Add a branch relaxation pass for #72.

Compute exact EBB header offsets and check that branches are in range.

Not implemented yet: Relax branches that are not in range.

Invoke the relax_branches() pass from the 'test binemit' file tests so
they can verify the proper encoding of branch instructions too.
This commit is contained in:
Jakob Stoklund Olesen
2017-04-05 14:54:17 -07:00
parent eb1052718b
commit b5c74fdc25
6 changed files with 224 additions and 42 deletions

View File

@@ -3,6 +3,10 @@
//! The `binemit` module contains code for translating Cretonne's intermediate representation into
//! binary machine code.
mod relaxation;
pub use self::relaxation::relax_branches;
use ir::{Ebb, FuncRef, JumpTable, Function, Inst};
/// Offset in bytes from the beginning of the function.

View File

@@ -0,0 +1,110 @@
//! Branch relaxation and offset computation.
//!
//! # EBB header offsets
//!
//! Before we can generate binary machine code for branch instructions, we need to know the final
//! offsets of all the EBB headers in the function. This information is encoded in the
//! `func.offsets` table.
//!
//! # Branch relaxation
//!
//! Branch relaxation is the process of ensuring that all branches in the function have enough
//! range to encode their destination. It is common to have multiple branch encodings in an ISA.
//! For example, Intel branches can have either an 8-bit or a 32-bit displacement.
//!
//! On RISC architectures, it can happen that conditional branches have a shorter range than
//! unconditional branches:
//!
//! ```cton
//! brz v1, ebb17
//! ```
//!
//! can be transformed into:
//!
//! ```cton
//! brnz v1, ebb23
//! jump ebb17
//! ebb23:
//! ```
use binemit::CodeOffset;
use entity_map::EntityMap;
use ir::{Function, DataFlowGraph, Cursor, Inst};
use isa::{TargetIsa, EncInfo, Encoding};
/// Relax branches and compute the final layout of EBB headers in `func`.
///
/// Fill in the `func.offsets` table so the function is ready for binary emission.
pub fn relax_branches(func: &mut Function, isa: &TargetIsa) {
let encinfo = isa.encoding_info();
// Clear all offsets so we can recognize EBBs that haven't been visited yet.
func.offsets.clear();
func.offsets.resize(func.dfg.num_ebbs());
// The relaxation algorithm iterates to convergence.
let mut go_again = true;
while go_again {
go_again = false;
// Visit all instructions in layout order
let mut offset = 0;
let mut pos = Cursor::new(&mut func.layout);
while let Some(ebb) = pos.next_ebb() {
// Record the offset for `ebb` and make sure we iterate until offsets are stable.
if func.offsets[ebb] != offset {
assert!(func.offsets[ebb] < offset,
"Code shrinking during relaxation");
func.offsets[ebb] = offset;
go_again = true;
}
while let Some(inst) = pos.next_inst() {
let enc = func.encodings.get(inst).cloned().unwrap_or_default();
let size = encinfo.bytes(enc);
// See if this might be a branch that is out of range.
if let Some(range) = encinfo.branch_range(enc) {
if let Some(dest) = func.dfg[inst].branch_destination() {
let dest_offset = func.offsets[dest];
if !range.contains(offset, dest_offset) {
// This is an out-of-range branch.
// Relax it unless the destination offset has not been computed yet.
if dest_offset != 0 || Some(dest) == pos.layout.entry_block() {
offset += relax_branch(&mut func.dfg,
&mut func.encodings,
&encinfo,
&mut pos,
offset,
dest_offset);
continue;
}
}
}
}
offset += size;
}
}
}
}
/// Relax the branch instruction at `pos` so it can cover the range `offset - dest_offset`.
///
/// Return the size of the replacement instructions up to and including the location where `pos` is
/// left.
fn relax_branch(dfg: &mut DataFlowGraph,
encodings: &mut EntityMap<Inst, Encoding>,
encinfo: &EncInfo,
pos: &mut Cursor,
offset: CodeOffset,
dest_offset: CodeOffset)
-> CodeOffset {
let inst = pos.current_inst().unwrap();
dbg!("Relaxing [{}] {} for {:#x}-{:#x} range",
encinfo.display(encodings[inst]),
dfg.display_inst(inst),
offset,
dest_offset);
unimplemented!();
}

View File

@@ -3,11 +3,12 @@
//! The `Function` struct defined in this module owns all of its extended basic blocks and
//! instructions.
use std::fmt::{self, Display, Debug, Formatter};
use ir::{FunctionName, Signature, Value, Inst, StackSlot, StackSlotData, JumpTable, JumpTableData,
ValueLoc, DataFlowGraph, Layout};
use isa::{TargetIsa, Encoding};
use binemit::CodeOffset;
use entity_map::{EntityMap, PrimaryEntityData};
use ir::{FunctionName, Signature, Value, Inst, Ebb, StackSlot, StackSlotData, JumpTable,
JumpTableData, ValueLoc, DataFlowGraph, Layout};
use isa::{TargetIsa, Encoding};
use std::fmt::{self, Display, Debug, Formatter};
use write::write_function;
/// A function.
@@ -40,6 +41,13 @@ pub struct Function {
/// Location assigned to every value.
pub locations: EntityMap<Value, ValueLoc>,
/// Code offsets of the EBB headers.
///
/// This information is only transiently available after the `binemit::relax_branches` function
/// computes it, and it can easily be recomputed by calling that function. It is not included
/// in the textual IL format.
pub offsets: EntityMap<Ebb, CodeOffset>,
}
impl PrimaryEntityData for StackSlotData {}
@@ -57,6 +65,7 @@ impl Function {
layout: Layout::new(),
encodings: EntityMap::new(),
locations: EntityMap::new(),
offsets: EntityMap::new(),
}
}

View File

@@ -324,6 +324,19 @@ impl InstructionData {
}
}
/// Get the single destination of this branch instruction, if it is a single destination
/// branch or jump.
///
/// Multi-destination branches like `br_table` return `None`.
pub fn branch_destination(&self) -> Option<Ebb> {
match self {
&InstructionData::Jump { destination, .. } => Some(destination),
&InstructionData::Branch { destination, .. } => Some(destination),
&InstructionData::BranchIcmp { destination, .. } => Some(destination),
_ => None,
}
}
/// Return information about a call instruction.
///
/// Any instruction that can call another function reveals its call signature here.

View File

@@ -10,6 +10,9 @@ pub use write::write_function;
/// Version number of the cretonne crate.
pub const VERSION: &'static str = env!("CARGO_PKG_VERSION");
#[macro_use]
pub mod dbg;
pub mod binemit;
pub mod flowgraph;
pub mod dominator_tree;
@@ -22,9 +25,6 @@ pub mod settings;
pub mod sparse_map;
pub mod verifier;
#[macro_use]
pub mod dbg;
mod abi;
mod constant_hash;
mod context;

View File

@@ -4,6 +4,7 @@
//! functions and compares the results to the expected output.
use std::borrow::Cow;
use std::collections::HashMap;
use std::fmt::Write;
use cretonne::binemit;
use cretonne::ir;
@@ -97,54 +98,99 @@ impl SubTest for TestBinEmit {
fn run(&self, func: Cow<ir::Function>, context: &Context) -> Result<()> {
let isa = context.isa.expect("binemit needs an ISA");
let encinfo = isa.encoding_info();
// TODO: Run a verifier pass over the code first to detect any bad encodings or missing/bad
// value locations. The current error reporting is just crashing...
let mut func = func.into_owned();
let mut sink = TextSink::new(isa);
for comment in &context.details.comments {
if let Some(want) = match_directive(comment.text, "bin:") {
let inst = match comment.entity {
AnyEntity::Inst(inst) => inst,
_ => {
return Err(format!("annotation on non-inst {}: {}",
comment.entity,
comment.text))
}
};
// Compute an encoding for `inst` if one wasn't provided.
// Give an encoding to any instruction that doesn't already have one.
for ebb in func.layout.ebbs() {
for inst in func.layout.ebb_insts(ebb) {
if !func.encodings
.get(inst)
.map(|e| e.is_legal())
.unwrap_or(false) {
match isa.encode(&func.dfg, &func.dfg[inst]) {
Ok(enc) => *func.encodings.ensure(inst) = enc,
Err(_) => {
return Err(format!("{} can't be encoded: {}",
inst,
func.dfg.display_inst(inst)))
}
if let Ok(enc) = isa.encode(&func.dfg, &func.dfg[inst]) {
*func.encodings.ensure(inst) = enc;
}
}
sink.text.clear();
isa.emit_inst(&func, inst, &mut sink);
let have = sink.text.trim();
if have != want {
return Err(format!("Bad machine code for {}: {}\nWant: {}\nGot: {}",
inst,
func.dfg.display_inst(inst),
want,
have));
}
}
}
if sink.text.is_empty() {
Err("No bin: directives found".to_string())
} else {
Ok(())
// Relax branches and compute EBB offsets based on the encodings.
binemit::relax_branches(&mut func, isa);
// Collect all of the 'bin:' directives on instructions.
let mut bins = HashMap::new();
for comment in &context.details.comments {
if let Some(want) = match_directive(comment.text, "bin:") {
match comment.entity {
AnyEntity::Inst(inst) => {
if let Some(prev) = bins.insert(inst, want) {
return Err(format!("multiple 'bin:' directives on {}: '{}' and '{}'",
func.dfg.display_inst(inst),
prev,
want));
}
}
_ => {
return Err(format!("'bin:' directive on non-inst {}: {}",
comment.entity,
comment.text))
}
}
}
}
if bins.is_empty() {
return Err("No 'bin:' directives found".to_string());
}
// Now emit all instructions.
let mut sink = TextSink::new(isa);
for ebb in func.layout.ebbs() {
// Correct header offsets should have been computed by `relax_branches()`.
assert_eq!(sink.offset,
func.offsets[ebb],
"Inconsistent {} header offset",
ebb);
for inst in func.layout.ebb_insts(ebb) {
sink.text.clear();
let enc = func.encodings.get(inst).cloned().unwrap_or_default();
// Send legal encodings into the emitter.
if enc.is_legal() {
let before = sink.offset;
isa.emit_inst(&func, inst, &mut sink);
let emitted = sink.offset - before;
// Verify the encoding recipe sizes against the ISAs emit_inst implementation.
assert_eq!(emitted,
encinfo.bytes(enc),
"Inconsistent size for [{}] {}",
encinfo.display(enc),
func.dfg.display_inst(inst));
}
// Check against bin: directives.
if let Some(want) = bins.remove(&inst) {
if !enc.is_legal() {
return Err(format!("{} can't be encoded: {}",
inst,
func.dfg.display_inst(inst)));
}
sink.text.clear();
isa.emit_inst(&func, inst, &mut sink);
let have = sink.text.trim();
if have != want {
return Err(format!("Bad machine code for {}: {}\nWant: {}\nGot: {}",
inst,
func.dfg.display_inst(inst),
want,
have));
}
}
}
}
Ok(())
}
}