layout.append_inst(nullary_with_bad_opcode, ebb0);
|
||||
let verifier = Verifier::new(&func);
|
||||
assert_err_with_msg!(verifier.run(), "instruction format");
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user