Remove ancient register allocation (#3401)

This commit is contained in:
Benjamin Bouvier
2021-09-30 21:27:23 +02:00
committed by GitHub
parent 80336f4535
commit bae4ec6427
66 changed files with 112 additions and 15380 deletions

View File

@@ -4,23 +4,18 @@
//! binary machine code.
mod memorysink;
mod relaxation;
mod shrink;
mod stack_map;
pub use self::memorysink::{
MemoryCodeSink, NullRelocSink, NullStackMapSink, NullTrapSink, RelocSink, StackMapSink,
TrapSink,
};
pub use self::relaxation::relax_branches;
pub use self::shrink::shrink_instructions;
pub use self::stack_map::StackMap;
use crate::ir::entities::Value;
use crate::ir::{
ConstantOffset, ExternalName, Function, Inst, JumpTable, Opcode, SourceLoc, TrapCode,
};
use crate::isa::TargetIsa;
pub use crate::regalloc::RegDiversions;
use core::fmt;
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};
@@ -183,16 +178,6 @@ pub trait CodeSink {
}
}
/// Report a bad encoding error.
#[cold]
pub fn bad_encoding(func: &Function, inst: Inst) -> ! {
panic!(
"Bad encoding {} for {}",
func.encodings[inst],
func.dfg.display_inst(inst, None)
);
}
/// Emit a function to `sink`, given an instruction emitter function.
///
/// This function is called from the `TargetIsa::emit_function()` implementations with the
@@ -200,14 +185,12 @@ pub fn bad_encoding(func: &Function, inst: Inst) -> ! {
pub fn emit_function<CS, EI>(func: &Function, emit_inst: EI, sink: &mut CS, isa: &dyn TargetIsa)
where
CS: CodeSink,
EI: Fn(&Function, Inst, &mut RegDiversions, &mut CS, &dyn TargetIsa),
EI: Fn(&Function, Inst, &mut CS, &dyn TargetIsa),
{
let mut divert = RegDiversions::new();
for block in func.layout.blocks() {
divert.at_block(&func.entry_diversions, block);
debug_assert_eq!(func.offsets[block], sink.offset());
for inst in func.layout.block_insts(block) {
emit_inst(func, inst, &mut divert, sink, isa);
emit_inst(func, inst, sink, isa);
}
}

View File

@@ -1,396 +0,0 @@
//! Branch relaxation and offset computation.
//!
//! # block header offsets
//!
//! Before we can generate binary machine code for branch instructions, we need to know the final
//! offsets of all the block headers in the function. This information is encoded in the
//! `func.offsets` table.
//!
//! # Branch relaxation
//!
//! Branch relaxation is the process of ensuring that all branches in the function have enough
//! range to encode their destination. It is common to have multiple branch encodings in an ISA.
//! For example, x86 branches can have either an 8-bit or a 32-bit displacement.
//!
//! On RISC architectures, it can happen that conditional branches have a shorter range than
//! unconditional branches:
//!
//! ```clif
//! brz v1, block17
//! ```
//!
//! can be transformed into:
//!
//! ```clif
//! brnz v1, block23
//! jump block17
//! block23:
//! ```
use crate::binemit::{CodeInfo, CodeOffset};
use crate::cursor::{Cursor, FuncCursor};
use crate::dominator_tree::DominatorTree;
use crate::flowgraph::ControlFlowGraph;
use crate::ir::{Block, Function, Inst, InstructionData, Opcode, Value, ValueList};
use crate::isa::{EncInfo, TargetIsa};
use crate::iterators::IteratorExtras;
use crate::regalloc::RegDiversions;
use crate::timing;
use crate::CodegenResult;
use core::convert::TryFrom;
/// Relax branches and compute the final layout of block headers in `func`.
///
/// Fill in the `func.offsets` table so the function is ready for binary emission.
pub fn relax_branches(
func: &mut Function,
_cfg: &mut ControlFlowGraph,
_domtree: &mut DominatorTree,
isa: &dyn TargetIsa,
) -> CodegenResult<CodeInfo> {
let _tt = timing::relax_branches();
let encinfo = isa.encoding_info();
// Clear all offsets so we can recognize blocks that haven't been visited yet.
func.offsets.clear();
func.offsets.resize(func.dfg.num_blocks());
// Start by removing redundant jumps.
fold_redundant_jumps(func, _cfg, _domtree);
// Convert jumps to fallthrough instructions where possible.
fallthroughs(func);
let mut offset = 0;
let mut divert = RegDiversions::new();
// First, compute initial offsets for every block.
{
let mut cur = FuncCursor::new(func);
while let Some(block) = cur.next_block() {
divert.at_block(&cur.func.entry_diversions, block);
cur.func.offsets[block] = offset;
while let Some(inst) = cur.next_inst() {
divert.apply(&cur.func.dfg[inst]);
let enc = cur.func.encodings[inst];
offset += encinfo.byte_size(enc, inst, &divert, &cur.func);
}
}
}
// Then, run the relaxation algorithm until it converges.
let mut go_again = true;
while go_again {
go_again = false;
offset = 0;
// Visit all instructions in layout order.
let mut cur = FuncCursor::new(func);
while let Some(block) = cur.next_block() {
divert.at_block(&cur.func.entry_diversions, block);
// Record the offset for `block` and make sure we iterate until offsets are stable.
if cur.func.offsets[block] != offset {
cur.func.offsets[block] = offset;
go_again = true;
}
while let Some(inst) = cur.next_inst() {
divert.apply(&cur.func.dfg[inst]);
let enc = cur.func.encodings[inst];
// See if this is a branch has a range and a destination, and if the target is in
// range.
if let Some(range) = encinfo.branch_range(enc) {
if let Some(dest) = cur.func.dfg[inst].branch_destination() {
let dest_offset = cur.func.offsets[dest];
if !range.contains(offset, dest_offset) {
offset +=
relax_branch(&mut cur, &divert, offset, dest_offset, &encinfo, isa);
continue;
}
}
}
offset += encinfo.byte_size(enc, inst, &divert, &cur.func);
}
}
}
let code_size = offset;
let jumptables = offset;
for (jt, jt_data) in func.jump_tables.iter() {
func.jt_offsets[jt] = offset;
// TODO: this should be computed based on the min size needed to hold the furthest branch.
offset += jt_data.len() as u32 * 4;
}
let jumptables_size = offset - jumptables;
let rodata = offset;
for constant in func.dfg.constants.entries_mut() {
constant.set_offset(offset);
offset +=
u32::try_from(constant.len()).expect("Constants must have a length that fits in a u32")
}
let rodata_size = offset - rodata;
Ok(CodeInfo {
code_size,
jumptables_size,
rodata_size,
total_size: offset,
})
}
/// Folds an instruction if it is a redundant jump.
/// Returns whether folding was performed (which invalidates the CFG).
fn try_fold_redundant_jump(
func: &mut Function,
cfg: &mut ControlFlowGraph,
block: Block,
first_inst: Inst,
) -> bool {
let first_dest = match func.dfg[first_inst].branch_destination() {
Some(block) => block, // The instruction was a single-target branch.
None => {
return false; // The instruction was either multi-target or not a branch.
}
};
// For the moment, only attempt to fold a branch to a block that is parameterless.
// These blocks are mainly produced by critical edge splitting.
//
// TODO: Allow folding blocks that define SSA values and function as phi nodes.
if func.dfg.num_block_params(first_dest) != 0 {
return false;
}
// Look at the first instruction of the first branch's destination.
// If it is an unconditional branch, maybe the second jump can be bypassed.
let second_inst = func.layout.first_inst(first_dest).expect("Instructions");
if func.dfg[second_inst].opcode() != Opcode::Jump {
return false;
}
// Now we need to fix up first_inst's block parameters to match second_inst's,
// without changing the branch-specific arguments.
//
// The intermediary block is allowed to reference any SSA value that dominates it,
// but that SSA value may not necessarily also dominate the instruction that's
// being patched.
// Get the arguments and parameters passed by the first branch.
let num_fixed = func.dfg[first_inst]
.opcode()
.constraints()
.num_fixed_value_arguments();
let (first_args, first_params) = func.dfg[first_inst]
.arguments(&func.dfg.value_lists)
.split_at(num_fixed);
// Get the parameters passed by the second jump.
let num_fixed = func.dfg[second_inst]
.opcode()
.constraints()
.num_fixed_value_arguments();
let (_, second_params) = func.dfg[second_inst]
.arguments(&func.dfg.value_lists)
.split_at(num_fixed);
let mut second_params = second_params.to_vec(); // Clone for rewriting below.
// For each parameter passed by the second jump, if any of those parameters
// was a block parameter, rewrite it to refer to the value that the first jump
// passed in its parameters. Otherwise, make sure it dominates first_inst.
//
// For example: if we `block0: jump block1(v1)` to `block1(v2): jump block2(v2)`,
// we want to rewrite the original jump to `jump block2(v1)`.
let block_params: &[Value] = func.dfg.block_params(first_dest);
debug_assert!(block_params.len() == first_params.len());
for value in second_params.iter_mut() {
if let Some((n, _)) = block_params.iter().enumerate().find(|(_, &p)| p == *value) {
// This value was the Nth parameter passed to the second_inst's block.
// Rewrite it as the Nth parameter passed by first_inst.
*value = first_params[n];
}
}
// Build a value list of first_args (unchanged) followed by second_params (rewritten).
let arguments_vec: alloc::vec::Vec<_> = first_args
.iter()
.chain(second_params.iter())
.copied()
.collect();
let value_list = ValueList::from_slice(&arguments_vec, &mut func.dfg.value_lists);
func.dfg[first_inst].take_value_list(); // Drop the current list.
func.dfg[first_inst].put_value_list(value_list); // Put the new list.
// Bypass the second jump.
// This can disconnect the Block containing `second_inst`, to be cleaned up later.
let second_dest = func.dfg[second_inst].branch_destination().expect("Dest");
func.change_branch_destination(first_inst, second_dest);
cfg.recompute_block(func, block);
// The previously-intermediary Block may now be unreachable. Update CFG.
if cfg.pred_iter(first_dest).count() == 0 {
// Remove all instructions from that block.
while let Some(inst) = func.layout.first_inst(first_dest) {
func.layout.remove_inst(inst);
}
// Remove the block...
cfg.recompute_block(func, first_dest); // ...from predecessor lists.
func.layout.remove_block(first_dest); // ...from the layout.
}
true
}
/// Redirects `jump` instructions that point to other `jump` instructions to the final destination.
/// This transformation may orphan some blocks.
fn fold_redundant_jumps(
func: &mut Function,
cfg: &mut ControlFlowGraph,
domtree: &mut DominatorTree,
) {
let mut folded = false;
// Postorder iteration guarantees that a chain of jumps is visited from
// the end of the chain to the start of the chain.
for &block in domtree.cfg_postorder() {
// Only proceed if the first terminator instruction is a single-target branch.
let first_inst = func
.layout
.last_inst(block)
.expect("Block has no terminator");
folded |= try_fold_redundant_jump(func, cfg, block, first_inst);
// Also try the previous instruction.
if let Some(prev_inst) = func.layout.prev_inst(first_inst) {
folded |= try_fold_redundant_jump(func, cfg, block, prev_inst);
}
}
// Folding jumps invalidates the dominator tree.
if folded {
domtree.compute(func, cfg);
}
}
/// Convert `jump` instructions to `fallthrough` instructions where possible and verify that any
/// existing `fallthrough` instructions are correct.
fn fallthroughs(func: &mut Function) {
for (block, succ) in func.layout.blocks().adjacent_pairs() {
let term = func
.layout
.last_inst(block)
.expect("block has no terminator.");
if let InstructionData::Jump {
ref mut opcode,
destination,
..
} = func.dfg[term]
{
match *opcode {
Opcode::Fallthrough => {
// Somebody used a fall-through instruction before the branch relaxation pass.
// Make sure it is correct, i.e. the destination is the layout successor.
debug_assert_eq!(
destination, succ,
"Illegal fallthrough from {} to {}, but {}'s successor is {}",
block, destination, block, succ
)
}
Opcode::Jump => {
// If this is a jump to the successor block, change it to a fall-through.
if destination == succ {
*opcode = Opcode::Fallthrough;
func.encodings[term] = Default::default();
}
}
_ => {}
}
}
}
}
/// Relax the branch instruction at `cur` so it can cover the range `offset - dest_offset`.
///
/// Return the size of the replacement instructions up to and including the location where `cur` is
/// left.
fn relax_branch(
cur: &mut FuncCursor,
divert: &RegDiversions,
offset: CodeOffset,
dest_offset: CodeOffset,
encinfo: &EncInfo,
isa: &dyn TargetIsa,
) -> CodeOffset {
let inst = cur.current_inst().unwrap();
log::trace!(
"Relaxing [{}] {} for {:#x}-{:#x} range",
encinfo.display(cur.func.encodings[inst]),
cur.func.dfg.display_inst(inst, isa),
offset,
dest_offset
);
// Pick the smallest encoding that can handle the branch range.
let dfg = &cur.func.dfg;
let ctrl_type = dfg.ctrl_typevar(inst);
if let Some(enc) = isa
.legal_encodings(cur.func, &dfg[inst], ctrl_type)
.filter(|&enc| {
let range = encinfo.branch_range(enc).expect("Branch with no range");
if !range.contains(offset, dest_offset) {
log::trace!(" trying [{}]: out of range", encinfo.display(enc));
false
} else if encinfo.operand_constraints(enc)
!= encinfo.operand_constraints(cur.func.encodings[inst])
{
// Conservatively give up if the encoding has different constraints
// than the original, so that we don't risk picking a new encoding
// which the existing operands don't satisfy. We can't check for
// validity directly because we don't have a RegDiversions active so
// we don't know which registers are actually in use.
log::trace!(" trying [{}]: constraints differ", encinfo.display(enc));
false
} else {
log::trace!(" trying [{}]: OK", encinfo.display(enc));
true
}
})
.min_by_key(|&enc| encinfo.byte_size(enc, inst, &divert, &cur.func))
{
debug_assert!(enc != cur.func.encodings[inst]);
cur.func.encodings[inst] = enc;
return encinfo.byte_size(enc, inst, &divert, &cur.func);
}
// Note: On some RISC ISAs, conditional branches have shorter range than unconditional
// branches, so one way of extending the range of a conditional branch is to invert its
// condition and make it branch over an unconditional jump which has the larger range.
//
// Splitting the block is problematic this late because there may be register diversions in
// effect across the conditional branch, and they can't survive the control flow edge to a new
// block. We have two options for handling that:
//
// 1. Set a flag on the new block that indicates it wants the preserve the register diversions of
// its layout predecessor, or
// 2. Use an encoding macro for the branch-over-jump pattern so we don't need to split the block.
//
// It seems that 1. would allow us to share code among RISC ISAs that need this.
//
// We can't allow register diversions to survive from the layout predecessor because the layout
// predecessor could contain kill points for some values that are live in this block, and
// diversions are not automatically cancelled when the live range of a value ends.
// This assumes solution 2. above:
panic!("No branch in range for {:#x}-{:#x}", offset, dest_offset);
}

View File

@@ -1,72 +0,0 @@
//! Instruction shrinking.
//!
//! Sometimes there are multiple valid encodings for a given instruction. Cranelift often initially
//! chooses the largest one, because this typically provides the register allocator the most
//! flexibility. However, once register allocation is done, this is no longer important, and we
//! can switch to smaller encodings when possible.
use crate::ir::instructions::InstructionData;
use crate::ir::Function;
use crate::isa::TargetIsa;
use crate::regalloc::RegDiversions;
use crate::timing;
/// Pick the smallest valid encodings for instructions.
pub fn shrink_instructions(func: &mut Function, isa: &dyn TargetIsa) {
let _tt = timing::shrink_instructions();
let encinfo = isa.encoding_info();
let mut divert = RegDiversions::new();
for block in func.layout.blocks() {
// Load diversions from predecessors.
divert.at_block(&func.entry_diversions, block);
for inst in func.layout.block_insts(block) {
let enc = func.encodings[inst];
if enc.is_legal() {
// regmove/regfill/regspill are special instructions with register immediates
// that represented as normal operands, so the normal predicates below don't
// handle them correctly.
//
// Also, they need to be presented to the `RegDiversions` to update the
// location tracking.
//
// TODO: Eventually, we want the register allocator to avoid leaving these special
// instructions behind, but for now, just temporarily avoid trying to shrink them.
let inst_data = &func.dfg[inst];
match inst_data {
InstructionData::RegMove { .. }
| InstructionData::RegFill { .. }
| InstructionData::RegSpill { .. } => {
divert.apply(inst_data);
continue;
}
_ => (),
}
let ctrl_type = func.dfg.ctrl_typevar(inst);
// Pick the last encoding with constraints that are satisfied.
let best_enc = isa
.legal_encodings(func, &func.dfg[inst], ctrl_type)
.filter(|e| encinfo.constraints[e.recipe()].satisfied(inst, &divert, &func))
.min_by_key(|e| encinfo.byte_size(*e, inst, &divert, &func))
.unwrap();
if best_enc != enc {
func.encodings[inst] = best_enc;
log::trace!(
"Shrunk [{}] to [{}] in {}, reducing the size from {} to {}",
encinfo.display(enc),
encinfo.display(best_enc),
func.dfg.display_inst(inst, isa),
encinfo.byte_size(enc, inst, &divert, &func),
encinfo.byte_size(best_enc, inst, &divert, &func)
);
}
}
}
}
}