Add 'crates/wiggle/' from commit 'cd484e49932d8dd8f1bd1a002e0717ad8bff07fb'

git-subtree-dir: crates/wiggle
git-subtree-mainline: 2ead747f48
git-subtree-split: cd484e4993
This commit is contained in:
Jakub Konka
2020-03-11 17:30:49 +01:00
54 changed files with 6541 additions and 0 deletions

View File

@@ -0,0 +1 @@
target

View File

@@ -0,0 +1,16 @@
[package]
name = "wiggle-generate"
version = "0.1.0"
authors = ["Pat Hickey <phickey@fastly.com>", "Jakub Konka <kubkon@jakubkonka.com>"]
edition = "2018"
[lib]
[dependencies]
wiggle-runtime = { path = "../runtime" }
witx = "0.8.3"
quote = "1.0"
proc-macro2 = "1.0"
heck = "0.3"
anyhow = "1"
syn = { version = "1.0", features = ["full"] }

View File

@@ -0,0 +1,105 @@
use std::path::PathBuf;
use proc_macro2::Span;
use syn::{
braced, bracketed,
parse::{Parse, ParseStream},
punctuated::Punctuated,
Error, Ident, LitStr, Result, Token,
};
#[derive(Debug, Clone)]
pub struct Config {
pub witx: WitxConf,
pub ctx: CtxConf,
}
#[derive(Debug, Clone)]
pub enum ConfigField {
Witx(WitxConf),
Ctx(CtxConf),
}
impl ConfigField {
pub fn parse_pair(ident: &str, value: ParseStream, err_loc: Span) -> Result<Self> {
match ident {
"witx" => Ok(ConfigField::Witx(value.parse()?)),
"ctx" => Ok(ConfigField::Ctx(value.parse()?)),
_ => Err(Error::new(err_loc, "expected `witx` or `ctx`")),
}
}
}
impl Parse for ConfigField {
fn parse(input: ParseStream) -> Result<Self> {
let id: Ident = input.parse()?;
let _colon: Token![:] = input.parse()?;
Self::parse_pair(id.to_string().as_ref(), input, id.span())
}
}
impl Config {
pub fn build(fields: impl Iterator<Item = ConfigField>, err_loc: Span) -> Result<Self> {
let mut witx = None;
let mut ctx = None;
for f in fields {
match f {
ConfigField::Witx(c) => {
witx = Some(c);
}
ConfigField::Ctx(c) => {
ctx = Some(c);
}
}
}
Ok(Config {
witx: witx
.take()
.ok_or_else(|| Error::new(err_loc, "`witx` field required"))?,
ctx: ctx
.take()
.ok_or_else(|| Error::new(err_loc, "`ctx` field required"))?,
})
}
}
impl Parse for Config {
fn parse(input: ParseStream) -> Result<Self> {
let contents;
let _lbrace = braced!(contents in input);
let fields: Punctuated<ConfigField, Token![,]> =
contents.parse_terminated(ConfigField::parse)?;
Ok(Config::build(fields.into_iter(), input.span())?)
}
}
#[derive(Debug, Clone)]
pub struct WitxConf {
pub paths: Vec<PathBuf>,
}
impl Parse for WitxConf {
fn parse(input: ParseStream) -> Result<Self> {
let content;
let _ = bracketed!(content in input);
let path_lits: Punctuated<LitStr, Token![,]> = content.parse_terminated(Parse::parse)?;
let paths: Vec<PathBuf> = path_lits
.iter()
.map(|lit| PathBuf::from(lit.value()))
.collect();
Ok(WitxConf { paths })
}
}
#[derive(Debug, Clone)]
pub struct CtxConf {
pub name: Ident,
}
impl Parse for CtxConf {
fn parse(input: ParseStream) -> Result<Self> {
Ok(CtxConf {
name: input.parse()?,
})
}
}

View File

@@ -0,0 +1,263 @@
use proc_macro2::TokenStream;
use quote::quote;
use crate::lifetimes::anon_lifetime;
use crate::names::Names;
pub fn define_func(names: &Names, func: &witx::InterfaceFunc) -> TokenStream {
let funcname = func.name.as_str();
let ident = names.func(&func.name);
let ctx_type = names.ctx_type();
let coretype = func.core_type();
let params = coretype.args.iter().map(|arg| {
let name = names.func_core_arg(arg);
let atom = names.atom_type(arg.repr());
quote!(#name : #atom)
});
let abi_args = quote!(
ctx: &#ctx_type, memory: &dyn wiggle_runtime::GuestMemory,
#(#params),*
);
let abi_ret = if let Some(ret) = &coretype.ret {
match ret.signifies {
witx::CoreParamSignifies::Value(atom) => names.atom_type(atom),
_ => unreachable!("ret should always be passed by value"),
}
} else if func.noreturn {
// Ideally we would return `quote!(!)` here, but, we'd have to change
// the error handling logic in all the marshalling code to never return,
// and instead provide some other way to bail to the context...
// noreturn func
unimplemented!("noreturn funcs not supported yet!")
} else {
quote!(())
};
let err_type = coretype.ret.map(|ret| ret.param.tref);
let err_val = err_type
.clone()
.map(|_res| quote!(#abi_ret::from(e)))
.unwrap_or_else(|| quote!(()));
let error_handling = |location: &str| -> TokenStream {
if let Some(tref) = &err_type {
let abi_ret = match tref.type_().passed_by() {
witx::TypePassedBy::Value(atom) => names.atom_type(atom),
_ => unreachable!("err should always be passed by value"),
};
let err_typename = names.type_ref(&tref, anon_lifetime());
quote! {
let e = wiggle_runtime::GuestError::InFunc { funcname: #funcname, location: #location, err: Box::new(e.into()) };
let err: #err_typename = wiggle_runtime::GuestErrorType::from_error(e, ctx);
return #abi_ret::from(err);
}
} else {
quote! {
panic!("error: {:?}", e)
}
}
};
let marshal_args = func
.params
.iter()
.map(|p| marshal_arg(names, p, error_handling(p.name.as_str())));
let trait_args = func.params.iter().map(|param| {
let name = names.func_param(&param.name);
match param.tref.type_().passed_by() {
witx::TypePassedBy::Value { .. } => quote!(#name),
witx::TypePassedBy::Pointer { .. } => quote!(&#name),
witx::TypePassedBy::PointerLengthPair { .. } => quote!(&#name),
}
});
let (trait_rets, trait_bindings) = if func.results.len() < 2 {
(quote!({}), quote!(_))
} else {
let trait_rets = func
.results
.iter()
.skip(1)
.map(|result| names.func_param(&result.name));
let tuple = quote!((#(#trait_rets),*));
(tuple.clone(), tuple)
};
// Return value pointers need to be validated before the api call, then
// assigned to afterwards. marshal_result returns these two statements as a pair.
let marshal_rets = func
.results
.iter()
.skip(1)
.map(|result| marshal_result(names, result, &error_handling));
let marshal_rets_pre = marshal_rets.clone().map(|(pre, _post)| pre);
let marshal_rets_post = marshal_rets.map(|(_pre, post)| post);
let success = if let Some(ref err_type) = err_type {
let err_typename = names.type_ref(&err_type, anon_lifetime());
quote! {
let success:#err_typename = wiggle_runtime::GuestErrorType::success();
#abi_ret::from(success)
}
} else {
quote!()
};
quote!(pub fn #ident(#abi_args) -> #abi_ret {
#(#marshal_args)*
#(#marshal_rets_pre)*
let #trait_bindings = match ctx.#ident(#(#trait_args),*) {
Ok(#trait_bindings) => #trait_rets,
Err(e) => { return #err_val; },
};
#(#marshal_rets_post)*
#success
})
}
fn marshal_arg(
names: &Names,
param: &witx::InterfaceFuncParam,
error_handling: TokenStream,
) -> TokenStream {
let tref = &param.tref;
let interface_typename = names.type_ref(&tref, anon_lifetime());
let try_into_conversion = {
let name = names.func_param(&param.name);
quote! {
let #name: #interface_typename = {
use ::std::convert::TryInto;
match #name.try_into() {
Ok(a) => a,
Err(e) => {
#error_handling
}
}
};
}
};
let read_conversion = {
let pointee_type = names.type_ref(tref, anon_lifetime());
let arg_name = names.func_ptr_binding(&param.name);
let name = names.func_param(&param.name);
quote! {
let #name = match wiggle_runtime::GuestPtr::<#pointee_type>::new(memory, #arg_name as u32).read() {
Ok(r) => r,
Err(e) => {
#error_handling
}
};
}
};
match &*tref.type_() {
witx::Type::Enum(_e) => try_into_conversion,
witx::Type::Flags(_f) => try_into_conversion,
witx::Type::Int(_i) => try_into_conversion,
witx::Type::Builtin(b) => match b {
witx::BuiltinType::U8 | witx::BuiltinType::U16 | witx::BuiltinType::Char8 => {
try_into_conversion
}
witx::BuiltinType::S8 | witx::BuiltinType::S16 => {
let name = names.func_param(&param.name);
quote! {
let #name: #interface_typename = match (#name as i32).try_into() {
Ok(a) => a,
Err(e) => {
#error_handling
}
}
}
}
witx::BuiltinType::U32
| witx::BuiltinType::S32
| witx::BuiltinType::U64
| witx::BuiltinType::S64
| witx::BuiltinType::USize
| witx::BuiltinType::F32
| witx::BuiltinType::F64 => {
let name = names.func_param(&param.name);
quote! {
let #name = #name as #interface_typename;
}
}
witx::BuiltinType::String => {
let lifetime = anon_lifetime();
let ptr_name = names.func_ptr_binding(&param.name);
let len_name = names.func_len_binding(&param.name);
let name = names.func_param(&param.name);
quote! {
let #name = wiggle_runtime::GuestPtr::<#lifetime, str>::new(memory, (#ptr_name as u32, #len_name as u32));
}
}
},
witx::Type::Pointer(pointee) | witx::Type::ConstPointer(pointee) => {
let pointee_type = names.type_ref(pointee, anon_lifetime());
let name = names.func_param(&param.name);
quote! {
let #name = wiggle_runtime::GuestPtr::<#pointee_type>::new(memory, #name as u32);
}
}
witx::Type::Struct(_) => read_conversion,
witx::Type::Array(arr) => {
let pointee_type = names.type_ref(arr, anon_lifetime());
let ptr_name = names.func_ptr_binding(&param.name);
let len_name = names.func_len_binding(&param.name);
let name = names.func_param(&param.name);
quote! {
let #name = wiggle_runtime::GuestPtr::<[#pointee_type]>::new(memory, (#ptr_name as u32, #len_name as u32));
}
}
witx::Type::Union(_u) => read_conversion,
witx::Type::Handle(_h) => {
let name = names.func_param(&param.name);
let handle_type = names.type_ref(tref, anon_lifetime());
quote!( let #name = #handle_type::from(#name); )
}
}
}
fn marshal_result<F>(
names: &Names,
result: &witx::InterfaceFuncParam,
error_handling: F,
) -> (TokenStream, TokenStream)
where
F: Fn(&str) -> TokenStream,
{
let tref = &result.tref;
let write_val_to_ptr = {
let pointee_type = names.type_ref(tref, anon_lifetime());
// core type is given func_ptr_binding name.
let ptr_name = names.func_ptr_binding(&result.name);
let ptr_err_handling = error_handling(&format!("{}:result_ptr_mut", result.name.as_str()));
let pre = quote! {
let #ptr_name = wiggle_runtime::GuestPtr::<#pointee_type>::new(memory, #ptr_name as u32);
};
// trait binding returns func_param name.
let val_name = names.func_param(&result.name);
let post = quote! {
if let Err(e) = #ptr_name.write(#val_name) {
#ptr_err_handling
}
};
(pre, post)
};
match &*tref.type_() {
witx::Type::Builtin(b) => match b {
witx::BuiltinType::String => unimplemented!("string result types"),
_ => write_val_to_ptr,
},
witx::Type::Pointer { .. } | witx::Type::ConstPointer { .. } | witx::Type::Array { .. } => {
unimplemented!("pointer/array result types")
}
_ => write_val_to_ptr,
}
}

View File

@@ -0,0 +1,44 @@
pub mod config;
mod funcs;
mod lifetimes;
mod module_trait;
mod names;
mod types;
use proc_macro2::TokenStream;
use quote::quote;
pub use config::Config;
pub use funcs::define_func;
pub use module_trait::define_module_trait;
pub use names::Names;
pub use types::define_datatype;
pub fn generate(doc: &witx::Document, config: &Config) -> TokenStream {
let names = Names::new(config); // TODO parse the names from the invocation of the macro, or from a file?
let types = doc.typenames().map(|t| define_datatype(&names, &t));
let modules = doc.modules().map(|module| {
let modname = names.module(&module.name);
let fs = module.funcs().map(|f| define_func(&names, &f));
let modtrait = define_module_trait(&names, &module);
let ctx_type = names.ctx_type();
quote!(
pub mod #modname {
use super::#ctx_type;
use super::types::*;
#(#fs)*
#modtrait
}
)
});
quote!(
pub mod types {
#(#types)*
}
#(#modules)*
)
}

View File

@@ -0,0 +1,83 @@
use proc_macro2::TokenStream;
use quote::quote;
pub trait LifetimeExt {
fn is_transparent(&self) -> bool;
fn needs_lifetime(&self) -> bool;
}
impl LifetimeExt for witx::TypeRef {
fn is_transparent(&self) -> bool {
self.type_().is_transparent()
}
fn needs_lifetime(&self) -> bool {
self.type_().needs_lifetime()
}
}
impl LifetimeExt for witx::Type {
fn is_transparent(&self) -> bool {
match self {
witx::Type::Builtin(b) => b.is_transparent(),
witx::Type::Struct(s) => s.is_transparent(),
witx::Type::Enum { .. }
| witx::Type::Flags { .. }
| witx::Type::Int { .. }
| witx::Type::Handle { .. } => true,
witx::Type::Union { .. }
| witx::Type::Pointer { .. }
| witx::Type::ConstPointer { .. }
| witx::Type::Array { .. } => false,
}
}
fn needs_lifetime(&self) -> bool {
match self {
witx::Type::Builtin(b) => b.needs_lifetime(),
witx::Type::Struct(s) => s.needs_lifetime(),
witx::Type::Union(u) => u.needs_lifetime(),
witx::Type::Enum { .. }
| witx::Type::Flags { .. }
| witx::Type::Int { .. }
| witx::Type::Handle { .. } => false,
witx::Type::Pointer { .. }
| witx::Type::ConstPointer { .. }
| witx::Type::Array { .. } => true,
}
}
}
impl LifetimeExt for witx::BuiltinType {
fn is_transparent(&self) -> bool {
!self.needs_lifetime()
}
fn needs_lifetime(&self) -> bool {
match self {
witx::BuiltinType::String => true,
_ => false,
}
}
}
impl LifetimeExt for witx::StructDatatype {
fn is_transparent(&self) -> bool {
self.members.iter().all(|m| m.tref.is_transparent())
}
fn needs_lifetime(&self) -> bool {
self.members.iter().any(|m| m.tref.needs_lifetime())
}
}
impl LifetimeExt for witx::UnionDatatype {
fn is_transparent(&self) -> bool {
false
}
fn needs_lifetime(&self) -> bool {
self.variants
.iter()
.any(|m| m.tref.as_ref().map(|t| t.needs_lifetime()).unwrap_or(false))
}
}
pub fn anon_lifetime() -> TokenStream {
quote!('_)
}

View File

@@ -0,0 +1,57 @@
use proc_macro2::TokenStream;
use quote::quote;
use crate::lifetimes::{anon_lifetime, LifetimeExt};
use crate::names::Names;
use witx::Module;
pub fn define_module_trait(names: &Names, m: &Module) -> TokenStream {
let traitname = names.trait_name(&m.name);
let traitmethods = m.funcs().map(|f| {
// Check if we're returning an entity anotated with a lifetime,
// in which case, we'll need to annotate the function itself, and
// hence will need an explicit lifetime (rather than anonymous)
let (lifetime, is_anonymous) = if f
.params
.iter()
.chain(&f.results)
.any(|ret| ret.tref.needs_lifetime())
{
(quote!('a), false)
} else {
(anon_lifetime(), true)
};
let funcname = names.func(&f.name);
let args = f.params.iter().map(|arg| {
let arg_name = names.func_param(&arg.name);
let arg_typename = names.type_ref(&arg.tref, lifetime.clone());
let arg_type = match arg.tref.type_().passed_by() {
witx::TypePassedBy::Value { .. } => quote!(#arg_typename),
witx::TypePassedBy::Pointer { .. } => quote!(&#arg_typename),
witx::TypePassedBy::PointerLengthPair { .. } => quote!(&#arg_typename),
};
quote!(#arg_name: #arg_type)
});
let rets = f
.results
.iter()
.skip(1)
.map(|ret| names.type_ref(&ret.tref, lifetime.clone()));
let err = f
.results
.get(0)
.map(|err_result| names.type_ref(&err_result.tref, lifetime.clone()))
.unwrap_or(quote!(()));
if is_anonymous {
quote!(fn #funcname(&self, #(#args),*) -> Result<(#(#rets),*), #err>;)
} else {
quote!(fn #funcname<#lifetime>(&self, #(#args),*) -> Result<(#(#rets),*), #err>;)
}
});
quote! {
pub trait #traitname {
#(#traitmethods)*
}
}
}

View File

@@ -0,0 +1,140 @@
use heck::{CamelCase, ShoutySnakeCase, SnakeCase};
use proc_macro2::{Ident, TokenStream};
use quote::{format_ident, quote};
use witx::{AtomType, BuiltinType, Id, TypeRef};
use crate::lifetimes::LifetimeExt;
use crate::Config;
#[derive(Debug, Clone)]
pub struct Names {
config: Config,
}
impl Names {
pub fn new(config: &Config) -> Names {
Names {
config: config.clone(),
}
}
pub fn ctx_type(&self) -> Ident {
self.config.ctx.name.clone()
}
pub fn type_(&self, id: &Id) -> TokenStream {
let ident = format_ident!("{}", id.as_str().to_camel_case());
quote!(#ident)
}
pub fn builtin_type(&self, b: BuiltinType, lifetime: TokenStream) -> TokenStream {
match b {
BuiltinType::String => quote!(wiggle_runtime::GuestPtr<#lifetime, str>),
BuiltinType::U8 => quote!(u8),
BuiltinType::U16 => quote!(u16),
BuiltinType::U32 => quote!(u32),
BuiltinType::U64 => quote!(u64),
BuiltinType::S8 => quote!(i8),
BuiltinType::S16 => quote!(i16),
BuiltinType::S32 => quote!(i32),
BuiltinType::S64 => quote!(i64),
BuiltinType::F32 => quote!(f32),
BuiltinType::F64 => quote!(f64),
BuiltinType::Char8 => quote!(u8),
BuiltinType::USize => quote!(usize),
}
}
pub fn atom_type(&self, atom: AtomType) -> TokenStream {
match atom {
AtomType::I32 => quote!(i32),
AtomType::I64 => quote!(i64),
AtomType::F32 => quote!(f32),
AtomType::F64 => quote!(f64),
}
}
pub fn type_ref(&self, tref: &TypeRef, lifetime: TokenStream) -> TokenStream {
match tref {
TypeRef::Name(nt) => {
let ident = self.type_(&nt.name);
if nt.tref.needs_lifetime() {
quote!(#ident<#lifetime>)
} else {
quote!(#ident)
}
}
TypeRef::Value(ty) => match &**ty {
witx::Type::Builtin(builtin) => self.builtin_type(*builtin, lifetime.clone()),
witx::Type::Pointer(pointee) | witx::Type::ConstPointer(pointee) => {
let pointee_type = self.type_ref(&pointee, lifetime.clone());
quote!(wiggle_runtime::GuestPtr<#lifetime, #pointee_type>)
}
_ => unimplemented!("anonymous type ref"),
},
}
}
pub fn enum_variant(&self, id: &Id) -> Ident {
// FIXME this is a hack - just a proof of concept.
if id.as_str().starts_with('2') {
format_ident!("TooBig")
} else if id.as_str() == "type" {
format_ident!("Type")
} else {
format_ident!("{}", id.as_str().to_camel_case())
}
}
pub fn flag_member(&self, id: &Id) -> Ident {
format_ident!("{}", id.as_str().to_shouty_snake_case())
}
pub fn int_member(&self, id: &Id) -> Ident {
format_ident!("{}", id.as_str().to_shouty_snake_case())
}
pub fn struct_member(&self, id: &Id) -> Ident {
// FIXME this is a hack - just a proof of concept.
if id.as_str() == "type" {
format_ident!("type_")
} else {
format_ident!("{}", id.as_str().to_snake_case())
}
}
pub fn module(&self, id: &Id) -> Ident {
format_ident!("{}", id.as_str().to_snake_case())
}
pub fn trait_name(&self, id: &Id) -> Ident {
format_ident!("{}", id.as_str().to_camel_case())
}
pub fn func(&self, id: &Id) -> Ident {
format_ident!("{}", id.as_str().to_snake_case())
}
pub fn func_param(&self, id: &Id) -> Ident {
// FIXME this is a hack - just a proof of concept.
if id.as_str() == "in" {
format_ident!("in_")
} else {
format_ident!("{}", id.as_str().to_snake_case())
}
}
pub fn func_core_arg(&self, arg: &witx::CoreParamType) -> Ident {
match arg.signifies {
witx::CoreParamSignifies::Value { .. } => self.func_param(&arg.param.name),
witx::CoreParamSignifies::PointerTo => self.func_ptr_binding(&arg.param.name),
witx::CoreParamSignifies::LengthOf => self.func_len_binding(&arg.param.name),
}
}
/// For when you need a {name}_ptr binding for passing a value by reference:
pub fn func_ptr_binding(&self, id: &Id) -> Ident {
format_ident!("{}_ptr", id.as_str().to_snake_case())
}
/// For when you need a {name}_len binding for passing an array:
pub fn func_len_binding(&self, id: &Id) -> Ident {
format_ident!("{}_len", id.as_str().to_snake_case())
}
}

View File

@@ -0,0 +1,113 @@
use super::{atom_token, int_repr_tokens};
use crate::names::Names;
use proc_macro2::TokenStream;
use quote::quote;
pub(super) fn define_enum(names: &Names, name: &witx::Id, e: &witx::EnumDatatype) -> TokenStream {
let ident = names.type_(&name);
let repr = int_repr_tokens(e.repr);
let abi_repr = atom_token(match e.repr {
witx::IntRepr::U8 | witx::IntRepr::U16 | witx::IntRepr::U32 => witx::AtomType::I32,
witx::IntRepr::U64 => witx::AtomType::I64,
});
let mut variant_names = vec![];
let mut tryfrom_repr_cases = vec![];
let mut to_repr_cases = vec![];
let mut to_display = vec![];
for (n, variant) in e.variants.iter().enumerate() {
let variant_name = names.enum_variant(&variant.name);
let docs = variant.docs.trim();
let ident_str = ident.to_string();
let variant_str = variant_name.to_string();
tryfrom_repr_cases.push(quote!(#n => Ok(#ident::#variant_name)));
to_repr_cases.push(quote!(#ident::#variant_name => #n as #repr));
to_display.push(quote!(#ident::#variant_name => format!("{} ({}::{}({}))", #docs, #ident_str, #variant_str, #repr::from(*self))));
variant_names.push(variant_name);
}
quote! {
#[repr(#repr)]
#[derive(Copy, Clone, Debug, ::std::hash::Hash, Eq, PartialEq)]
pub enum #ident {
#(#variant_names),*
}
impl ::std::fmt::Display for #ident {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
let to_str = match self {
#(#to_display,)*
};
write!(f, "{}", to_str)
}
}
impl ::std::convert::TryFrom<#repr> for #ident {
type Error = wiggle_runtime::GuestError;
fn try_from(value: #repr) -> Result<#ident, wiggle_runtime::GuestError> {
match value as usize {
#(#tryfrom_repr_cases),*,
_ => Err(wiggle_runtime::GuestError::InvalidEnumValue(stringify!(#ident))),
}
}
}
impl ::std::convert::TryFrom<#abi_repr> for #ident {
type Error = wiggle_runtime::GuestError;
fn try_from(value: #abi_repr) -> Result<#ident, wiggle_runtime::GuestError> {
#ident::try_from(value as #repr)
}
}
impl From<#ident> for #repr {
fn from(e: #ident) -> #repr {
match e {
#(#to_repr_cases),*
}
}
}
impl From<#ident> for #abi_repr {
fn from(e: #ident) -> #abi_repr {
#repr::from(e) as #abi_repr
}
}
impl<'a> wiggle_runtime::GuestType<'a> for #ident {
fn guest_size() -> u32 {
#repr::guest_size()
}
fn guest_align() -> usize {
#repr::guest_align()
}
fn read(location: &wiggle_runtime::GuestPtr<#ident>) -> Result<#ident, wiggle_runtime::GuestError> {
use std::convert::TryFrom;
let reprval = #repr::read(&location.cast())?;
let value = #ident::try_from(reprval)?;
Ok(value)
}
fn write(location: &wiggle_runtime::GuestPtr<'_, #ident>, val: Self)
-> Result<(), wiggle_runtime::GuestError>
{
#repr::write(&location.cast(), #repr::from(val))
}
}
unsafe impl <'a> wiggle_runtime::GuestTypeTransparent<'a> for #ident {
#[inline]
fn validate(location: *mut #ident) -> Result<(), wiggle_runtime::GuestError> {
use std::convert::TryFrom;
// Validate value in memory using #ident::try_from(reprval)
let reprval = unsafe { (location as *mut #repr).read() };
let _val = #ident::try_from(reprval)?;
Ok(())
}
}
}
}

View File

@@ -0,0 +1,161 @@
use super::{atom_token, int_repr_tokens};
use crate::names::Names;
use proc_macro2::{Literal, TokenStream};
use quote::quote;
use std::convert::TryFrom;
pub(super) fn define_flags(names: &Names, name: &witx::Id, f: &witx::FlagsDatatype) -> TokenStream {
let ident = names.type_(&name);
let repr = int_repr_tokens(f.repr);
let abi_repr = atom_token(match f.repr {
witx::IntRepr::U8 | witx::IntRepr::U16 | witx::IntRepr::U32 => witx::AtomType::I32,
witx::IntRepr::U64 => witx::AtomType::I64,
});
let mut flag_constructors = vec![];
let mut all_values = 0;
for (i, f) in f.flags.iter().enumerate() {
let name = names.flag_member(&f.name);
let value = 1u128
.checked_shl(u32::try_from(i).expect("flag value overflow"))
.expect("flag value overflow");
let value_token = Literal::u128_unsuffixed(value);
flag_constructors.push(quote!(pub const #name: #ident = #ident(#value_token)));
all_values += value;
}
let all_values_token = Literal::u128_unsuffixed(all_values);
let ident_str = ident.to_string();
quote! {
#[repr(transparent)]
#[derive(Copy, Clone, Debug, ::std::hash::Hash, Eq, PartialEq)]
pub struct #ident(#repr);
impl #ident {
#(#flag_constructors);*;
pub const EMPTY_FLAGS: #ident = #ident(0 as #repr);
pub const ALL_FLAGS: #ident = #ident(#all_values_token);
pub fn contains(&self, other: &#ident) -> bool {
!*self & *other == Self::EMPTY_FLAGS
}
}
impl ::std::fmt::Display for #ident {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
write!(f, "{}({:#b})", #ident_str, self.0)
}
}
impl ::std::ops::BitAnd for #ident {
type Output = Self;
fn bitand(self, rhs: Self) -> Self::Output {
#ident(self.0 & rhs.0)
}
}
impl ::std::ops::BitAndAssign for #ident {
fn bitand_assign(&mut self, rhs: Self) {
*self = *self & rhs
}
}
impl ::std::ops::BitOr for #ident {
type Output = Self;
fn bitor(self, rhs: Self) -> Self::Output {
#ident(self.0 | rhs.0)
}
}
impl ::std::ops::BitOrAssign for #ident {
fn bitor_assign(&mut self, rhs: Self) {
*self = *self | rhs
}
}
impl ::std::ops::BitXor for #ident {
type Output = Self;
fn bitxor(self, rhs: Self) -> Self::Output {
#ident(self.0 ^ rhs.0)
}
}
impl ::std::ops::BitXorAssign for #ident {
fn bitxor_assign(&mut self, rhs: Self) {
*self = *self ^ rhs
}
}
impl ::std::ops::Not for #ident {
type Output = Self;
fn not(self) -> Self::Output {
#ident(!self.0)
}
}
impl ::std::convert::TryFrom<#repr> for #ident {
type Error = wiggle_runtime::GuestError;
fn try_from(value: #repr) -> Result<Self, wiggle_runtime::GuestError> {
if #repr::from(!#ident::ALL_FLAGS) & value != 0 {
Err(wiggle_runtime::GuestError::InvalidFlagValue(stringify!(#ident)))
} else {
Ok(#ident(value))
}
}
}
impl ::std::convert::TryFrom<#abi_repr> for #ident {
type Error = wiggle_runtime::GuestError;
fn try_from(value: #abi_repr) -> Result<#ident, wiggle_runtime::GuestError> {
#ident::try_from(value as #repr)
}
}
impl From<#ident> for #repr {
fn from(e: #ident) -> #repr {
e.0
}
}
impl From<#ident> for #abi_repr {
fn from(e: #ident) -> #abi_repr {
#repr::from(e) as #abi_repr
}
}
impl<'a> wiggle_runtime::GuestType<'a> for #ident {
fn guest_size() -> u32 {
#repr::guest_size()
}
fn guest_align() -> usize {
#repr::guest_align()
}
fn read(location: &wiggle_runtime::GuestPtr<#ident>) -> Result<#ident, wiggle_runtime::GuestError> {
use std::convert::TryFrom;
let reprval = #repr::read(&location.cast())?;
let value = #ident::try_from(reprval)?;
Ok(value)
}
fn write(location: &wiggle_runtime::GuestPtr<'_, #ident>, val: Self) -> Result<(), wiggle_runtime::GuestError> {
let val: #repr = #repr::from(val);
#repr::write(&location.cast(), val)
}
}
unsafe impl <'a> wiggle_runtime::GuestTypeTransparent<'a> for #ident {
#[inline]
fn validate(location: *mut #ident) -> Result<(), wiggle_runtime::GuestError> {
use std::convert::TryFrom;
// Validate value in memory using #ident::try_from(reprval)
let reprval = unsafe { (location as *mut #repr).read() };
let _val = #ident::try_from(reprval)?;
Ok(())
}
}
}
}

View File

@@ -0,0 +1,77 @@
use crate::names::Names;
use proc_macro2::TokenStream;
use quote::quote;
use witx::Layout;
pub(super) fn define_handle(
names: &Names,
name: &witx::Id,
h: &witx::HandleDatatype,
) -> TokenStream {
let ident = names.type_(name);
let size = h.mem_size_align().size as u32;
let align = h.mem_size_align().align as usize;
quote! {
#[repr(transparent)]
#[derive(Copy, Clone, Debug, ::std::hash::Hash, Eq, PartialEq)]
pub struct #ident(u32);
impl From<#ident> for u32 {
fn from(e: #ident) -> u32 {
e.0
}
}
impl From<#ident> for i32 {
fn from(e: #ident) -> i32 {
e.0 as i32
}
}
impl From<u32> for #ident {
fn from(e: u32) -> #ident {
#ident(e)
}
}
impl From<i32> for #ident {
fn from(e: i32) -> #ident {
#ident(e as u32)
}
}
impl ::std::fmt::Display for #ident {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
write!(f, "{}({})", stringify!(#ident), self.0)
}
}
impl<'a> wiggle_runtime::GuestType<'a> for #ident {
fn guest_size() -> u32 {
#size
}
fn guest_align() -> usize {
#align
}
fn read(location: &wiggle_runtime::GuestPtr<'a, #ident>) -> Result<#ident, wiggle_runtime::GuestError> {
Ok(#ident(u32::read(&location.cast())?))
}
fn write(location: &wiggle_runtime::GuestPtr<'_, Self>, val: Self) -> Result<(), wiggle_runtime::GuestError> {
u32::write(&location.cast(), val.0)
}
}
unsafe impl<'a> wiggle_runtime::GuestTypeTransparent<'a> for #ident {
#[inline]
fn validate(_location: *mut #ident) -> Result<(), wiggle_runtime::GuestError> {
// All bit patterns accepted
Ok(())
}
}
}
}

View File

@@ -0,0 +1,93 @@
use super::{atom_token, int_repr_tokens};
use crate::names::Names;
use proc_macro2::TokenStream;
use quote::quote;
pub(super) fn define_int(names: &Names, name: &witx::Id, i: &witx::IntDatatype) -> TokenStream {
let ident = names.type_(&name);
let repr = int_repr_tokens(i.repr);
let abi_repr = atom_token(match i.repr {
witx::IntRepr::U8 | witx::IntRepr::U16 | witx::IntRepr::U32 => witx::AtomType::I32,
witx::IntRepr::U64 => witx::AtomType::I64,
});
let consts = i
.consts
.iter()
.map(|r#const| {
let const_ident = names.int_member(&r#const.name);
let value = r#const.value;
quote!(pub const #const_ident: #ident = #ident(#value))
})
.collect::<Vec<_>>();
quote! {
#[repr(transparent)]
#[derive(Copy, Clone, Debug, ::std::hash::Hash, Eq, PartialEq)]
pub struct #ident(#repr);
impl #ident {
#(#consts;)*
}
impl ::std::fmt::Display for #ident {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
write!(f, "{:?}", self)
}
}
impl ::std::convert::TryFrom<#repr> for #ident {
type Error = wiggle_runtime::GuestError;
fn try_from(value: #repr) -> Result<Self, wiggle_runtime::GuestError> {
Ok(#ident(value))
}
}
impl ::std::convert::TryFrom<#abi_repr> for #ident {
type Error = wiggle_runtime::GuestError;
fn try_from(value: #abi_repr) -> Result<#ident, wiggle_runtime::GuestError> {
#ident::try_from(value as #repr)
}
}
impl From<#ident> for #repr {
fn from(e: #ident) -> #repr {
e.0
}
}
impl From<#ident> for #abi_repr {
fn from(e: #ident) -> #abi_repr {
#repr::from(e) as #abi_repr
}
}
impl<'a> wiggle_runtime::GuestType<'a> for #ident {
fn guest_size() -> u32 {
#repr::guest_size()
}
fn guest_align() -> usize {
#repr::guest_align()
}
fn read(location: &wiggle_runtime::GuestPtr<'a, #ident>) -> Result<#ident, wiggle_runtime::GuestError> {
Ok(#ident(#repr::read(&location.cast())?))
}
fn write(location: &wiggle_runtime::GuestPtr<'_, #ident>, val: Self) -> Result<(), wiggle_runtime::GuestError> {
#repr::write(&location.cast(), val.0)
}
}
unsafe impl<'a> wiggle_runtime::GuestTypeTransparent<'a> for #ident {
#[inline]
fn validate(_location: *mut #ident) -> Result<(), wiggle_runtime::GuestError> {
// All bit patterns accepted
Ok(())
}
}
}
}

View File

@@ -0,0 +1,90 @@
mod r#enum;
mod flags;
mod handle;
mod int;
mod r#struct;
mod union;
use crate::lifetimes::LifetimeExt;
use crate::names::Names;
use proc_macro2::TokenStream;
use quote::quote;
pub fn define_datatype(names: &Names, namedtype: &witx::NamedType) -> TokenStream {
match &namedtype.tref {
witx::TypeRef::Name(alias_to) => define_alias(names, &namedtype.name, &alias_to),
witx::TypeRef::Value(v) => match &**v {
witx::Type::Enum(e) => r#enum::define_enum(names, &namedtype.name, &e),
witx::Type::Int(i) => int::define_int(names, &namedtype.name, &i),
witx::Type::Flags(f) => flags::define_flags(names, &namedtype.name, &f),
witx::Type::Struct(s) => r#struct::define_struct(names, &namedtype.name, &s),
witx::Type::Union(u) => union::define_union(names, &namedtype.name, &u),
witx::Type::Handle(h) => handle::define_handle(names, &namedtype.name, &h),
witx::Type::Builtin(b) => define_builtin(names, &namedtype.name, *b),
witx::Type::Pointer(p) => {
define_witx_pointer(names, &namedtype.name, quote!(wiggle_runtime::GuestPtr), p)
}
witx::Type::ConstPointer(p) => {
define_witx_pointer(names, &namedtype.name, quote!(wiggle_runtime::GuestPtr), p)
}
witx::Type::Array(arr) => define_witx_array(names, &namedtype.name, &arr),
},
}
}
fn define_alias(names: &Names, name: &witx::Id, to: &witx::NamedType) -> TokenStream {
let ident = names.type_(name);
let rhs = names.type_(&to.name);
if to.tref.needs_lifetime() {
quote!(pub type #ident<'a> = #rhs<'a>;)
} else {
quote!(pub type #ident = #rhs;)
}
}
fn define_builtin(names: &Names, name: &witx::Id, builtin: witx::BuiltinType) -> TokenStream {
let ident = names.type_(name);
let built = names.builtin_type(builtin, quote!('a));
if builtin.needs_lifetime() {
quote!(pub type #ident<'a> = #built;)
} else {
quote!(pub type #ident = #built;)
}
}
fn define_witx_pointer(
names: &Names,
name: &witx::Id,
pointer_type: TokenStream,
pointee: &witx::TypeRef,
) -> TokenStream {
let ident = names.type_(name);
let pointee_type = names.type_ref(pointee, quote!('a));
quote!(pub type #ident<'a> = #pointer_type<'a, #pointee_type>;)
}
fn define_witx_array(names: &Names, name: &witx::Id, arr_raw: &witx::TypeRef) -> TokenStream {
let ident = names.type_(name);
let pointee_type = names.type_ref(arr_raw, quote!('a));
quote!(pub type #ident<'a> = wiggle_runtime::GuestPtr<'a, [#pointee_type]>;)
}
fn int_repr_tokens(int_repr: witx::IntRepr) -> TokenStream {
match int_repr {
witx::IntRepr::U8 => quote!(u8),
witx::IntRepr::U16 => quote!(u16),
witx::IntRepr::U32 => quote!(u32),
witx::IntRepr::U64 => quote!(u64),
}
}
fn atom_token(atom: witx::AtomType) -> TokenStream {
match atom {
witx::AtomType::I32 => quote!(i32),
witx::AtomType::I64 => quote!(i64),
witx::AtomType::F32 => quote!(f32),
witx::AtomType::F64 => quote!(f64),
}
}

View File

@@ -0,0 +1,134 @@
use crate::lifetimes::{anon_lifetime, LifetimeExt};
use crate::names::Names;
use proc_macro2::TokenStream;
use quote::quote;
use witx::Layout;
pub(super) fn define_struct(
names: &Names,
name: &witx::Id,
s: &witx::StructDatatype,
) -> TokenStream {
let ident = names.type_(name);
let size = s.mem_size_align().size as u32;
let align = s.mem_size_align().align as usize;
let member_names = s.members.iter().map(|m| names.struct_member(&m.name));
let member_decls = s.members.iter().map(|m| {
let name = names.struct_member(&m.name);
let type_ = match &m.tref {
witx::TypeRef::Name(nt) => names.type_(&nt.name),
witx::TypeRef::Value(ty) => match &**ty {
witx::Type::Builtin(builtin) => names.builtin_type(*builtin, quote!('a)),
witx::Type::Pointer(pointee) | witx::Type::ConstPointer(pointee) => {
let pointee_type = names.type_ref(&pointee, quote!('a));
quote!(wiggle_runtime::GuestPtr<'a, #pointee_type>)
}
_ => unimplemented!("other anonymous struct members"),
},
};
quote!(pub #name: #type_)
});
let member_reads = s.member_layout().into_iter().map(|ml| {
let name = names.struct_member(&ml.member.name);
let offset = ml.offset as u32;
let location = quote!(location.cast::<u8>().add(#offset)?.cast());
match &ml.member.tref {
witx::TypeRef::Name(nt) => {
let type_ = names.type_(&nt.name);
quote! {
let #name = <#type_ as wiggle_runtime::GuestType>::read(&#location)?;
}
}
witx::TypeRef::Value(ty) => match &**ty {
witx::Type::Builtin(builtin) => {
let type_ = names.builtin_type(*builtin, anon_lifetime());
quote! {
let #name = <#type_ as wiggle_runtime::GuestType>::read(&#location)?;
}
}
witx::Type::Pointer(pointee) | witx::Type::ConstPointer(pointee) => {
let pointee_type = names.type_ref(&pointee, anon_lifetime());
quote! {
let #name = <wiggle_runtime::GuestPtr::<#pointee_type> as wiggle_runtime::GuestType>::read(&#location)?;
}
}
_ => unimplemented!("other anonymous struct members"),
},
}
});
let member_writes = s.member_layout().into_iter().map(|ml| {
let name = names.struct_member(&ml.member.name);
let offset = ml.offset as u32;
quote! {
wiggle_runtime::GuestType::write(
&location.cast::<u8>().add(#offset)?.cast(),
val.#name,
)?;
}
});
let (struct_lifetime, extra_derive) = if s.needs_lifetime() {
(quote!(<'a>), quote!())
} else {
(quote!(), quote!(, Copy, PartialEq))
};
let transparent = if s.is_transparent() {
let member_validate = s.member_layout().into_iter().map(|ml| {
let offset = ml.offset;
let typename = names.type_ref(&ml.member.tref, anon_lifetime());
quote! {
// SAFETY: caller has validated bounds and alignment of `location`.
// member_layout gives correctly-aligned pointers inside that area.
#typename::validate(
unsafe { (location as *mut u8).add(#offset) as *mut _ }
)?;
}
});
quote! {
unsafe impl<'a> wiggle_runtime::GuestTypeTransparent<'a> for #ident {
#[inline]
fn validate(location: *mut #ident) -> Result<(), wiggle_runtime::GuestError> {
#(#member_validate)*
Ok(())
}
}
}
} else {
quote!()
};
quote! {
#[derive(Clone, Debug #extra_derive)]
pub struct #ident #struct_lifetime {
#(#member_decls),*
}
impl<'a> wiggle_runtime::GuestType<'a> for #ident #struct_lifetime {
fn guest_size() -> u32 {
#size
}
fn guest_align() -> usize {
#align
}
fn read(location: &wiggle_runtime::GuestPtr<'a, Self>) -> Result<Self, wiggle_runtime::GuestError> {
#(#member_reads)*
Ok(#ident { #(#member_names),* })
}
fn write(location: &wiggle_runtime::GuestPtr<'_, Self>, val: Self) -> Result<(), wiggle_runtime::GuestError> {
#(#member_writes)*
Ok(())
}
}
#transparent
}
}

View File

@@ -0,0 +1,109 @@
use crate::lifetimes::LifetimeExt;
use crate::names::Names;
use proc_macro2::TokenStream;
use quote::quote;
use witx::Layout;
pub(super) fn define_union(names: &Names, name: &witx::Id, u: &witx::UnionDatatype) -> TokenStream {
let ident = names.type_(name);
let size = u.mem_size_align().size as u32;
let align = u.mem_size_align().align as usize;
let ulayout = u.union_layout();
let contents_offset = ulayout.contents_offset as u32;
let lifetime = quote!('a);
let variants = u.variants.iter().map(|v| {
let var_name = names.enum_variant(&v.name);
if let Some(tref) = &v.tref {
let var_type = names.type_ref(&tref, lifetime.clone());
quote!(#var_name(#var_type))
} else {
quote!(#var_name)
}
});
let tagname = names.type_(&u.tag.name);
let read_variant = u.variants.iter().map(|v| {
let variantname = names.enum_variant(&v.name);
if let Some(tref) = &v.tref {
let varianttype = names.type_ref(tref, lifetime.clone());
quote! {
#tagname::#variantname => {
let variant_ptr = location.cast::<u8>().add(#contents_offset)?;
let variant_val = <#varianttype as wiggle_runtime::GuestType>::read(&variant_ptr.cast())?;
Ok(#ident::#variantname(variant_val))
}
}
} else {
quote! { #tagname::#variantname => Ok(#ident::#variantname), }
}
});
let write_variant = u.variants.iter().map(|v| {
let variantname = names.enum_variant(&v.name);
let write_tag = quote! {
location.cast().write(#tagname::#variantname)?;
};
if let Some(tref) = &v.tref {
let varianttype = names.type_ref(tref, lifetime.clone());
quote! {
#ident::#variantname(contents) => {
#write_tag
let variant_ptr = location.cast::<u8>().add(#contents_offset)?;
<#varianttype as wiggle_runtime::GuestType>::write(&variant_ptr.cast(), contents)?;
}
}
} else {
quote! {
#ident::#variantname => {
#write_tag
}
}
}
});
let (enum_lifetime, extra_derive) = if u.needs_lifetime() {
(quote!(<'a>), quote!())
} else {
(quote!(), quote!(, Copy, PartialEq))
};
quote! {
#[derive(Clone, Debug #extra_derive)]
pub enum #ident #enum_lifetime {
#(#variants),*
}
impl<'a> wiggle_runtime::GuestType<'a> for #ident #enum_lifetime {
fn guest_size() -> u32 {
#size
}
fn guest_align() -> usize {
#align
}
fn read(location: &wiggle_runtime::GuestPtr<'a, Self>)
-> Result<Self, wiggle_runtime::GuestError>
{
let tag = location.cast().read()?;
match tag {
#(#read_variant)*
}
}
fn write(location: &wiggle_runtime::GuestPtr<'_, Self>, val: Self)
-> Result<(), wiggle_runtime::GuestError>
{
match val {
#(#write_variant)*
}
Ok(())
}
}
}
}

View File

@@ -0,0 +1,2 @@
target
Cargo.lock

View File

@@ -0,0 +1,8 @@
[package]
name = "wiggle-runtime"
version = "0.1.0"
authors = ["Pat Hickey <phickey@fastly.com>", "Jakub Konka <kubkon@jakubkonka.com>"]
edition = "2018"
[dependencies]
thiserror = "1"

View File

@@ -0,0 +1,126 @@
use crate::region::Region;
use crate::{GuestError, GuestPtr, GuestType};
#[derive(Debug)]
pub struct GuestBorrows {
borrows: Vec<Region>,
}
impl GuestBorrows {
pub fn new() -> Self {
Self {
borrows: Vec::new(),
}
}
fn is_borrowed(&self, r: Region) -> bool {
!self.borrows.iter().all(|b| !b.overlaps(r))
}
pub(crate) fn borrow(&mut self, r: Region) -> Result<(), GuestError> {
if self.is_borrowed(r) {
Err(GuestError::PtrBorrowed(r))
} else {
self.borrows.push(r);
Ok(())
}
}
/// Borrow the region of memory pointed to by a `GuestPtr`. This is required for safety if
/// you are dereferencing `GuestPtr`s while holding a reference to a slice via
/// `GuestPtr::as_raw`.
pub fn borrow_pointee<'a, T>(&mut self, p: &GuestPtr<'a, T>) -> Result<(), GuestError>
where
T: GuestType<'a>,
{
self.borrow(Region {
start: p.offset(),
len: T::guest_size(),
})
}
/// Borrow the slice of memory pointed to by a `GuestPtr<[T]>`. This is required for safety if
/// you are dereferencing the `GuestPtr`s while holding a reference to another slice via
/// `GuestPtr::as_raw`. Not required if using `GuestPtr::as_raw` on this pointer.
pub fn borrow_slice<'a, T>(&mut self, p: &GuestPtr<'a, [T]>) -> Result<(), GuestError>
where
T: GuestType<'a>,
{
let (start, elems) = p.offset();
let len = T::guest_size()
.checked_mul(elems)
.ok_or_else(|| GuestError::PtrOverflow)?;
self.borrow(Region { start, len })
}
/// Borrow the slice of memory pointed to by a `GuestPtr<str>`. This is required for safety if
/// you are dereferencing the `GuestPtr`s while holding a reference to another slice via
/// `GuestPtr::as_raw`. Not required if using `GuestPtr::as_raw` on this pointer.
pub fn borrow_str(&mut self, p: &GuestPtr<str>) -> Result<(), GuestError> {
let (start, len) = p.offset();
self.borrow(Region { start, len })
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn nonoverlapping() {
let mut bs = GuestBorrows::new();
let r1 = Region::new(0, 10);
let r2 = Region::new(10, 10);
assert!(!r1.overlaps(r2));
bs.borrow(r1).expect("can borrow r1");
bs.borrow(r2).expect("can borrow r2");
let mut bs = GuestBorrows::new();
let r1 = Region::new(10, 10);
let r2 = Region::new(0, 10);
assert!(!r1.overlaps(r2));
bs.borrow(r1).expect("can borrow r1");
bs.borrow(r2).expect("can borrow r2");
}
#[test]
fn overlapping() {
let mut bs = GuestBorrows::new();
let r1 = Region::new(0, 10);
let r2 = Region::new(9, 10);
assert!(r1.overlaps(r2));
bs.borrow(r1).expect("can borrow r1");
assert!(bs.borrow(r2).is_err(), "cant borrow r2");
let mut bs = GuestBorrows::new();
let r1 = Region::new(0, 10);
let r2 = Region::new(2, 5);
assert!(r1.overlaps(r2));
bs.borrow(r1).expect("can borrow r1");
assert!(bs.borrow(r2).is_err(), "cant borrow r2");
let mut bs = GuestBorrows::new();
let r1 = Region::new(9, 10);
let r2 = Region::new(0, 10);
assert!(r1.overlaps(r2));
bs.borrow(r1).expect("can borrow r1");
assert!(bs.borrow(r2).is_err(), "cant borrow r2");
let mut bs = GuestBorrows::new();
let r1 = Region::new(2, 5);
let r2 = Region::new(0, 10);
assert!(r1.overlaps(r2));
bs.borrow(r1).expect("can borrow r1");
assert!(bs.borrow(r2).is_err(), "cant borrow r2");
let mut bs = GuestBorrows::new();
let r1 = Region::new(2, 5);
let r2 = Region::new(10, 5);
let r3 = Region::new(15, 5);
let r4 = Region::new(0, 10);
assert!(r1.overlaps(r4));
bs.borrow(r1).expect("can borrow r1");
bs.borrow(r2).expect("can borrow r2");
bs.borrow(r3).expect("can borrow r3");
assert!(bs.borrow(r4).is_err(), "cant borrow r4");
}
}

View File

@@ -0,0 +1,36 @@
use crate::Region;
use thiserror::Error;
#[derive(Debug, Error, PartialEq, Eq)]
pub enum GuestError {
#[error("Invalid flag value {0}")]
InvalidFlagValue(&'static str),
#[error("Invalid enum value {0}")]
InvalidEnumValue(&'static str),
#[error("Pointer overflow")]
PtrOverflow,
#[error("Pointer out of bounds: {0:?}")]
PtrOutOfBounds(Region),
#[error("Pointer not aligned to {1}: {0:?}")]
PtrNotAligned(Region, u32),
#[error("Pointer already borrowed: {0:?}")]
PtrBorrowed(Region),
#[error("In func {funcname}:{location}:")]
InFunc {
funcname: &'static str,
location: &'static str,
#[source]
err: Box<GuestError>,
},
#[error("In data {typename}.{field}:")]
InDataField {
typename: String,
field: String,
#[source]
err: Box<GuestError>,
},
#[error("Invalid UTF-8 encountered: {0:?}")]
InvalidUtf8(#[from] ::std::str::Utf8Error),
#[error("Int conversion error: {0:?}")]
TryFromIntError(#[from] ::std::num::TryFromIntError),
}

View File

@@ -0,0 +1,136 @@
use crate::{GuestError, GuestPtr};
use std::mem;
pub trait GuestErrorType<'a> {
type Context;
fn success() -> Self;
fn from_error(e: GuestError, ctx: &Self::Context) -> Self;
}
/// A trait for types that are intended to be pointees in `GuestPtr<T>`.
///
/// This trait abstracts how to read/write information from the guest memory, as
/// well as how to offset elements in an array of guest memory. This layer of
/// abstraction allows the guest representation of a type to be different from
/// the host representation of a type, if necessary. It also allows for
/// validation when reading/writing.
pub trait GuestType<'a>: Sized {
/// Returns the size, in bytes, of this type in the guest memory.
fn guest_size() -> u32;
/// Returns the required alignment of this type, in bytes, for both guest
/// and host memory.
fn guest_align() -> usize;
/// Reads this value from the provided `ptr`.
///
/// Must internally perform any safety checks necessary and is allowed to
/// fail if the bytes pointed to are also invalid.
///
/// Typically if you're implementing this by hand you'll want to delegate to
/// other safe implementations of this trait (e.g. for primitive types like
/// `u32`) rather than writing lots of raw code yourself.
fn read(ptr: &GuestPtr<'a, Self>) -> Result<Self, GuestError>;
/// Writes a value to `ptr` after verifying that `ptr` is indeed valid to
/// store `val`.
///
/// Similar to `read`, you'll probably want to implement this in terms of
/// other primitives.
fn write(ptr: &GuestPtr<'_, Self>, val: Self) -> Result<(), GuestError>;
}
/// A trait for `GuestType`s that have the same representation in guest memory
/// as in Rust. These types can be used with the `GuestPtr::as_raw` method to
/// view as a slice.
///
/// Unsafe trait because a correct GuestTypeTransparent implemengation ensures that the
/// GuestPtr::as_raw methods are safe. This trait should only ever be implemented
/// by wiggle_generate-produced code.
pub unsafe trait GuestTypeTransparent<'a>: GuestType<'a> {
/// Checks that the memory at `ptr` is a valid representation of `Self`.
///
/// Assumes that memory safety checks have already been performed: `ptr`
/// has been checked to be aligned correctly and reside in memory using
/// `GuestMemory::validate_size_align`
fn validate(ptr: *mut Self) -> Result<(), GuestError>;
}
macro_rules! primitives {
($($i:ident)*) => ($(
impl<'a> GuestType<'a> for $i {
fn guest_size() -> u32 { mem::size_of::<Self>() as u32 }
fn guest_align() -> usize { mem::align_of::<Self>() }
#[inline]
fn read(ptr: &GuestPtr<'a, Self>) -> Result<Self, GuestError> {
// Any bit pattern for any primitive implemented with this
// macro is safe, so our `validate_size_align` method will
// guarantee that if we are given a pointer it's valid for the
// size of our type as well as properly aligned. Consequently we
// should be able to safely ready the pointer just after we
// validated it, returning it along here.
let host_ptr = ptr.mem().validate_size_align(
ptr.offset(),
Self::guest_align(),
Self::guest_size(),
)?;
Ok(unsafe { *host_ptr.cast::<Self>() })
}
#[inline]
fn write(ptr: &GuestPtr<'_, Self>, val: Self) -> Result<(), GuestError> {
let host_ptr = ptr.mem().validate_size_align(
ptr.offset(),
Self::guest_align(),
Self::guest_size(),
)?;
// Similar to above `as_raw` will do a lot of validation, and
// then afterwards we can safely write our value into the
// memory location.
unsafe {
*host_ptr.cast::<Self>() = val;
}
Ok(())
}
}
unsafe impl<'a> GuestTypeTransparent<'a> for $i {
#[inline]
fn validate(_ptr: *mut $i) -> Result<(), GuestError> {
// All bit patterns are safe, nothing to do here
Ok(())
}
}
)*)
}
primitives! {
// signed
i8 i16 i32 i64 i128 isize
// unsigned
u8 u16 u32 u64 u128 usize
// floats
f32 f64
}
// Support pointers-to-pointers where pointers are always 32-bits in wasm land
impl<'a, T> GuestType<'a> for GuestPtr<'a, T> {
fn guest_size() -> u32 {
u32::guest_size()
}
fn guest_align() -> usize {
u32::guest_align()
}
fn read(ptr: &GuestPtr<'a, Self>) -> Result<Self, GuestError> {
let offset = ptr.cast::<u32>().read()?;
Ok(GuestPtr::new(ptr.mem(), offset))
}
fn write(ptr: &GuestPtr<'_, Self>, val: Self) -> Result<(), GuestError> {
ptr.cast::<u32>().write(val.offset())
}
}

View File

@@ -0,0 +1,547 @@
use std::cell::Cell;
use std::fmt;
use std::marker;
use std::rc::Rc;
use std::slice;
use std::str;
use std::sync::Arc;
mod borrow;
mod error;
mod guest_type;
mod region;
pub use borrow::GuestBorrows;
pub use error::GuestError;
pub use guest_type::{GuestErrorType, GuestType, GuestTypeTransparent};
pub use region::Region;
/// A trait which abstracts how to get at the region of host memory taht
/// contains guest memory.
///
/// All `GuestPtr` types will contain a handle to this trait, signifying where
/// the pointer is actually pointing into. This type will need to be implemented
/// for the host's memory storage object.
///
/// # Safety
///
/// Safety around this type is tricky, and the trait is `unsafe` since there are
/// a few contracts you need to uphold to implement this type correctly and have
/// everything else in this crate work out safely.
///
/// The most important method of this trait is the `base` method. This returns,
/// in host memory, a pointer and a length. The pointer should point to valid
/// memory for the guest to read/write for the length contiguous bytes
/// afterwards.
///
/// The region returned by `base` must not only be valid, however, but it must
/// be valid for "a period of time before the guest is reentered". This isn't
/// exactly well defined but the general idea is that `GuestMemory` is allowed
/// to change under our feet to accomodate instructions like `memory.grow` or
/// other guest modifications. Memory, however, cannot be changed if the guest
/// is not reentered or if no explicitly action is taken to modify the guest
/// memory.
///
/// This provides the guarantee that host pointers based on the return value of
/// `base` have a dynamic period for which they are valid. This time duration
/// must be "somehow nonzero in length" to allow users of `GuestMemory` and
/// `GuestPtr` to safely read and write interior data.
///
/// # Using Raw Pointers
///
/// Methods like [`GuestMemory::base`] or [`GuestPtr::as_raw`] will return raw
/// pointers to use. Returning raw pointers is significant because it shows
/// there are hazards with using the returned pointers, and they can't blanket
/// be used in a safe fashion. It is possible to use these pointers safely, but
/// any usage needs to uphold a few guarantees.
///
/// * Whenever a `*mut T` is accessed or modified, it must be guaranteed that
/// since the pointer was originally obtained the guest memory wasn't
/// relocated in any way. This means you can't call back into the guest, call
/// other arbitrary functions which might call into the guest, etc. The
/// problem here is that the guest could execute instructions like
/// `memory.grow` which would invalidate the raw pointer. If, however, after
/// you acquire `*mut T` you only execute your own code and it doesn't touch
/// the guest, then `*mut T` is still guaranteed to point to valid code.
///
/// * Furthermore, Rust's aliasing rules must still be upheld. For example you
/// can't have two `&mut T` types that point to the area or overlap in any
/// way. This in particular becomes an issue when you're dealing with multiple
/// `GuestPtr` types. If you want to simultaneously work with them then you
/// need to dynamically validate that you're either working with them all in a
/// shared fashion (e.g. as if they were `&T`) or you must verify that they do
/// not overlap to work with them as `&mut T`.
///
/// Note that safely using the raw pointers is relatively difficult. This crate
/// strives to provide utilities to safely work with guest pointers so long as
/// the previous guarantees are all upheld. If advanced operations are done with
/// guest pointers it's recommended to be extremely cautious and thoroughly
/// consider possible ramifications with respect to this API before codifying
/// implementation details.
pub unsafe trait GuestMemory {
/// Returns the base allocation of this guest memory, located in host
/// memory.
///
/// A pointer/length pair are returned to signify where the guest memory
/// lives in the host, and how many contiguous bytes the memory is valid for
/// after the returned pointer.
///
/// Note that there are safety guarantees about this method that
/// implementations must uphold, and for more details see the
/// [`GuestMemory`] documentation.
fn base(&self) -> (*mut u8, u32);
/// Validates a guest-relative pointer given various attributes, and returns
/// the corresponding host pointer.
///
/// * `offset` - this is the guest-relative pointer, an offset from the
/// base.
/// * `align` - this is the desired alignment of the guest pointer, and if
/// successful the host pointer will be guaranteed to have this alignment.
/// * `len` - this is the number of bytes, after `offset`, that the returned
/// pointer must be valid for.
///
/// This function will guarantee that the returned pointer is in-bounds of
/// `base`, *at this time*, for `len` bytes and has alignment `align`. If
/// any guarantees are not upheld then an error will be returned.
///
/// Note that the returned pointer is an unsafe pointer. This is not safe to
/// use in general because guest memory can be relocated. Additionally the
/// guest may be modifying/reading memory as well. Consult the
/// [`GuestMemory`] documentation for safety information about using this
/// returned pointer.
fn validate_size_align(
&self,
offset: u32,
align: usize,
len: u32,
) -> Result<*mut u8, GuestError> {
let (base_ptr, base_len) = self.base();
let region = Region { start: offset, len };
// Figure out our pointer to the start of memory
let start = match (base_ptr as usize).checked_add(offset as usize) {
Some(ptr) => ptr,
None => return Err(GuestError::PtrOverflow),
};
// and use that to figure out the end pointer
let end = match start.checked_add(len as usize) {
Some(ptr) => ptr,
None => return Err(GuestError::PtrOverflow),
};
// and then verify that our end doesn't reach past the end of our memory
if end > (base_ptr as usize) + (base_len as usize) {
return Err(GuestError::PtrOutOfBounds(region));
}
// and finally verify that the alignment is correct
if start % align != 0 {
return Err(GuestError::PtrNotAligned(region, align as u32));
}
Ok(start as *mut u8)
}
/// Convenience method for creating a `GuestPtr` at a particular offset.
///
/// Note that `T` can be almost any type, and typically `offset` is a `u32`.
/// The exception is slices and strings, in which case `offset` is a `(u32,
/// u32)` of `(offset, length)`.
fn ptr<'a, T>(&'a self, offset: T::Pointer) -> GuestPtr<'a, T>
where
Self: Sized,
T: ?Sized + Pointee,
{
GuestPtr::new(self, offset)
}
}
// Forwarding trait implementations to the original type
unsafe impl<'a, T: ?Sized + GuestMemory> GuestMemory for &'a T {
fn base(&self) -> (*mut u8, u32) {
T::base(self)
}
}
unsafe impl<'a, T: ?Sized + GuestMemory> GuestMemory for &'a mut T {
fn base(&self) -> (*mut u8, u32) {
T::base(self)
}
}
unsafe impl<T: ?Sized + GuestMemory> GuestMemory for Box<T> {
fn base(&self) -> (*mut u8, u32) {
T::base(self)
}
}
unsafe impl<T: ?Sized + GuestMemory> GuestMemory for Rc<T> {
fn base(&self) -> (*mut u8, u32) {
T::base(self)
}
}
unsafe impl<T: ?Sized + GuestMemory> GuestMemory for Arc<T> {
fn base(&self) -> (*mut u8, u32) {
T::base(self)
}
}
/// A *guest* pointer into host memory.
///
/// This type represents a pointer from the guest that points into host memory.
/// Internally a `GuestPtr` contains a handle to its original [`GuestMemory`] as
/// well as the offset into the memory that the pointer is pointing at.
///
/// Presence of a [`GuestPtr`] does not imply any form of validity. Pointers can
/// be out-of-bounds, misaligned, etc. It is safe to construct a `GuestPtr` with
/// any offset at any time. Consider a `GuestPtr<T>` roughly equivalent to `*mut
/// T`, although there are a few more safety guarantees around this type.
///
/// ## Slices and Strings
///
/// Note that the type parameter does not need to implement the `Sized` trait,
/// so you can implement types such as this:
///
/// * `GuestPtr<'_, str>` - a pointer to a guest string
/// * `GuestPtr<'_, [T]>` - a pointer to a guest array
///
/// Unsized types such as this may have extra methods and won't have methods
/// like [`GuestPtr::read`] or [`GuestPtr::write`].
///
/// ## Type parameter and pointee
///
/// The `T` type parameter is largely intended for more static safety in Rust as
/// well as having a better handle on what we're pointing to. A `GuestPtr<T>`,
/// however, does not necessarily literally imply a guest pointer pointing to
/// type `T`. Instead the [`GuestType`] trait is a layer of abstraction where
/// `GuestPtr<T>` may actually be a pointer to `U` in guest memory, but you can
/// construct a `T` from a `U`.
///
/// For example `GuestPtr<GuestPtr<T>>` is a valid type, but this is actually
/// more equivalent to `GuestPtr<u32>` because guest pointers are always
/// 32-bits. That being said you can create a `GuestPtr<T>` from a `u32`.
///
/// Additionally `GuestPtr<MyEnum>` will actually delegate, typically, to and
/// implementation which loads the underlying data as `GuestPtr<u8>` (or
/// similar) and then the bytes loaded are validated to fit within the
/// definition of `MyEnum` before `MyEnum` is returned.
///
/// For more information see the [`GuestPtr::read`] and [`GuestPtr::write`]
/// methods. In general though be extremely careful about writing `unsafe` code
/// when working with a `GuestPtr` if you're not using one of the
/// already-attached helper methods.
pub struct GuestPtr<'a, T: ?Sized + Pointee> {
mem: &'a (dyn GuestMemory + 'a),
pointer: T::Pointer,
_marker: marker::PhantomData<&'a Cell<T>>,
}
impl<'a, T: ?Sized + Pointee> GuestPtr<'a, T> {
/// Creates a new `GuestPtr` from the given `mem` and `pointer` values.
///
/// Note that for sized types like `u32`, `GuestPtr<T>`, etc, the `pointer`
/// vlue is a `u32` offset into guest memory. For slices and strings,
/// `pointer` is a `(u32, u32)` offset/length pair.
pub fn new(mem: &'a (dyn GuestMemory + 'a), pointer: T::Pointer) -> GuestPtr<'_, T> {
GuestPtr {
mem,
pointer,
_marker: marker::PhantomData,
}
}
/// Returns the offset of this pointer in guest memory.
///
/// Note that for sized types this returns a `u32`, but for slices and
/// strings it returns a `(u32, u32)` pointer/length pair.
pub fn offset(&self) -> T::Pointer {
self.pointer
}
/// Returns the guest memory that this pointer is coming from.
pub fn mem(&self) -> &'a (dyn GuestMemory + 'a) {
self.mem
}
/// Casts this `GuestPtr` type to a different type.
///
/// This is a safe method which is useful for simply reinterpreting the type
/// parameter on this `GuestPtr`. Note that this is a safe method, where
/// again there's no guarantees about alignment, validity, in-bounds-ness,
/// etc of the returned pointer.
pub fn cast<U>(&self) -> GuestPtr<'a, U>
where
T: Pointee<Pointer = u32>,
{
GuestPtr::new(self.mem, self.pointer)
}
/// Safely read a value from this pointer.
///
/// This is a fun method, and is one of the lynchpins of this
/// implementation. The highlight here is that this is a *safe* operation,
/// not an unsafe one like `*mut T`. This works for a few reasons:
///
/// * The `unsafe` contract of the `GuestMemory` trait means that there's
/// always at least some backing memory for this `GuestPtr<T>`.
///
/// * This does not use Rust-intrinsics to read the type `T`, but rather it
/// delegates to `T`'s implementation of [`GuestType`] to actually read
/// the underlying data. This again is a safe method, so any unsafety, if
/// any, must be internally documented.
///
/// * Eventually what typically happens it that this bottoms out in the read
/// implementations for primitives types (like `i32`) which can safely be
/// read at any time, and then it's up to the runtime to determine what to
/// do with the bytes it read in a safe manner.
///
/// Naturally lots of things can still go wrong, such as out-of-bounds
/// checks, alignment checks, validity checks (e.g. for enums), etc. All of
/// these check failures, however, are returned as a [`GuestError`] in the
/// `Result` here, and `Ok` is only returned if all the checks passed.
pub fn read(&self) -> Result<T, GuestError>
where
T: GuestType<'a>,
{
T::read(self)
}
/// Safely write a value to this pointer.
///
/// This method, like [`GuestPtr::read`], is pretty crucial for the safe
/// operation of this crate. All the same reasons apply though for why this
/// method is safe, even eventually bottoming out in primitives like writing
/// an `i32` which is safe to write bit patterns into memory at any time due
/// to the guarantees of [`GuestMemory`].
///
/// Like `read`, `write` can fail due to any manner of pointer checks, but
/// any failure is returned as a [`GuestError`].
pub fn write(&self, val: T) -> Result<(), GuestError>
where
T: GuestType<'a>,
{
T::write(self, val)
}
/// Performs pointer arithmetic on this pointer, moving the pointer forward
/// `amt` slots.
///
/// This will either return the resulting pointer or `Err` if the pointer
/// arithmetic calculation would overflow around the end of the address
/// space.
pub fn add(&self, amt: u32) -> Result<GuestPtr<'a, T>, GuestError>
where
T: GuestType<'a> + Pointee<Pointer = u32>,
{
let offset = amt
.checked_mul(T::guest_size())
.and_then(|o| self.pointer.checked_add(o));
let offset = match offset {
Some(o) => o,
None => return Err(GuestError::PtrOverflow),
};
Ok(GuestPtr::new(self.mem, offset))
}
/// Returns a `GuestPtr` for an array of `T`s using this pointer as the
/// base.
pub fn as_array(&self, elems: u32) -> GuestPtr<'a, [T]>
where
T: GuestType<'a> + Pointee<Pointer = u32>,
{
GuestPtr::new(self.mem, (self.pointer, elems))
}
}
impl<'a, T> GuestPtr<'a, [T]> {
/// For slices, specifically returns the relative pointer to the base of the
/// array.
///
/// This is similar to `<[T]>::as_ptr()`
pub fn offset_base(&self) -> u32 {
self.pointer.0
}
/// For slices, returns the length of the slice, in units.
pub fn len(&self) -> u32 {
self.pointer.1
}
/// Returns an iterator over interior pointers.
///
/// Each item is a `Result` indicating whether it overflowed past the end of
/// the address space or not.
pub fn iter<'b>(
&'b self,
) -> impl ExactSizeIterator<Item = Result<GuestPtr<'a, T>, GuestError>> + 'b
where
T: GuestType<'a>,
{
let base = self.as_ptr();
(0..self.len()).map(move |i| base.add(i))
}
/// Attempts to read a raw `*mut [T]` pointer from this pointer, performing
/// bounds checks and type validation.
/// The resulting `*mut [T]` can be used as a `&mut [t]` as long as the
/// reference is dropped before any Wasm code is re-entered.
///
/// This function will return a raw pointer into host memory if all checks
/// succeed (valid utf-8, valid pointers, etc). If any checks fail then
/// `GuestError` will be returned.
///
/// Note that the `*mut [T]` pointer is still unsafe to use in general, but
/// there are specific situations that it is safe to use. For more
/// information about using the raw pointer, consult the [`GuestMemory`]
/// trait documentation.
///
/// For safety against overlapping mutable borrows, the user must use the
/// same `GuestBorrows` to create all *mut str or *mut [T] that are alive
/// at the same time.
pub fn as_raw(&self, bc: &mut GuestBorrows) -> Result<*mut [T], GuestError>
where
T: GuestTypeTransparent<'a>,
{
let len = match self.pointer.1.checked_mul(T::guest_size()) {
Some(l) => l,
None => return Err(GuestError::PtrOverflow),
};
let ptr =
self.mem
.validate_size_align(self.pointer.0, T::guest_align(), len)? as *mut T;
bc.borrow(Region {
start: self.pointer.0,
len,
})?;
// Validate all elements in slice.
// SAFETY: ptr has been validated by self.mem.validate_size_align
for offs in 0..self.pointer.1 {
T::validate(unsafe { ptr.add(offs as usize) })?;
}
// SAFETY: iff there are no overlapping borrows (all uses of as_raw use this same
// GuestBorrows), its valid to construct a *mut [T]
unsafe {
let s = slice::from_raw_parts_mut(ptr, self.pointer.1 as usize);
Ok(s as *mut [T])
}
}
/// Returns a `GuestPtr` pointing to the base of the array for the interior
/// type `T`.
pub fn as_ptr(&self) -> GuestPtr<'a, T> {
GuestPtr::new(self.mem, self.offset_base())
}
}
impl<'a> GuestPtr<'a, str> {
/// For strings, returns the relative pointer to the base of the string
/// allocation.
pub fn offset_base(&self) -> u32 {
self.pointer.0
}
/// Returns the length, in bytes, of th estring.
pub fn len(&self) -> u32 {
self.pointer.1
}
/// Returns a raw pointer for the underlying slice of bytes that this
/// pointer points to.
pub fn as_bytes(&self) -> GuestPtr<'a, [u8]> {
GuestPtr::new(self.mem, self.pointer)
}
/// Attempts to read a raw `*mut str` pointer from this pointer, performing
/// bounds checks and utf-8 checks.
/// The resulting `*mut str` can be used as a `&mut str` as long as the
/// reference is dropped before any Wasm code is re-entered.
///
/// This function will return a raw pointer into host memory if all checks
/// succeed (valid utf-8, valid pointers, etc). If any checks fail then
/// `GuestError` will be returned.
///
/// Note that the `*mut str` pointer is still unsafe to use in general, but
/// there are specific situations that it is safe to use. For more
/// information about using the raw pointer, consult the [`GuestMemory`]
/// trait documentation.
///
/// For safety against overlapping mutable borrows, the user must use the
/// same `GuestBorrows` to create all *mut str or *mut [T] that are alive
/// at the same time.
pub fn as_raw(&self, bc: &mut GuestBorrows) -> Result<*mut str, GuestError> {
let ptr = self
.mem
.validate_size_align(self.pointer.0, 1, self.pointer.1)?;
bc.borrow(Region {
start: self.pointer.0,
len: self.pointer.1,
})?;
// SAFETY: iff there are no overlapping borrows (all uses of as_raw use this same
// GuestBorrows), its valid to construct a *mut str
unsafe {
let s = slice::from_raw_parts_mut(ptr, self.pointer.1 as usize);
match str::from_utf8_mut(s) {
Ok(s) => Ok(s),
Err(e) => Err(GuestError::InvalidUtf8(e)),
}
}
}
}
impl<T: ?Sized + Pointee> Clone for GuestPtr<'_, T> {
fn clone(&self) -> Self {
*self
}
}
impl<T: ?Sized + Pointee> Copy for GuestPtr<'_, T> {}
impl<T: ?Sized + Pointee> fmt::Debug for GuestPtr<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
T::debug(self.pointer, f)
}
}
mod private {
pub trait Sealed {}
impl<T> Sealed for T {}
impl<T> Sealed for [T] {}
impl Sealed for str {}
}
/// Types that can be pointed to by `GuestPtr<T>`.
///
/// In essence everything can, and the only special-case is unsized types like
/// `str` and `[T]` which have special implementations.
pub trait Pointee: private::Sealed {
#[doc(hidden)]
type Pointer: Copy;
#[doc(hidden)]
fn debug(pointer: Self::Pointer, f: &mut fmt::Formatter) -> fmt::Result;
}
impl<T> Pointee for T {
type Pointer = u32;
fn debug(pointer: Self::Pointer, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "*guest {:#x}", pointer)
}
}
impl<T> Pointee for [T] {
type Pointer = (u32, u32);
fn debug(pointer: Self::Pointer, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "*guest {:#x}/{}", pointer.0, pointer.1)
}
}
impl Pointee for str {
type Pointer = (u32, u32);
fn debug(pointer: Self::Pointer, f: &mut fmt::Formatter) -> fmt::Result {
<[u8]>::debug(pointer, f)
}
}

View File

@@ -0,0 +1,71 @@
/// Represents a contiguous region in memory.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Region {
pub start: u32,
pub len: u32,
}
impl Region {
pub fn new(start: u32, len: u32) -> Self {
assert!(len > 0, "Region cannot have 0 length");
Self { start, len }
}
/// Checks if this `Region` overlaps with `rhs` `Region`.
pub fn overlaps(&self, rhs: Region) -> bool {
let self_start = self.start as u64;
let self_end = self_start + (self.len - 1) as u64;
let rhs_start = rhs.start as u64;
let rhs_end = rhs_start + (rhs.len - 1) as u64;
if self_start <= rhs_start {
self_end >= rhs_start
} else {
rhs_end >= self_start
}
}
pub fn extend(&self, times: u32) -> Self {
let len = self.len * times;
Self {
start: self.start,
len,
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn nonoverlapping() {
let r1 = Region::new(0, 10);
let r2 = Region::new(10, 10);
assert!(!r1.overlaps(r2));
let r1 = Region::new(10, 10);
let r2 = Region::new(0, 10);
assert!(!r1.overlaps(r2));
}
#[test]
fn overlapping() {
let r1 = Region::new(0, 10);
let r2 = Region::new(9, 10);
assert!(r1.overlaps(r2));
let r1 = Region::new(0, 10);
let r2 = Region::new(2, 5);
assert!(r1.overlaps(r2));
let r1 = Region::new(9, 10);
let r2 = Region::new(0, 10);
assert!(r1.overlaps(r2));
let r1 = Region::new(2, 5);
let r2 = Region::new(0, 10);
assert!(r1.overlaps(r2));
}
}

2
crates/wiggle/crates/test/.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
target
Cargo.lock

View File

@@ -0,0 +1,9 @@
[package]
name = "wiggle-test"
version = "0.1.0"
authors = ["Pat Hickey <phickey@fastly.com>", "Jakub Konka <kubkon@jakubkonka.com>"]
edition = "2018"
[dependencies]
wiggle-runtime = { path = "../runtime" }
proptest = "0.9"

View File

@@ -0,0 +1,329 @@
use proptest::prelude::*;
use std::cell::UnsafeCell;
use std::marker;
use wiggle_runtime::GuestMemory;
#[derive(Debug, Clone)]
pub struct MemAreas(Vec<MemArea>);
impl MemAreas {
pub fn new() -> Self {
MemAreas(Vec::new())
}
pub fn insert(&mut self, a: MemArea) {
// Find if `a` is already in the vector
match self.0.binary_search(&a) {
// It is present - insert it next to existing one
Ok(loc) => self.0.insert(loc, a),
// It is not present - heres where to insert it
Err(loc) => self.0.insert(loc, a),
}
}
pub fn iter(&self) -> impl Iterator<Item = &MemArea> {
self.0.iter()
}
}
impl<R> From<R> for MemAreas
where
R: AsRef<[MemArea]>,
{
fn from(ms: R) -> MemAreas {
let mut out = MemAreas::new();
for m in ms.as_ref().into_iter() {
out.insert(*m);
}
out
}
}
impl Into<Vec<MemArea>> for MemAreas {
fn into(self) -> Vec<MemArea> {
self.0.clone()
}
}
#[repr(align(4096))]
pub struct HostMemory {
buffer: UnsafeCell<[u8; 4096]>,
}
impl HostMemory {
pub fn new() -> Self {
HostMemory {
buffer: UnsafeCell::new([0; 4096]),
}
}
pub fn mem_area_strat(align: u32) -> BoxedStrategy<MemArea> {
prop::num::u32::ANY
.prop_filter_map("needs to fit in memory", move |p| {
let p_aligned = p - (p % align); // Align according to argument
let ptr = p_aligned % 4096; // Put inside memory
if ptr + align < 4096 {
Some(MemArea { ptr, len: align })
} else {
None
}
})
.boxed()
}
/// Takes a sorted list or memareas, and gives a sorted list of memareas covering
/// the parts of memory not covered by the previous
pub fn invert(regions: &MemAreas) -> MemAreas {
let mut out = MemAreas::new();
let mut start = 0;
for r in regions.iter() {
let len = r.ptr - start;
if len > 0 {
out.insert(MemArea {
ptr: start,
len: r.ptr - start,
});
}
start = r.ptr + r.len;
}
if start < 4096 {
out.insert(MemArea {
ptr: start,
len: 4096 - start,
});
}
out
}
pub fn byte_slice_strat(size: u32, exclude: &MemAreas) -> BoxedStrategy<MemArea> {
let available: Vec<MemArea> = Self::invert(exclude)
.iter()
.flat_map(|a| a.inside(size))
.collect();
Just(available)
.prop_filter("available memory for allocation", |a| !a.is_empty())
.prop_flat_map(|a| prop::sample::select(a))
.boxed()
}
}
unsafe impl GuestMemory for HostMemory {
fn base(&self) -> (*mut u8, u32) {
unsafe {
let ptr = self.buffer.get();
((*ptr).as_mut_ptr(), (*ptr).len() as u32)
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct MemArea {
pub ptr: u32,
pub len: u32,
}
impl MemArea {
// This code is a whole lot like the Region::overlaps func thats at the core of the code under
// test.
// So, I implemented this one with std::ops::Range so it is less likely I wrote the same bug in two
// places.
pub fn overlapping(&self, b: Self) -> bool {
// a_range is all elems in A
let a_range = std::ops::Range {
start: self.ptr,
end: self.ptr + self.len, // std::ops::Range is open from the right
};
// b_range is all elems in B
let b_range = std::ops::Range {
start: b.ptr,
end: b.ptr + b.len,
};
// No element in B is contained in A:
for b_elem in b_range.clone() {
if a_range.contains(&b_elem) {
return true;
}
}
// No element in A is contained in B:
for a_elem in a_range {
if b_range.contains(&a_elem) {
return true;
}
}
return false;
}
pub fn non_overlapping_set<M>(areas: M) -> bool
where
M: Into<MemAreas>,
{
let areas = areas.into();
for (aix, a) in areas.iter().enumerate() {
for (bix, b) in areas.iter().enumerate() {
if aix != bix {
// (A, B) is every pairing of areas
if a.overlapping(*b) {
return false;
}
}
}
}
return true;
}
/// Enumerate all memareas of size `len` inside a given area
fn inside(&self, len: u32) -> impl Iterator<Item = MemArea> {
let end: i64 = self.len as i64 - len as i64;
let start = self.ptr;
(0..end).into_iter().map(move |v| MemArea {
ptr: start + v as u32,
len,
})
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn hostmemory_is_aligned() {
let h = HostMemory::new();
assert_eq!(h.base().0 as usize % 4096, 0);
let h = Box::new(h);
assert_eq!(h.base().0 as usize % 4096, 0);
}
#[test]
fn invert() {
fn invert_equality(input: &[MemArea], expected: &[MemArea]) {
let input: MemAreas = input.into();
let inverted: Vec<MemArea> = HostMemory::invert(&input).into();
assert_eq!(expected, inverted.as_slice());
}
invert_equality(&[], &[MemArea { ptr: 0, len: 4096 }]);
invert_equality(
&[MemArea { ptr: 0, len: 1 }],
&[MemArea { ptr: 1, len: 4095 }],
);
invert_equality(
&[MemArea { ptr: 1, len: 1 }],
&[MemArea { ptr: 0, len: 1 }, MemArea { ptr: 2, len: 4094 }],
);
invert_equality(
&[MemArea { ptr: 1, len: 4095 }],
&[MemArea { ptr: 0, len: 1 }],
);
invert_equality(
&[MemArea { ptr: 0, len: 1 }, MemArea { ptr: 1, len: 4095 }],
&[],
);
invert_equality(
&[MemArea { ptr: 1, len: 2 }, MemArea { ptr: 4, len: 1 }],
&[
MemArea { ptr: 0, len: 1 },
MemArea { ptr: 3, len: 1 },
MemArea { ptr: 5, len: 4091 },
],
);
}
fn set_of_slices_strat(
s1: u32,
s2: u32,
s3: u32,
) -> BoxedStrategy<(MemArea, MemArea, MemArea)> {
HostMemory::byte_slice_strat(s1, &MemAreas::new())
.prop_flat_map(move |a1| {
(
Just(a1),
HostMemory::byte_slice_strat(s2, &MemAreas::from(&[a1])),
)
})
.prop_flat_map(move |(a1, a2)| {
(
Just(a1),
Just(a2),
HostMemory::byte_slice_strat(s3, &MemAreas::from(&[a1, a2])),
)
})
.boxed()
}
#[test]
fn trivial_inside() {
let a = MemArea { ptr: 24, len: 4072 };
let interior = a.inside(24).collect::<Vec<_>>();
assert!(interior.len() > 0);
}
proptest! {
#[test]
// For some random region of decent size
fn inside(r in HostMemory::mem_area_strat(123)) {
let set_of_r = MemAreas::from(&[r]);
// All regions outside of r:
let exterior = HostMemory::invert(&set_of_r);
// All regions inside of r:
let interior = r.inside(22);
for i in interior {
// i overlaps with r:
assert!(r.overlapping(i));
// i is inside r:
assert!(i.ptr >= r.ptr);
assert!(r.ptr + r.len >= i.ptr + i.len);
// the set of exterior and i is non-overlapping
let mut all = exterior.clone();
all.insert(i);
assert!(MemArea::non_overlapping_set(all));
}
}
#[test]
fn byte_slices((s1, s2, s3) in set_of_slices_strat(12, 34, 56)) {
let all = MemAreas::from(&[s1, s2, s3]);
assert!(MemArea::non_overlapping_set(all));
}
}
}
use std::cell::RefCell;
use wiggle_runtime::GuestError;
// In lucet, our Ctx struct needs a lifetime, so we're using one
// on the test as well.
pub struct WasiCtx<'a> {
pub guest_errors: RefCell<Vec<GuestError>>,
lifetime: marker::PhantomData<&'a ()>,
}
impl<'a> WasiCtx<'a> {
pub fn new() -> Self {
Self {
guest_errors: RefCell::new(vec![]),
lifetime: marker::PhantomData,
}
}
}
// Errno is used as a first return value in the functions above, therefore
// it must implement GuestErrorType with type Context = WasiCtx.
// The context type should let you do logging or debugging or whatever you need
// with these errors. We just push them to vecs.
#[macro_export]
macro_rules! impl_errno {
( $errno:ty ) => {
impl<'a> wiggle_runtime::GuestErrorType<'a> for $errno {
type Context = WasiCtx<'a>;
fn success() -> $errno {
<$errno>::Ok
}
fn from_error(e: GuestError, ctx: &WasiCtx) -> $errno {
eprintln!("GUEST ERROR: {:?}", e);
ctx.guest_errors.borrow_mut().push(e);
types::Errno::InvalidArg
}
}
};
}