Address review comments.

This commit is contained in:
Chris Fallin
2020-05-18 15:40:17 -07:00
parent 687aca00fe
commit bdd2873c8c
7 changed files with 313 additions and 89 deletions

View File

@@ -352,6 +352,13 @@ impl MachInstEmit for Inst {
type State = EmitState;
fn emit(&self, sink: &mut MachBuffer<Inst>, flags: &settings::Flags, state: &mut EmitState) {
// N.B.: we *must* not exceed the "worst-case size" used to compute
// where to insert islands, except when islands are explicitly triggered
// (with an `EmitIsland`). We check this in debug builds. This is `mut`
// to allow disabling the check for `JTSequence`, which is always
// emitted following an `EmitIsland`.
let mut start_off = sink.cur_offset();
match self {
&Inst::AluRRR { alu_op, rd, rn, rm } => {
let top11 = match alu_op {
@@ -1307,6 +1314,10 @@ impl MachInstEmit for Inst {
LabelUse::PCRel32,
);
}
// Lowering produces an EmitIsland before using a JTSequence, so we can safely
// disable the worst-case-size check in this case.
start_off = sink.cur_offset();
}
&Inst::LoadConst64 { rd, const_data } => {
let inst = Inst::ULoad64 {
@@ -1418,5 +1429,8 @@ impl MachInstEmit for Inst {
}
}
}
let end_off = sink.cur_offset();
debug_assert!((end_off - start_off) <= Inst::worst_case_size());
}
}

View File

@@ -657,6 +657,15 @@ pub enum Inst {
/// A one-way conditional branch, invisible to the CFG processing; used *only* as part of
/// straight-line sequences in code to be emitted.
///
/// In more detail:
/// - This branch is lowered to a branch at the machine-code level, but does not end a basic
/// block, and does not create edges in the CFG seen by regalloc.
/// - Thus, it is *only* valid to use as part of a single-in, single-out sequence that is
/// lowered from a single CLIF instruction. For example, certain arithmetic operations may
/// use these branches to handle certain conditions, such as overflows, traps, etc.
///
/// See, e.g., the lowering of `trapif` (conditional trap) for an example.
OneWayCondBr {
target: BranchTarget,
kind: CondBrKind,
@@ -678,7 +687,7 @@ pub enum Inst {
trap_info: (SourceLoc, TrapCode),
},
/// Load the address (using a PC-relative offset) of a memory location, using the `ADR`
/// Compute the address (using a PC-relative offset) of a memory location, using the `ADR`
/// instruction. Note that we take a simple offset, not a `MemLabel`, here, because `Adr` is
/// only used for now in fixed lowering sequences with hardcoded offsets. In the future we may
/// need full `MemLabel` support.
@@ -734,9 +743,26 @@ pub enum Inst {
offset: i64,
},
/// Meta-insn, no-op in generated code: emit constant/branch veneer island at this point (with
/// a guard jump around it) if less than the needed space is available before the next branch
/// deadline.
/// Meta-insn, no-op in generated code: emit constant/branch veneer island
/// at this point (with a guard jump around it) if less than the needed
/// space is available before the next branch deadline. See the `MachBuffer`
/// implementation in `machinst/buffer.rs` for the overall algorithm. In
/// brief, we retain a set of "pending/unresolved label references" from
/// branches as we scan forward through instructions to emit machine code;
/// if we notice we're about to go out of range on an unresolved reference,
/// we stop, emit a bunch of "veneers" (branches in a form that has a longer
/// range, e.g. a 26-bit-offset unconditional jump), and point the original
/// label references to those. This is an "island" because it comes in the
/// middle of the code.
///
/// This meta-instruction is a necessary part of the logic that determines
/// where to place islands. Ordinarily, we want to place them between basic
/// blocks, so we compute the worst-case size of each block, and emit the
/// island before starting a block if we would exceed a deadline before the
/// end of the block. However, some sequences (such as an inline jumptable)
/// are variable-length and not accounted for by this logic; so these
/// lowered sequences include an `EmitIsland` to trigger island generation
/// where necessary.
EmitIsland {
/// The needed space before the next deadline.
needed_space: CodeOffset,
@@ -1770,6 +1796,18 @@ impl MachInst for Inst {
));
ret
} else {
// Must be an integer type.
debug_assert!(
ty == B1
|| ty == I8
|| ty == B8
|| ty == I16
|| ty == B16
|| ty == I32
|| ty == B32
|| ty == I64
|| ty == B64
);
Inst::load_constant(to_reg, value)
}
}
@@ -2601,7 +2639,8 @@ pub enum LabelUse {
/// 21-bit offset for ADR (get address of label). PC-rel, offset is not shifted. Immediate is
/// 21 signed bits, with high 19 bits in bits 23:5 and low 2 bits in bits 30:29.
Adr21,
/// 32-bit PC relative constant offset (from address of constant itself). Used in jump tables.
/// 32-bit PC relative constant offset (from address of constant itself),
/// signed. Used in jump tables.
PCRel32,
}

View File

@@ -188,7 +188,7 @@ pub(crate) fn input_to_reg<C: LowerCtx<I = Inst>>(
let inputs = ctx.get_input(input.insn, input.input);
let in_reg = if let Some(c) = inputs.constant {
// Generate constants fresh at each use to minimize long-range register pressure.
let to_reg = ctx.tmp(Inst::rc_for_type(ty).unwrap(), ty);
let to_reg = ctx.alloc_tmp(Inst::rc_for_type(ty).unwrap(), ty);
for inst in Inst::gen_constant(to_reg, c, ty).into_iter() {
ctx.emit(inst);
}
@@ -201,7 +201,7 @@ pub(crate) fn input_to_reg<C: LowerCtx<I = Inst>>(
match (narrow_mode, from_bits) {
(NarrowValueMode::None, _) => in_reg,
(NarrowValueMode::ZeroExtend32, n) if n < 32 => {
let tmp = ctx.tmp(RegClass::I64, I32);
let tmp = ctx.alloc_tmp(RegClass::I64, I32);
ctx.emit(Inst::Extend {
rd: tmp,
rn: in_reg,
@@ -212,7 +212,7 @@ pub(crate) fn input_to_reg<C: LowerCtx<I = Inst>>(
tmp.to_reg()
}
(NarrowValueMode::SignExtend32, n) if n < 32 => {
let tmp = ctx.tmp(RegClass::I64, I32);
let tmp = ctx.alloc_tmp(RegClass::I64, I32);
ctx.emit(Inst::Extend {
rd: tmp,
rn: in_reg,
@@ -229,7 +229,7 @@ pub(crate) fn input_to_reg<C: LowerCtx<I = Inst>>(
// Constants are zero-extended to full 64-bit width on load already.
in_reg
} else {
let tmp = ctx.tmp(RegClass::I64, I32);
let tmp = ctx.alloc_tmp(RegClass::I64, I32);
ctx.emit(Inst::Extend {
rd: tmp,
rn: in_reg,
@@ -241,7 +241,7 @@ pub(crate) fn input_to_reg<C: LowerCtx<I = Inst>>(
}
}
(NarrowValueMode::SignExtend64, n) if n < 64 => {
let tmp = ctx.tmp(RegClass::I64, I32);
let tmp = ctx.alloc_tmp(RegClass::I64, I32);
ctx.emit(Inst::Extend {
rd: tmp,
rn: in_reg,
@@ -529,7 +529,7 @@ pub(crate) fn lower_address<C: LowerCtx<I = Inst>>(
}
// Otherwise, generate add instructions.
let addr = ctx.tmp(RegClass::I64, I64);
let addr = ctx.alloc_tmp(RegClass::I64, I64);
// Get the const into a reg.
lower_constant_u64(ctx, addr.clone(), offset as u64);
@@ -541,7 +541,7 @@ pub(crate) fn lower_address<C: LowerCtx<I = Inst>>(
// In an addition, the stack register is the zero register, so divert it to another
// register just before doing the actual add.
let reg = if reg == stack_reg() {
let tmp = ctx.tmp(RegClass::I64, I64);
let tmp = ctx.alloc_tmp(RegClass::I64, I64);
ctx.emit(Inst::Mov {
rd: tmp,
rm: stack_reg(),

View File

@@ -84,8 +84,8 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
} else {
VecALUOp::UQAddScalar
};
let va = ctx.tmp(RegClass::V128, I128);
let vb = ctx.tmp(RegClass::V128, I128);
let va = ctx.alloc_tmp(RegClass::V128, I128);
let vb = ctx.alloc_tmp(RegClass::V128, I128);
let ra = input_to_reg(ctx, inputs[0], narrow_mode);
let rb = input_to_reg(ctx, inputs[1], narrow_mode);
let rd = output_to_reg(ctx, outputs[0]);
@@ -115,8 +115,8 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
} else {
VecALUOp::UQSubScalar
};
let va = ctx.tmp(RegClass::V128, I128);
let vb = ctx.tmp(RegClass::V128, I128);
let va = ctx.alloc_tmp(RegClass::V128, I128);
let vb = ctx.alloc_tmp(RegClass::V128, I128);
let ra = input_to_reg(ctx, inputs[0], narrow_mode);
let rb = input_to_reg(ctx, inputs[1], narrow_mode);
let rd = output_to_reg(ctx, outputs[0]);
@@ -498,7 +498,7 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
// ignored (because of the implicit masking done by the instruction),
// so this is equivalent to negating the input.
let alu_op = choose_32_64(ty, ALUOp::Sub32, ALUOp::Sub64);
let tmp = ctx.tmp(RegClass::I64, ty);
let tmp = ctx.alloc_tmp(RegClass::I64, ty);
ctx.emit(Inst::AluRRR {
alu_op,
rd: tmp,
@@ -521,7 +521,7 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
// Really ty_bits_size - rn, but the upper bits of the result are
// ignored (because of the implicit masking done by the instruction),
// so this is equivalent to negating the input.
let tmp = ctx.tmp(RegClass::I64, I32);
let tmp = ctx.alloc_tmp(RegClass::I64, I32);
ctx.emit(Inst::AluRRR {
alu_op: ALUOp::Sub32,
rd: tmp,
@@ -534,7 +534,7 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
};
// Explicitly mask the rotation count.
let tmp_masked_rm = ctx.tmp(RegClass::I64, I32);
let tmp_masked_rm = ctx.alloc_tmp(RegClass::I64, I32);
ctx.emit(Inst::AluRRImmLogic {
alu_op: ALUOp::And32,
rd: tmp_masked_rm,
@@ -543,8 +543,8 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
});
let tmp_masked_rm = tmp_masked_rm.to_reg();
let tmp1 = ctx.tmp(RegClass::I64, I32);
let tmp2 = ctx.tmp(RegClass::I64, I32);
let tmp1 = ctx.alloc_tmp(RegClass::I64, I32);
let tmp2 = ctx.alloc_tmp(RegClass::I64, I32);
ctx.emit(Inst::AluRRImm12 {
alu_op: ALUOp::Sub32,
rd: tmp1,
@@ -583,7 +583,7 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
}
immshift.imm &= ty_bits_size - 1;
let tmp1 = ctx.tmp(RegClass::I64, I32);
let tmp1 = ctx.alloc_tmp(RegClass::I64, I32);
ctx.emit(Inst::AluRRImmShift {
alu_op: ALUOp::Lsr32,
rd: tmp1,
@@ -688,7 +688,7 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
// and fix the sequence below to work properly for this.
let narrow_mode = NarrowValueMode::ZeroExtend64;
let rn = input_to_reg(ctx, inputs[0], narrow_mode);
let tmp = ctx.tmp(RegClass::I64, I64);
let tmp = ctx.alloc_tmp(RegClass::I64, I64);
// If this is a 32-bit Popcnt, use Lsr32 to clear the top 32 bits of the register, then
// the rest of the code is identical to the 64-bit version.
@@ -997,7 +997,7 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
}
Opcode::Bitselect => {
let tmp = ctx.tmp(RegClass::I64, I64);
let tmp = ctx.alloc_tmp(RegClass::I64, I64);
let rd = output_to_reg(ctx, outputs[0]);
let rcond = input_to_reg(ctx, inputs[0], NarrowValueMode::None);
let rn = input_to_reg(ctx, inputs[1], NarrowValueMode::None);
@@ -1475,8 +1475,8 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
let rn = input_to_reg(ctx, inputs[0], NarrowValueMode::None);
let rm = input_to_reg(ctx, inputs[1], NarrowValueMode::None);
let rd = output_to_reg(ctx, outputs[0]);
let tmp1 = ctx.tmp(RegClass::I64, I64);
let tmp2 = ctx.tmp(RegClass::I64, I64);
let tmp1 = ctx.alloc_tmp(RegClass::I64, I64);
let tmp2 = ctx.alloc_tmp(RegClass::I64, I64);
ctx.emit(Inst::MovFromVec64 { rd: tmp1, rn: rn });
ctx.emit(Inst::MovFromVec64 { rd: tmp2, rn: rm });
let imml = if bits == 32 {
@@ -1546,7 +1546,7 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
let trap_info = (ctx.srcloc(insn), TrapCode::BadConversionToInteger);
ctx.emit(Inst::Udf { trap_info });
let tmp = ctx.tmp(RegClass::V128, I128);
let tmp = ctx.alloc_tmp(RegClass::V128, I128);
// Check that the input is in range, with "truncate towards zero" semantics. This means
// we allow values that are slightly out of range:
@@ -1712,8 +1712,8 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
_ => unreachable!(),
};
let rtmp1 = ctx.tmp(RegClass::V128, in_ty);
let rtmp2 = ctx.tmp(RegClass::V128, in_ty);
let rtmp1 = ctx.alloc_tmp(RegClass::V128, in_ty);
let rtmp2 = ctx.alloc_tmp(RegClass::V128, in_ty);
if in_bits == 32 {
ctx.emit(Inst::LoadFpuConst32 {
@@ -2072,7 +2072,9 @@ pub(crate) fn lower_branch<C: LowerCtx<I = Inst>>(
Opcode::BrTable => {
// Expand `br_table index, default, JT` to:
//
// (emit island with guard jump if needed)
// emit_island // this forces an island at this point
// // if the jumptable would push us past
// // the deadline
// subs idx, #jt_size
// b.hs default
// adr vTmp1, PC+16
@@ -2096,8 +2098,8 @@ pub(crate) fn lower_branch<C: LowerCtx<I = Inst>>(
NarrowValueMode::ZeroExtend32,
);
let rtmp1 = ctx.tmp(RegClass::I64, I32);
let rtmp2 = ctx.tmp(RegClass::I64, I32);
let rtmp1 = ctx.alloc_tmp(RegClass::I64, I32);
let rtmp2 = ctx.alloc_tmp(RegClass::I64, I32);
// Bounds-check and branch to default.
if let Some(imm12) = Imm12::maybe_from_u64(jt_size as u64) {

View File

@@ -3,12 +3,54 @@
//! This module handles the translation from CLIF BBs to VCode BBs.
//!
//! The basic idea is that we compute a sequence of "lowered blocks" that
//! correspond to subgraphs of the CLIF CFG plus an implicit block on *every*
//! edge (not just critical edges). Conceptually, the lowering pipeline wants to
//! insert moves for phi-nodes on every block-to-block transfer; these blocks
//! always conceptually exist, but may be merged with an "original" CLIF block
//! (and hence not actually exist; this is equivalent to inserting the blocks
//! only on critical edges).
//! correspond to one or more blocks in the graph: (CLIF CFG) `union` (implicit
//! block on *every* edge). Conceptually, the lowering pipeline wants to insert
//! moves for phi-nodes on every block-to-block transfer; these blocks always
//! conceptually exist, but may be merged with an "original" CLIF block (and
//! hence not actually exist; this is equivalent to inserting the blocks only on
//! critical edges).
//!
//! In other words, starting from a CFG like this (where each "CLIF block" and
//! "(edge N->M)" is a separate basic block):
//!
//! ```plain
//!
//! CLIF block 0
//! / \
//! (edge 0->1) (edge 0->2)
//! | |
//! CLIF block 1 CLIF block 2
//! \ /
//! (edge 1->3) (edge 2->3)
//! \ /
//! CLIF block 3
//! ```
//!
//! We can produce a CFG of lowered blocks like so:
//!
//! ```plain
//! +--------------+
//! | CLIF block 0 |
//! +--------------+
//! / \
//! +--------------+ +--------------+
//! | (edge 0->1) | |(edge 0->2) |
//! | CLIF block 1 | | CLIF block 2 |
//! +--------------+ +--------------+
//! \ /
//! +-----------+ +-----------+
//! |(edge 1->3)| |(edge 2->3)|
//! +-----------+ +-----------+
//! \ /
//! +------------+
//! |CLIF block 3|
//! +------------+
//! ```
//!
//! (note that the edges into CLIF blocks 1 and 2 could be merged with those
//! blocks' original bodies, but the out-edges could not because for simplicity
//! in the successor-function definition, we only ever merge an edge onto one
//! side of an original CLIF block.)
//!
//! Each `LoweredBlock` names just an original CLIF block, an original CLIF
//! block prepended or appended with an edge block (never both, though), or just
@@ -23,6 +65,9 @@
//! have content, because this computation happens as part of lowering *before*
//! regalloc, and regalloc may or may not insert moves/spills/reloads on any
//! particular edge. But it works relatively well and is conceptually simple.
//! Furthermore, the [MachBuffer] machine-code sink performs final peephole-like
//! branch editing that in practice elides empty blocks and simplifies some of
//! the other redundancies that this scheme produces.
use crate::entity::SecondaryMap;
use crate::fx::{FxHashMap, FxHashSet};

View File

@@ -1,12 +1,116 @@
//! In-memory representation of compiled machine code, with labels and fixups to
//! refer to those labels. Handles constant-pool island insertion and also
//! veneer insertion for out-of-range jumps.
//!
//! This code exists to solve three problems:
//!
//! - Branch targets for forward branches are not known until later, when we
//! emit code in a single pass through the instruction structs.
//!
//! - On many architectures, address references or offsets have limited range.
//! For example, on AArch64, conditional branches can only target code +/- 1MB
//! from the branch itself.
//!
//! - The lowering of control flow from the CFG-with-edges produced by
//! [BlockLoweringOrder], combined with many empty edge blocks when the register
//! allocator does not need to insert any spills/reloads/moves in edge blocks,
//! results in many suboptimal branch patterns. The lowering also pays no
//! attention to block order, and so two-target conditional forms (cond-br
//! followed by uncond-br) can often by avoided because one of the targets is
//! the fallthrough. There are several cases here where we can simplify to use
//! fewer branches.
//!
//! This "buffer" implements a single-pass code emission strategy (with a later
//! "fixup" pass, but only through recorded fixups, not all instructions). The
//! basic idea is:
//!
//! - Emit branches as they are, including two-target (cond/uncond) compound
//! forms, but with zero offsets and optimistically assuming the target will be
//! in range. Record the "fixup" for later. Targets are denoted instead by
//! symbolic "labels" that are then bound to certain offsets in the buffer as
//! we emit code. (Nominally, there is a label at the start of every basic
//! block.)
//!
//! - As we do this, track the offset in the buffer at which the first label
//! reference "goes out of range". We call this the "deadline". If we reach the
//! deadline and we still have not bound the label to which an unresolved branch
//! refers, we have a problem!
//!
//! - To solve this problem, we emit "islands" full of "veneers". An island is
//! simply a chunk of code inserted in the middle of the code actually produced
//! by the emitter (e.g., vcode iterating over instruction structs). The emitter
//! has some awareness of this: it either asks for an island between blocks, so
//! it is not accidentally executed, or else it emits a branch around the island
//! when all other options fail (see [Inst::EmitIsland] meta-instruction).
//!
//! - A "veneer" is an instruction (or sequence of instructions) in an "island"
//! that implements a longer-range reference to a label. The idea is that, for
//! example, a branch with a limited range can branch to a "veneer" instead,
//! which is simply a branch in a form that can use a longer-range reference. On
//! AArch64, for example, conditionals have a +/- 1 MB range, but a conditional
//! can branch to an unconditional branch which has a +/- 128 MB range. Hence, a
//! conditional branch's label reference can be fixed up with a "veneer" to
//! achieve a longer range.
//!
//! - To implement all of this, we require the backend to provide a `LabelUse`
//! type that implements a trait. This is nominally an enum that records one of
//! several kinds of references to an offset in code -- basically, a relocation
//! type -- and will usually correspond to different instruction formats. The
//! `LabelUse` implementation specifies the maximum range, how to patch in the
//! actual label location when known, and how to generate a veneer to extend the
//! range.
//!
//! That satisfies label references, but we still may have suboptimal branch
//! patterns. To clean up the branches, we do a simple "peephole"-style
//! optimization on the fly. To do so, the emitter (e.g., `Inst::emit()`)
//! informs the buffer of branches in the code and, in the case of conditionals,
//! the code that would have been emitted to invert this branch's condition. We
//! track the "latest branches": these are branches that are contiguous up to
//! the current offset. (If any code is emitted after a branch, that branch or
//! run of contiguous branches is no longer "latest".) The latest branches are
//! those that we can edit by simply truncating the buffer and doing something
//! else instead.
//!
//! To optimize branches, we implement several simple rules, and try to apply
//! them to the "latest branches" when possible:
//!
//! - A branch with a label target, when that label is bound to the ending
//! offset of the branch (the fallthrough location), can be removed altogether,
//! because the branch would have no effect).
//!
//! - An unconditional branch that starts at a label location, and branches to
//! another label, results in a "label alias": all references to the label bound
//! *to* this branch instruction are instead resolved to the *target* of the
//! branch instruction. This effectively removes empty blocks that just
//! unconditionally branch to the next block. We call this "branch threading".
//!
//! - A conditional followed by an unconditional, when the conditional branches
//! to the unconditional's fallthrough, results in (i) the truncation of the
//! unconditional, (ii) the inversion of the condition's condition, and (iii)
//! replacement of the conditional's target (using the original target of the
//! unconditional). This is a fancy way of saying "we can flip a two-target
//! conditional branch's taken/not-taken targets if it works better with our
//! fallthrough". To make this work, the emitter actually gives the buffer
//! *both* forms of every conditional branch: the true form is emitted into the
//! buffer, and the "inverted" machine-code bytes are provided as part of the
//! branch-fixup metadata.
//!
//! - An unconditional B preceded by another unconditional P, when B's label(s) have
//! been redirected to target(B), can be removed entirely. This is an extension
//! of the branch-threading optimization, and is valid because if we know there
//! will be no fallthrough into this branch instruction (the prior instruction
//! is an unconditional jump), and if we know we have successfully redirected
//! all labels, then this branch instruction is unreachable. Note that this
//! works because the redirection happens before the label is ever resolved
//! (fixups happen at island emission time, at which point latest-branches are
//! cleared, or at the end of emission), so we are sure to catch and redirect
//! all possible paths to this instruction.
use crate::binemit::{Addend, CodeOffset, CodeSink, Reloc};
use crate::ir::{ExternalName, Opcode, SourceLoc, TrapCode};
use crate::machinst::{BlockIndex, MachInstLabelUse, VCodeInst};
use log::debug;
use log::trace;
use smallvec::SmallVec;
use std::mem;
@@ -35,10 +139,11 @@ pub struct MachBuffer<I: VCodeInst> {
cur_srcloc: Option<(CodeOffset, SourceLoc)>,
/// Known label offsets; `UNKNOWN_LABEL_OFFSET` if unknown.
label_offsets: SmallVec<[CodeOffset; 16]>,
/// Label aliases: one label points to an unconditional jump to another
/// label, so references to the first should be resolved as references
/// to the second. (We don't chase arbitrarily deep to avoid problems
/// with cycles.)
/// Label aliases: when one label points to an unconditional jump, and that
/// jump points to another label, we can redirect references to the first
/// label immediately to the second. (We don't chase arbitrarily deep to
/// avoid problems with cycles, but rather only one level, i.e. through one
/// jump.)
label_aliases: SmallVec<[MachLabel; 16]>,
/// Constants that must be emitted at some point.
pending_constants: SmallVec<[MachLabelConstant; 16]>,
@@ -129,13 +234,13 @@ impl<I: VCodeInst> MachBuffer<I> {
/// Add a byte.
pub fn put1(&mut self, value: u8) {
debug!("MachBuffer: put byte @ {}: {:x}", self.cur_offset(), value);
trace!("MachBuffer: put byte @ {}: {:x}", self.cur_offset(), value);
self.data.push(value);
}
/// Add 2 bytes.
pub fn put2(&mut self, value: u16) {
debug!(
trace!(
"MachBuffer: put 16-bit word @ {}: {:x}",
self.cur_offset(),
value
@@ -146,7 +251,7 @@ impl<I: VCodeInst> MachBuffer<I> {
/// Add 4 bytes.
pub fn put4(&mut self, value: u32) {
debug!(
trace!(
"MachBuffer: put 32-bit word @ {}: {:x}",
self.cur_offset(),
value
@@ -157,7 +262,7 @@ impl<I: VCodeInst> MachBuffer<I> {
/// Add 8 bytes.
pub fn put8(&mut self, value: u64) {
debug!(
trace!(
"MachBuffer: put 64-bit word @ {}: {:x}",
self.cur_offset(),
value
@@ -168,7 +273,7 @@ impl<I: VCodeInst> MachBuffer<I> {
/// Add a slice of bytes.
pub fn put_data(&mut self, data: &[u8]) {
debug!(
trace!(
"MachBuffer: put data @ {}: len {}",
self.cur_offset(),
data.len()
@@ -178,7 +283,7 @@ impl<I: VCodeInst> MachBuffer<I> {
/// Reserve appended space and return a mutable slice referring to it.
pub fn get_appended_space(&mut self, len: usize) -> &mut [u8] {
debug!("MachBuffer: put data @ {}: len {}", self.cur_offset(), len);
trace!("MachBuffer: put data @ {}: len {}", self.cur_offset(), len);
let off = self.data.len();
let new_len = self.data.len() + len;
self.data.resize(new_len, 0);
@@ -187,7 +292,7 @@ impl<I: VCodeInst> MachBuffer<I> {
/// Align up to the given alignment.
pub fn align_to(&mut self, align_to: CodeOffset) {
debug!("MachBuffer: align to {}", align_to);
trace!("MachBuffer: align to {}", align_to);
assert!(align_to.is_power_of_two());
while self.cur_offset() & (align_to - 1) != 0 {
self.put1(0);
@@ -200,13 +305,13 @@ impl<I: VCodeInst> MachBuffer<I> {
let l = self.label_offsets.len() as u32;
self.label_offsets.push(UNKNOWN_LABEL_OFFSET);
self.label_aliases.push(UNKNOWN_LABEL);
debug!("MachBuffer: new label -> {:?}", MachLabel(l));
trace!("MachBuffer: new label -> {:?}", MachLabel(l));
MachLabel(l)
}
/// Reserve the first N MachLabels for blocks.
pub fn reserve_labels_for_blocks(&mut self, blocks: BlockIndex) {
debug!("MachBuffer: first {} labels are for blocks", blocks);
trace!("MachBuffer: first {} labels are for blocks", blocks);
debug_assert!(self.label_offsets.is_empty());
self.label_offsets
.resize(blocks as usize, UNKNOWN_LABEL_OFFSET);
@@ -215,7 +320,7 @@ impl<I: VCodeInst> MachBuffer<I> {
/// Bind a label to the current offset.
pub fn bind_label(&mut self, label: MachLabel) {
debug!(
trace!(
"MachBuffer: bind label {:?} at offset {}",
label,
self.cur_offset()
@@ -244,9 +349,11 @@ impl<I: VCodeInst> MachBuffer<I> {
/// happen immediately, the buffer must already contain bytes at `offset` up
/// to `offset + kind.patch_size()`.
pub fn use_label_at_offset(&mut self, offset: CodeOffset, label: MachLabel, kind: I::LabelUse) {
debug!(
trace!(
"MachBuffer: use_label_at_offset: offset {} label {:?} kind {:?}",
offset, label, kind
offset,
label,
kind
);
debug_assert!(offset + kind.patch_size() <= self.cur_offset());
@@ -310,14 +417,15 @@ impl<I: VCodeInst> MachBuffer<I> {
self.data.truncate(b.start as usize);
self.fixup_records.truncate(b.fixup);
let cur_off = self.cur_offset();
debug!(
trace!(
"truncate_last_branch: truncated {:?}; off now {}",
b, cur_off
b,
cur_off
);
for &mut (l, ref mut off) in self.labels_by_offset.iter_mut().rev() {
if *off > cur_off {
*off = cur_off;
debug!(" -> label {:?} reassigned to {}", l, cur_off);
trace!(" -> label {:?} reassigned to {}", l, cur_off);
self.label_offsets[l.0 as usize] = cur_off;
} else {
break;
@@ -326,13 +434,15 @@ impl<I: VCodeInst> MachBuffer<I> {
}
fn optimize_branches(&mut self) {
debug!(
trace!(
"enter optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
self.latest_branches, self.labels_by_offset, self.fixup_records
self.latest_branches,
self.labels_by_offset,
self.fixup_records
);
while let Some(b) = self.latest_branches.last() {
let cur_off = self.cur_offset();
debug!("optimize_branches: last branch {:?} at off {}", b, cur_off);
trace!("optimize_branches: last branch {:?} at off {}", b, cur_off);
// If there has been any code emission since the end of the last branch or
// label definition, then there's nothing we can edit (because we
// don't move code once placed, only back up and overwrite), so
@@ -359,11 +469,11 @@ impl<I: VCodeInst> MachBuffer<I> {
// Set any label equal to current branch's start as an alias of
// the branch's target.
for &(l, off) in self.labels_by_offset.iter().rev() {
debug!(" -> uncond: latest label {:?} at off {}", l, off);
trace!(" -> uncond: latest label {:?} at off {}", l, off);
if off > b.start {
continue;
} else if off == b.start {
debug!(" -> setting alias to {:?}", b.target);
trace!(" -> setting alias to {:?}", b.target);
self.label_aliases[l.0 as usize] = b.target;
} else {
break;
@@ -375,12 +485,12 @@ impl<I: VCodeInst> MachBuffer<I> {
// Examine any immediately preceding branch.
if self.latest_branches.len() > 1 {
let prev_b = &self.latest_branches[self.latest_branches.len() - 2];
debug!(" -> more than one branch; prev_b = {:?}", prev_b);
trace!(" -> more than one branch; prev_b = {:?}", prev_b);
// This uncond is immediately after another uncond; we've
// already redirected labels to this uncond away; so we can
// truncate this uncond.
if prev_b.is_uncond() && prev_b.end == b.start {
debug!(" -> uncond follows another uncond; truncating");
trace!(" -> uncond follows another uncond; truncating");
self.truncate_last_branch();
continue;
}
@@ -395,7 +505,7 @@ impl<I: VCodeInst> MachBuffer<I> {
&& prev_b.end == b.start
&& self.resolve_label_offset(prev_b.target) == cur_off
{
debug!(" -> uncond follows a conditional, and conditional's target resolves to current offset");
trace!(" -> uncond follows a conditional, and conditional's target resolves to current offset");
let target = b.target;
let data = prev_b.inverted.clone().unwrap();
self.truncate_last_branch();
@@ -407,7 +517,7 @@ impl<I: VCodeInst> MachBuffer<I> {
self.data.extend_from_slice(&data[..]);
prev_b.inverted = Some(not_inverted);
self.fixup_records[prev_b.fixup].label = target;
debug!(" -> reassigning target of condbr to {:?}", target);
trace!(" -> reassigning target of condbr to {:?}", target);
prev_b.target = target;
continue;
}
@@ -420,7 +530,7 @@ impl<I: VCodeInst> MachBuffer<I> {
// the current offset (end of branch) to the truncated
// end-of-code.
if self.resolve_label_offset(b.target) == cur_off {
debug!("branch with target == cur off; truncating");
trace!("branch with target == cur off; truncating");
self.truncate_last_branch();
}
@@ -430,9 +540,11 @@ impl<I: VCodeInst> MachBuffer<I> {
self.purge_latest_branches();
debug!(
trace!(
"leave optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
self.latest_branches, self.labels_by_offset, self.fixup_records
self.latest_branches,
self.labels_by_offset,
self.fixup_records
);
}
@@ -440,7 +552,7 @@ impl<I: VCodeInst> MachBuffer<I> {
let cur_off = self.cur_offset();
if let Some(l) = self.latest_branches.last() {
if l.end < cur_off {
debug!("purge_latest_branches: removing branch {:?}", l);
trace!("purge_latest_branches: removing branch {:?}", l);
self.latest_branches.clear();
}
}
@@ -498,9 +610,11 @@ impl<I: VCodeInst> MachBuffer<I> {
kind,
} in fixup_records.into_iter()
{
debug!(
trace!(
"emit_island: fixup for label {:?} at offset {} kind {:?}",
label, offset, kind
label,
offset,
kind
);
// We eagerly perform fixups whose label targets are known, if not out
// of range, to avoid unnecessary veneers.
@@ -516,7 +630,7 @@ impl<I: VCodeInst> MachBuffer<I> {
false
};
debug!(
trace!(
" -> label_offset = {}, known = {}, in_range = {} (pos {} neg {})",
label_offset,
known,
@@ -530,7 +644,7 @@ impl<I: VCodeInst> MachBuffer<I> {
if in_range {
debug_assert!(known); // implied by in_range.
let slice = &mut self.data[start..end];
debug!("patching in-range!");
trace!("patching in-range!");
kind.patch(slice, offset, label_offset);
} else if !known && !kind.supports_veneer() {
// Nothing for now. Keep it for next round.
@@ -543,21 +657,23 @@ impl<I: VCodeInst> MachBuffer<I> {
// Allocate space for a veneer in the island.
self.align_to(I::LabelUse::ALIGN);
let veneer_offset = self.cur_offset();
debug!("making a veneer at {}", veneer_offset);
trace!("making a veneer at {}", veneer_offset);
let slice = &mut self.data[start..end];
// Patch the original label use to refer to teh veneer.
debug!(
trace!(
"patching original at offset {} to veneer offset {}",
offset, veneer_offset
offset,
veneer_offset
);
kind.patch(slice, offset, veneer_offset);
// Generate the veneer.
let veneer_slice = self.get_appended_space(kind.veneer_size() as usize);
let (veneer_fixup_off, veneer_label_use) =
kind.generate_veneer(veneer_slice, veneer_offset);
debug!(
trace!(
"generated veneer; fixup offset {}, label_use {:?}",
veneer_fixup_off, veneer_label_use
veneer_fixup_off,
veneer_label_use
);
// If the label is known (but was just out of range), do the
// veneer label-use fixup now too; otherwise, save it for later.
@@ -565,7 +681,7 @@ impl<I: VCodeInst> MachBuffer<I> {
let start = veneer_fixup_off as usize;
let end = (veneer_fixup_off + veneer_label_use.patch_size()) as usize;
let veneer_slice = &mut self.data[start..end];
debug!("doing veneer fixup right away too");
trace!("doing veneer fixup right away too");
veneer_label_use.patch(veneer_slice, veneer_fixup_off, label_offset);
} else {
new_fixups.push(MachLabelFixup {

View File

@@ -23,9 +23,9 @@ use alloc::vec::Vec;
use log::debug;
use smallvec::SmallVec;
/// An "instruction color" partitions instructions by side-effecting ops. All
/// instructions with the same "color" are guaranteed not to be separated by any
/// side-effecting op (for this purpose, loads are also considered
/// An "instruction color" partitions CLIF instructions by side-effecting ops.
/// All instructions with the same "color" are guaranteed not to be separated by
/// any side-effecting op (for this purpose, loads are also considered
/// side-effecting, to avoid subtle questions w.r.t. the memory model), and
/// furthermore, it is guaranteed that for any two instructions A and B such
/// that color(A) == color(B), either A dominates B and B postdominates A, or
@@ -33,7 +33,8 @@ use smallvec::SmallVec;
/// have the same color, trivially providing the second condition.) Intuitively,
/// this means that the ops of the same color must always execute "together", as
/// part of one atomic contiguous section of the dynamic execution trace, and
/// they can be freely permuted without affecting program behavior.
/// they can be freely permuted (modulo true dataflow dependencies) without
/// affecting program behavior.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct InstColor(u32);
impl InstColor {
@@ -122,7 +123,11 @@ pub trait LowerCtx {
/// If the backend uses the register, rather than one of the other
/// forms (constant or merging of the producing op), it must call
/// `use_input_reg()` to ensure the producing inst is actually lowered
/// as well.
/// as well. Failing to do so may result in the instruction that generates
/// this value never being generated, thus resulting in incorrect execution.
/// For correctness, backends should thus wrap `get_input()` and
/// `use_input_regs()` with helpers that return a register only after
/// ensuring it is marked as used.
fn get_input(&self, ir_inst: Inst, idx: usize) -> LowerInput;
/// Get the `idx`th output register of the given IR instruction. When
/// `backend.lower_inst_to_regs(ctx, inst)` is called, it is expected that
@@ -133,7 +138,7 @@ pub trait LowerCtx {
// ask for an input to be gen'd into a register.
/// Get a new temp.
fn tmp(&mut self, rc: RegClass, ty: Type) -> Writable<Reg>;
fn alloc_tmp(&mut self, rc: RegClass, ty: Type) -> Writable<Reg>;
/// Emit a machine instruction.
fn emit(&mut self, mach_inst: Self::I);
/// Indicate that the given input uses the register returned by
@@ -477,7 +482,7 @@ impl<'func, I: VCodeInst> Lower<'func, I> {
// There's some overlap, so play safe and copy via temps.
let mut tmp_regs: SmallVec<[Writable<Reg>; 16]> = SmallVec::new();
for &ty in &phi_classes {
tmp_regs.push(self.tmp(I::rc_for_type(ty)?, ty));
tmp_regs.push(self.alloc_tmp(I::rc_for_type(ty)?, ty));
}
debug!("phi_temps = {:?}", tmp_regs);
@@ -721,6 +726,9 @@ impl<'func, I: VCodeInst> Lower<'func, I> {
Ok(vcode)
}
/// Get the actual inputs for a value. This is the implementation for
/// `get_input()` but starting from the SSA value, which is not exposed to
/// the backend.
fn get_input_for_val(&self, at_inst: Inst, val: Value) -> LowerInput {
debug!("get_input_for_val: val {} at inst {}", val, at_inst);
let mut reg = self.value_regs[val];
@@ -889,7 +897,7 @@ impl<'func, I: VCodeInst> LowerCtx for Lower<'func, I> {
Writable::from_reg(self.value_regs[val])
}
fn tmp(&mut self, rc: RegClass, ty: Type) -> Writable<Reg> {
fn alloc_tmp(&mut self, rc: RegClass, ty: Type) -> Writable<Reg> {
let v = self.next_vreg;
self.next_vreg += 1;
let vreg = Reg::new_virtual(rc, v);