Add support for 32 bit and 64 bit fcmp for the new backend

Implements commiss and commisd.
This commit is contained in:
Johnnie Birch
2020-07-10 18:04:16 -07:00
parent fbc05faa49
commit a7cedf3100
5 changed files with 201 additions and 7 deletions

View File

@@ -5,7 +5,7 @@ use std::string::{String, ToString};
use regalloc::{RealRegUniverse, Reg, RegClass, RegUsageCollector, RegUsageMapper};
use crate::ir::condcodes::IntCC;
use crate::ir::condcodes::{FloatCC, IntCC};
use crate::machinst::*;
use super::{
@@ -636,6 +636,12 @@ pub enum CC {
LE = 14,
/// > signed
NLE = 15,
/// parity
P = 10,
/// not parity
NP = 11,
}
impl CC {
@@ -678,6 +684,33 @@ impl CC {
CC::LE => CC::NLE,
CC::NLE => CC::LE,
CC::P => CC::NP,
CC::NP => CC::P,
}
}
pub(crate) fn from_floatcc(floatcc: FloatCC) -> Self {
match floatcc {
FloatCC::Ordered => CC::NP,
FloatCC::Unordered => CC::P,
// Alias for NE
FloatCC::NotEqual | FloatCC::OrderedNotEqual => CC::NZ,
// Alias for E
FloatCC::UnorderedOrEqual => CC::Z,
// Alias for A
FloatCC::GreaterThan => CC::NBE,
// Alias for AE
FloatCC::GreaterThanOrEqual => CC::NB,
FloatCC::UnorderedOrLessThan => CC::B,
FloatCC::UnorderedOrLessThanOrEqual => CC::BE,
FloatCC::Equal
| FloatCC::LessThan
| FloatCC::LessThanOrEqual
| FloatCC::UnorderedOrGreaterThan
| FloatCC::UnorderedOrGreaterThanOrEqual => unimplemented!(
"No single condition code to guarantee ordered. Treat as special case."
),
}
}
@@ -703,6 +736,8 @@ impl fmt::Debug for CC {
CC::NL => "nl",
CC::LE => "le",
CC::NLE => "nle",
CC::P => "p",
CC::NP => "np",
};
write!(fmt, "{}", name)
}

View File

@@ -1603,6 +1603,25 @@ pub(crate) fn emit(
}
}
Inst::XMM_Cmp_RM_R { op, src, dst } => {
let rex = RexFlags::clear_w();
let (prefix, opcode) = match op {
SseOpcode::Ucomisd => (LegacyPrefix::_66, 0x0F2E),
SseOpcode::Ucomiss => (LegacyPrefix::None, 0x0F2E),
_ => unimplemented!("Emit xmm cmp rm r"),
};
match src {
RegMem::Reg { reg } => {
emit_std_reg_reg(sink, prefix, opcode, 2, *dst, *reg, rex);
}
RegMem::Mem { addr } => {
let addr = &addr.finalize(state);
emit_std_reg_mem(sink, prefix, opcode, 2, *dst, addr, rex);
}
}
}
Inst::LoadExtName {
dst,
name,

View File

@@ -2711,7 +2711,8 @@ fn test_x64_emit() {
insns.push((Inst::setcc(CC::NLE, w_rsi), "400F9FC6", "setnle %sil"));
insns.push((Inst::setcc(CC::Z, w_r14), "410F94C6", "setz %r14b"));
insns.push((Inst::setcc(CC::LE, w_r14), "410F9EC6", "setle %r14b"));
insns.push((Inst::setcc(CC::P, w_r9), "410F9AC1", "setp %r9b"));
insns.push((Inst::setcc(CC::NP, w_r8), "410F9BC0", "setnp %r8b"));
// ========================================================
// Cmove
insns.push((
@@ -2876,6 +2877,33 @@ fn test_x64_emit() {
"jmp *321(%r10,%rdx,4)",
));
// ========================================================
// XMM_CMP_RM_R
insns.push((
Inst::xmm_cmp_rm_r(SseOpcode::Ucomiss, RegMem::reg(xmm1), xmm2),
"0F2ED1",
"ucomiss %xmm1, %xmm2",
));
insns.push((
Inst::xmm_cmp_rm_r(SseOpcode::Ucomiss, RegMem::reg(xmm0), xmm9),
"440F2EC8",
"ucomiss %xmm0, %xmm9",
));
insns.push((
Inst::xmm_cmp_rm_r(SseOpcode::Ucomisd, RegMem::reg(xmm13), xmm4),
"66410F2EE5",
"ucomisd %xmm13, %xmm4",
));
insns.push((
Inst::xmm_cmp_rm_r(SseOpcode::Ucomisd, RegMem::reg(xmm11), xmm12),
"66450F2EE3",
"ucomisd %xmm11, %xmm12",
));
// ========================================================
// XMM_RM_R: float binary ops

View File

@@ -244,6 +244,13 @@ pub enum Inst {
dst: Writable<Reg>,
},
/// Float comparisons/tests: cmp (b w l q) (reg addr imm) reg.
XMM_Cmp_RM_R {
op: SseOpcode,
src: RegMem,
dst: Reg,
},
// =====================================
// Control flow instructions.
/// Direct call: call simm32.
@@ -480,6 +487,12 @@ impl Inst {
Inst::GprToXmm { op, src, dst }
}
pub(crate) fn xmm_cmp_rm_r(op: SseOpcode, src: RegMem, dst: Reg) -> Inst {
//TODO:: Add assert_reg_type helper
debug_assert!(dst.get_class() == RegClass::V128);
Inst::XMM_Cmp_RM_R { op, src, dst }
}
pub(crate) fn movzx_rm_r(
ext_mode: ExtMode,
src: RegMem,
@@ -859,6 +872,12 @@ impl ShowWithRRU for Inst {
)
}
Inst::XMM_Cmp_RM_R { op, src, dst } => format!(
"{} {}, {}",
ljustify(op.to_string()),
src.show_rru_sized(mb_rru, 8),
show_ireg_sized(*dst, mb_rru, 8),
),
Inst::Imm_R {
dst_is_64,
simm64,
@@ -1117,6 +1136,10 @@ fn x64_get_regs(inst: &Inst, collector: &mut RegUsageCollector) {
collector.add_use(*src);
dst.get_regs_as_uses(collector);
}
Inst::XMM_Cmp_RM_R { src, dst, .. } => {
src.get_regs_as_uses(collector);
collector.add_use(*dst);
}
Inst::Imm_R { dst, .. } => {
collector.add_def(*dst);
}
@@ -1332,6 +1355,14 @@ fn x64_map_regs<RUM: RegUsageMapper>(inst: &mut Inst, mapper: &RUM) {
map_use(mapper, src);
dst.map_uses(mapper);
}
Inst::XMM_Cmp_RM_R {
ref mut src,
ref mut dst,
..
} => {
src.map_uses(mapper);
map_use(mapper, dst);
}
Inst::Imm_R { ref mut dst, .. } => map_def(mapper, dst),
Inst::Mov_R_R {
ref mut src,

View File

@@ -6,14 +6,14 @@ use log::trace;
use regalloc::{Reg, RegClass, Writable};
use smallvec::SmallVec;
use alloc::boxed::Box;
use alloc::vec::Vec;
use std::convert::TryFrom;
use crate::ir::types;
use crate::ir::types::*;
use crate::ir::Inst as IRInst;
use crate::ir::{condcodes::IntCC, InstructionData, Opcode, TrapCode, Type};
use crate::ir::{condcodes::FloatCC, condcodes::IntCC, InstructionData, Opcode, TrapCode, Type};
use alloc::boxed::Box;
use alloc::vec::Vec;
use cranelift_codegen_shared::condcodes::CondCode;
use std::convert::TryFrom;
use crate::machinst::lower::*;
use crate::machinst::*;
@@ -95,6 +95,16 @@ fn inst_condcode(data: &InstructionData) -> IntCC {
}
}
fn inst_fp_condcode(data: &InstructionData) -> Option<FloatCC> {
match data {
&InstructionData::BranchFloat { cond, .. }
| &InstructionData::FloatCompare { cond, .. }
| &InstructionData::FloatCond { cond, .. }
| &InstructionData::FloatCondTrap { cond, .. } => Some(cond),
_ => None,
}
}
fn ldst_offset(data: &InstructionData) -> Option<i32> {
match data {
&InstructionData::Load { offset, .. }
@@ -734,6 +744,77 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
ctx.emit(Inst::setcc(cc, dst));
}
Opcode::Fcmp => {
let condcode = inst_fp_condcode(ctx.data(insn)).unwrap();
let input_ty = ctx.input_ty(insn, 0);
let op = match input_ty {
F32 => SseOpcode::Ucomiss,
F64 => SseOpcode::Ucomisd,
_ => panic!("Bad input type to Fcmp"),
};
// Unordered is returned by setting ZF, PF, CF <- 111
// Greater than by ZF, PF, CF <- 000
// Less than by ZF, PF, CF <- 001
// Equal by ZF, PF, CF <- 100
//
// Checking the result of comiss is somewhat annoying because you don't
// have setcc instructions that explicitly check simultaneously for the condition
// (i.e. eq, le, gt, etc) and orderedness. So that might mean we need more
// than one setcc check and then a logical "and" or "or" to determine both.
// However knowing that if the parity bit is set, then the result was
// considered unordered and knowing that if the parity bit is set, then both
// the ZF and CF flag bits must also be set we can getaway with using one setcc
// for most condition codes.
match condcode {
// setb and setbe for ordered LessThan and LessThanOrEqual check if CF = 1 which
// doesn't exclude unorderdness. To get around this we can reverse the operands
// and the cc test to instead check if CF and ZF are 0 which would also excludes
// unorderedness. Using similiar logic we also reverse UnorderedOrGreaterThan and
// UnorderedOrGreaterThanOrEqual and assure that ZF or CF is 1 to exclude orderedness.
FloatCC::LessThan
| FloatCC::LessThanOrEqual
| FloatCC::UnorderedOrGreaterThan
| FloatCC::UnorderedOrGreaterThanOrEqual => {
let lhs = input_to_reg_mem(ctx, inputs[0]);
let rhs = input_to_reg(ctx, inputs[1]);
let dst = output_to_reg(ctx, outputs[0]);
ctx.emit(Inst::xmm_cmp_rm_r(op, lhs, rhs));
let condcode = condcode.reverse();
let cc = CC::from_floatcc(condcode);
ctx.emit(Inst::setcc(cc, dst));
}
// Outlier case where we cannot get around checking the parity bit to determine
// if the result was ordered.
FloatCC::Equal => {
let lhs = input_to_reg(ctx, inputs[0]);
let rhs = input_to_reg_mem(ctx, inputs[1]);
let dst = output_to_reg(ctx, outputs[0]);
let tmp_gpr1 = ctx.alloc_tmp(RegClass::I64, I32);
ctx.emit(Inst::xmm_cmp_rm_r(op, rhs, lhs));
ctx.emit(Inst::setcc(CC::NP, tmp_gpr1));
ctx.emit(Inst::setcc(CC::Z, dst));
ctx.emit(Inst::alu_rmi_r(
false,
AluRmiROpcode::And,
RegMemImm::reg(tmp_gpr1.to_reg()),
dst,
));
}
// For all remaining condition codes we can handle things with one check. Condition
// ordered NotEqual for example does not need a separate check for the parity bit because
// the setnz checks that the zero flag is 0 which is impossible with an unordered result.
_ => {
let lhs = input_to_reg(ctx, inputs[0]);
let rhs = input_to_reg_mem(ctx, inputs[1]);
let dst = output_to_reg(ctx, outputs[0]);
let cc = CC::from_floatcc(condcode);
ctx.emit(Inst::xmm_cmp_rm_r(op, rhs, lhs));
ctx.emit(Inst::setcc(cc, dst));
}
}
}
Opcode::FallthroughReturn | Opcode::Return => {
for i in 0..ctx.num_inputs(insn) {
let src_reg = input_to_reg(ctx, inputs[i]);