Move the 'meta' dir to 'lib/cretonne/meta'.

The 'lib/cretonne' directory will be the new root of a stand-alone
cretonne crate containg both Python and Rust sources.

This is in preparation for publishing crates on crates.io.
This commit is contained in:
Jakob Stoklund Olesen
2016-10-17 14:16:43 -07:00
parent 680387a53a
commit af6355e2ef
37 changed files with 12 additions and 10 deletions

View File

@@ -0,0 +1,32 @@
"""
RISC-V Target
-------------
`RISC-V <http://riscv.org/>`_ is an open instruction set architecture
originally developed at UC Berkeley. It is a RISC-style ISA with either a
32-bit (RV32I) or 64-bit (RV32I) base instruction set and a number of optional
extensions:
RV32M / RV64M
Integer multiplication and division.
RV32A / RV64A
Atomics.
RV32F / RV64F
Single-precision IEEE floating point.
RV32D / RV64D
Double-precision IEEE floating point.
RV32G / RV64G
General purpose instruction sets. This represents the union of the I, M, A,
F, and D instruction sets listed above.
"""
from __future__ import absolute_import
from . import defs
from . import encodings, settings # noqa
# Re-export the primary target ISA definition.
isa = defs.isa.finish()

View File

@@ -0,0 +1,14 @@
"""
RISC-V definitions.
Commonly used definitions.
"""
from __future__ import absolute_import
from cretonne import TargetISA, CPUMode
import cretonne.base
isa = TargetISA('riscv', [cretonne.base.instructions])
# CPU modes for 32-bit and 64-bit operation.
RV32 = CPUMode('RV32', isa)
RV64 = CPUMode('RV64', isa)

View File

@@ -0,0 +1,54 @@
"""
RISC-V Encodings.
"""
from __future__ import absolute_import
from cretonne import base
from .defs import RV32, RV64
from .recipes import OPIMM, OPIMM32, OP, OP32, R, Rshamt, I
from .settings import use_m
# Basic arithmetic binary instructions are encoded in an R-type instruction.
for inst, inst_imm, f3, f7 in [
(base.iadd, base.iadd_imm, 0b000, 0b0000000),
(base.isub, None, 0b000, 0b0100000),
(base.bxor, base.bxor_imm, 0b100, 0b0000000),
(base.bor, base.bor_imm, 0b110, 0b0000000),
(base.band, base.band_imm, 0b111, 0b0000000)
]:
RV32.enc(inst.i32, R, OP(f3, f7))
RV64.enc(inst.i64, R, OP(f3, f7))
# Immediate versions for add/xor/or/and.
if inst_imm:
RV32.enc(inst_imm.i32, I, OPIMM(f3))
RV64.enc(inst_imm.i64, I, OPIMM(f3))
# 32-bit ops in RV64.
RV64.enc(base.iadd.i32, R, OP32(0b000, 0b0000000))
RV64.enc(base.isub.i32, R, OP32(0b000, 0b0100000))
# There are no andiw/oriw/xoriw variations.
RV64.enc(base.iadd_imm.i32, I, OPIMM32(0b000))
# Dynamic shifts have the same masking semantics as the cton base instructions.
for inst, inst_imm, f3, f7 in [
(base.ishl, base.ishl_imm, 0b001, 0b0000000),
(base.ushr, base.ushr_imm, 0b101, 0b0000000),
(base.sshr, base.sshr_imm, 0b101, 0b0100000),
]:
RV32.enc(inst.i32.i32, R, OP(f3, f7))
RV64.enc(inst.i64.i64, R, OP(f3, f7))
RV64.enc(inst.i32.i32, R, OP32(f3, f7))
# Allow i32 shift amounts in 64-bit shifts.
RV64.enc(inst.i64.i32, R, OP(f3, f7))
RV64.enc(inst.i32.i64, R, OP32(f3, f7))
# Immediate shifts.
RV32.enc(inst_imm.i32, Rshamt, OPIMM(f3, f7))
RV64.enc(inst_imm.i64, Rshamt, OPIMM(f3, f7))
RV64.enc(inst_imm.i32, Rshamt, OPIMM32(f3, f7))
# "M" Standard Extension for Integer Multiplication and Division.
# Gated by the `use_m` flag.
RV32.enc(base.imul.i32, R, OP(0b000, 0b0000001), isap=use_m)
RV64.enc(base.imul.i64, R, OP(0b000, 0b0000001), isap=use_m)
RV64.enc(base.imul.i32, R, OP32(0b000, 0b0000001), isap=use_m)

View File

@@ -0,0 +1,68 @@
"""
RISC-V Encoding recipes.
The encoding recipes defined here more or less correspond to the RISC-V native
instruction formats described in the reference:
The RISC-V Instruction Set Manual
Volume I: User-Level ISA
Version 2.1
"""
from __future__ import absolute_import
from cretonne import EncRecipe
from cretonne.formats import Binary, BinaryImm
from cretonne.predicates import IsSignedInt
# The low 7 bits of a RISC-V instruction is the base opcode. All 32-bit
# instructions have 11 as the two low bits, with bits 6:2 determining the base
# opcode.
#
# Encbits for the 32-bit recipes are opcode[6:2] | (funct3 << 5) | ...
# The functions below encode the encbits.
def LOAD(funct3):
assert funct3 <= 0b111
return 0b00000 | (funct3 << 5)
def STORE(funct3):
assert funct3 <= 0b111
return 0b01000 | (funct3 << 5)
def BRANCH(funct3):
assert funct3 <= 0b111
return 0b11000 | (funct3 << 5)
def OPIMM(funct3, funct7=0):
assert funct3 <= 0b111
return 0b00100 | (funct3 << 5) | (funct7 << 8)
def OPIMM32(funct3, funct7=0):
assert funct3 <= 0b111
return 0b00110 | (funct3 << 5) | (funct7 << 8)
def OP(funct3, funct7):
assert funct3 <= 0b111
assert funct7 <= 0b1111111
return 0b01100 | (funct3 << 5) | (funct7 << 8)
def OP32(funct3, funct7):
assert funct3 <= 0b111
assert funct7 <= 0b1111111
return 0b01110 | (funct3 << 5) | (funct7 << 8)
# R-type 32-bit instructions: These are mostly binary arithmetic instructions.
# The encbits are `opcode[6:2] | (funct3 << 5) | (funct7 << 8)
R = EncRecipe('R', Binary)
# R-type with an immediate shift amount instead of rs2.
Rshamt = EncRecipe('Rshamt', BinaryImm)
I = EncRecipe('I', BinaryImm, instp=IsSignedInt(BinaryImm.imm, 12))

View File

@@ -0,0 +1,28 @@
"""
RISC-V settings.
"""
from __future__ import absolute_import
from cretonne import SettingGroup, BoolSetting
from cretonne.predicates import And
import cretonne.settings as shared
from .defs import isa
isa.settings = SettingGroup('riscv', parent=shared.group)
supports_m = BoolSetting("CPU supports the 'M' extension (mul/div)")
supports_a = BoolSetting("CPU supports the 'A' extension (atomics)")
supports_f = BoolSetting("CPU supports the 'F' extension (float)")
supports_d = BoolSetting("CPU supports the 'D' extension (double)")
enable_m = BoolSetting(
"Enable the use of 'M' instructions if available",
default=True)
use_m = And(supports_m, enable_m)
use_a = And(supports_a, shared.enable_atomics)
use_f = And(supports_f, shared.enable_float)
use_d = And(supports_d, shared.enable_float)
full_float = And(shared.enable_simd, supports_f, supports_d)
isa.settings.close(globals())