Generate value type constraints.

Add an Opcode::constraints() method which returns an OpcodeConstraints object.
This object provides information on instruction polymorphism and how many
results is produced.

Generate a list of TypeSet objects for checking free type variables. The type
sets are parametrized rather than being represented as fully general sets.

Add UniqueTable and UniqueSeqTable classes to the meta code generator. Use for
compressing tabular data by removing duplicates.
This commit is contained in:
Jakob Stoklund Olesen
2016-05-20 10:45:02 -07:00
parent c3b76b67ca
commit ad01af40e4
6 changed files with 413 additions and 10 deletions

View File

@@ -4,6 +4,7 @@ Generate sources with instruction info.
import srcgen
import constant_hash
from unique_table import UniqueTable, UniqueSeqTable
import cretonne
@@ -97,7 +98,8 @@ def gen_instruction_data_impl(fmt):
fmt.doc_comment('Mutable reference to second result value, if any.')
with fmt.indented(
"pub fn second_result_mut<'a>(&'a mut self) -> Option<&'a mut Value> {", '}'):
"pub fn second_result_mut<'a>(&'a mut self)" +
" -> Option<&'a mut Value> {", '}'):
with fmt.indented('match *self {', '}'):
for f in cretonne.InstructionFormat.all_formats:
if not f.multiple_results:
@@ -131,7 +133,11 @@ def collect_instr_groups(targets):
def gen_opcodes(groups, fmt):
"""Generate opcode enumerations."""
"""
Generate opcode enumerations.
Return a list of all instructions.
"""
fmt.doc_comment('An instruction opcode.')
fmt.doc_comment('')
@@ -193,6 +199,125 @@ def gen_opcodes(groups, fmt):
else:
fmt.format('Opcode::{},', i.camel_name)
fmt.line()
return instrs
def get_constraint(op, ctrl_typevar, type_sets):
"""
Get the value type constraint for an SSA value operand, where
`ctrl_typevar` is the controlling type variable.
Each operand constraint is represented as a string, one of:
- `Concrete(vt)`, where `vt` is a value type name.
- `Free(idx)` where `idx` is an index into `type_sets`.
- `Same`, `Lane`, `AsBool` for controlling typevar-derived constraints.
"""
t = op.typ
assert t.operand_kind() is cretonne.value
# A concrete value type.
if isinstance(t, cretonne.ValueType):
return 'Concrete({})'.format(t.rust_name())
if t.free_typevar() is not ctrl_typevar:
assert not t.is_derived
return 'Free({})'.format(type_sets.add(t.type_set))
if t.is_derived:
assert t.base is ctrl_typevar, "Not derived directly from ctrl_typevar"
return t.derived_func
assert t is ctrl_typevar
return 'Same'
def gen_type_constraints(fmt, instrs):
"""
Generate value type constraints for all instructions.
- Emit a compact constant table of ValueTypeSet objects.
- Emit a compact constant table of OperandConstraint objects.
- Emit an opcode-indexed table of instruction constraints.
"""
# Table of TypeSet instances.
type_sets = UniqueTable()
# Table of operand constraint sequences (as tuples). Each operand
# constraint is represented as a string, one of:
# - `Concrete(vt)`, where `vt` is a value type name.
# - `Free(idx)` where `idx` isan index into `type_sets`.
# - `Same`, `Lane`, `AsBool` for controlling typevar-derived constraints.
operand_seqs = UniqueSeqTable()
# Preload table with constraints for typical binops.
operand_seqs.add(['Same'] * 3)
# TypeSet indexes are encoded in 3 bits, with `111` reserved.
typeset_limit = 7
fmt.comment('Table of opcode constraints.')
with fmt.indented(
'const OPCODE_CONSTRAINTS : [OpcodeConstraints; {}] = ['
.format(len(instrs)), '];'):
for i in instrs:
# Collect constraints for the value results, not including
# `variable_args` results which are always special cased.
constraints = list()
ctrl_typevar = None
ctrl_typeset = typeset_limit
if i.is_polymorphic:
ctrl_typevar = i.ctrl_typevar
ctrl_typeset = type_sets.add(ctrl_typevar.type_set)
for idx in i.value_results:
constraints.append(
get_constraint(i.outs[idx], ctrl_typevar, type_sets))
for idx in i.format.value_operands:
constraints.append(
get_constraint(i.ins[idx], ctrl_typevar, type_sets))
offset = operand_seqs.add(constraints)
fixed_results = len(i.value_results)
use_typevar_operand = i.is_polymorphic and i.use_typevar_operand
fmt.comment(
'{}: fixed_results={}, use_typevar_operand={}'
.format(i.camel_name, fixed_results, use_typevar_operand))
fmt.comment('Constraints={}'.format(constraints))
if i.is_polymorphic:
fmt.comment(
'Polymorphic over {}'.format(ctrl_typevar.type_set))
# Compute the bit field encoding, c.f. instructions.rs.
assert fixed_results < 8, "Bit field encoding too tight"
bits = (offset << 8) | (ctrl_typeset << 4) | fixed_results
if use_typevar_operand:
bits |= 8
assert bits < 0x10000, "Constraint table too large for bit field"
fmt.line('OpcodeConstraints({:#06x}),'.format(bits))
fmt.comment('Table of value type sets.')
assert len(type_sets.table) <= typeset_limit, "Too many type sets"
with fmt.indented(
'const TYPE_SETS : [ValueTypeSet; {}] = ['
.format(len(type_sets.table)), '];'):
for ts in type_sets.table:
with fmt.indented('ValueTypeSet {', '},'):
if ts.base:
fmt.line('base: {},'.format(ts.base.rust_name()))
else:
fmt.line('base: types::VOID,')
for field in ts._fields:
if field == 'base':
continue
fmt.line('{}: {},'.format(
field, str(getattr(ts, field)).lower()))
fmt.comment('Table of operand constraint sequences.')
with fmt.indented(
'const OPERAND_CONSTRAINTS : [OperandConstraint; {}] = ['
.format(len(operand_seqs.table)), '];'):
for c in operand_seqs.table:
fmt.line('OperandConstraint::{},'.format(c))
def generate(targets, out_dir):
@@ -202,5 +327,6 @@ def generate(targets, out_dir):
fmt = srcgen.Formatter()
gen_formats(fmt)
gen_instruction_data_impl(fmt)
gen_opcodes(groups, fmt)
instrs = gen_opcodes(groups, fmt)
gen_type_constraints(fmt, instrs)
fmt.update_file('opcodes.rs', out_dir)