AArch64: port misc ops to ISLE. (#4796)

* Add some precise-output compile tests for aarch64.

* AArch64: port misc ops to ISLE.

- get_pinned_reg / set_pinned_reg
- bitcast
- stack_addr
- extractlane
- insertlane
- vhigh_bits
- iadd_ifcout
- fcvt_low_from_sint
This commit is contained in:
Chris Fallin
2022-08-29 12:56:39 -07:00
committed by GitHub
parent 6368c6b188
commit a6eb24bd4f
18 changed files with 1362 additions and 662 deletions

View File

@@ -952,11 +952,19 @@
;; Helper for calculating the `ScalarSize` corresponding to a type ;; Helper for calculating the `ScalarSize` corresponding to a type
(decl scalar_size (Type) ScalarSize) (decl scalar_size (Type) ScalarSize)
(rule (scalar_size $I8) (ScalarSize.Size8)) (rule (scalar_size $I8) (ScalarSize.Size8))
(rule (scalar_size $I16) (ScalarSize.Size16)) (rule (scalar_size $I16) (ScalarSize.Size16))
(rule (scalar_size $I32) (ScalarSize.Size32)) (rule (scalar_size $I32) (ScalarSize.Size32))
(rule (scalar_size $I64) (ScalarSize.Size64)) (rule (scalar_size $I64) (ScalarSize.Size64))
(rule (scalar_size $I128) (ScalarSize.Size128)) (rule (scalar_size $I128) (ScalarSize.Size128))
(rule (scalar_size $B8) (ScalarSize.Size8))
(rule (scalar_size $B16) (ScalarSize.Size16))
(rule (scalar_size $B32) (ScalarSize.Size32))
(rule (scalar_size $B64) (ScalarSize.Size64))
(rule (scalar_size $B128) (ScalarSize.Size128))
(rule (scalar_size $F32) (ScalarSize.Size32)) (rule (scalar_size $F32) (ScalarSize.Size32))
(rule (scalar_size $F64) (ScalarSize.Size64)) (rule (scalar_size $F64) (ScalarSize.Size64))
@@ -1452,6 +1460,9 @@
(decl pure lshl_from_imm64 (Type Imm64) ShiftOpAndAmt) (decl pure lshl_from_imm64 (Type Imm64) ShiftOpAndAmt)
(extern constructor lshl_from_imm64 lshl_from_imm64) (extern constructor lshl_from_imm64 lshl_from_imm64)
(decl pure lshl_from_u64 (Type u64) ShiftOpAndAmt)
(extern constructor lshl_from_u64 lshl_from_u64)
(decl integral_ty (Type) Type) (decl integral_ty (Type) Type)
(extern extractor integral_ty integral_ty) (extern extractor integral_ty integral_ty)
@@ -1704,6 +1715,14 @@
(MInst.AluRRR (ALUOp.AddS) (operand_size ty) dst src1 src2) (MInst.AluRRR (ALUOp.AddS) (operand_size ty) dst src1 src2)
dst))) dst)))
;; Helper for emitting `adds` instructions, setting flags in ambient
;; state. Used only for `iadd_ifcout`.
(decl add_with_flags (Type Reg Reg) Reg)
(rule (add_with_flags ty src1 src2)
(let ((dst WritableReg (temp_writable_reg $I64))
(_ Unit (emit (MInst.AluRRR (ALUOp.AddS) (operand_size ty) dst src1 src2))))
dst))
;; Helper for emitting `adc` instructions. ;; Helper for emitting `adc` instructions.
(decl adc_paired (Type Reg Reg) ConsumesFlags) (decl adc_paired (Type Reg Reg) ConsumesFlags)
(rule (adc_paired ty src1 src2) (rule (adc_paired ty src1 src2)
@@ -1927,6 +1946,13 @@
(_ Unit (emit (MInst.VecExtend op dst src high_half size)))) (_ Unit (emit (MInst.VecExtend op dst src high_half size))))
dst)) dst))
;; Helper for emitting `MInst.VecExtract` instructions.
(decl vec_extract (Reg Reg u8) Reg)
(rule (vec_extract src1 src2 idx)
(let ((dst WritableReg (temp_writable_reg $I8X16))
(_ Unit (emit (MInst.VecExtract dst src1 src2 idx))))
dst))
;; Helper for emitting `MInst.LoadAcquire` instructions. ;; Helper for emitting `MInst.LoadAcquire` instructions.
(decl load_acquire (Type Reg) Reg) (decl load_acquire (Type Reg) Reg)
(rule (load_acquire ty addr) (rule (load_acquire ty addr)
@@ -2118,6 +2144,10 @@
(decl addp (Reg Reg VectorSize) Reg) (decl addp (Reg Reg VectorSize) Reg)
(rule (addp x y size) (vec_rrr (VecALUOp.Addp) x y size)) (rule (addp x y size) (vec_rrr (VecALUOp.Addp) x y size))
;; Helper for generating `zip1` instructions.
(decl zip1 (Reg Reg VectorSize) Reg)
(rule (zip1 x y size) (vec_rrr (VecALUOp.Zip1) x y size))
;; Helper for generating vector `abs` instructions. ;; Helper for generating vector `abs` instructions.
(decl vec_abs (Reg VectorSize) Reg) (decl vec_abs (Reg VectorSize) Reg)
(rule (vec_abs x size) (vec_misc (VecMisc2.Abs) x size)) (rule (vec_abs x size) (vec_misc (VecMisc2.Abs) x size))
@@ -2826,3 +2856,24 @@
(decl gen_call_indirect (SigRef Value ValueSlice) InstOutput) (decl gen_call_indirect (SigRef Value ValueSlice) InstOutput)
(extern constructor gen_call_indirect gen_call_indirect) (extern constructor gen_call_indirect gen_call_indirect)
;; Helpers for pinned register manipulation.
(decl writable_pinned_reg () WritableReg)
(extern constructor writable_pinned_reg writable_pinned_reg)
(decl pinned_reg () Reg)
(rule (pinned_reg) (writable_pinned_reg))
(decl write_pinned_reg (Reg) SideEffectNoResult)
(rule (write_pinned_reg val)
(let ((dst WritableReg (writable_pinned_reg)))
(SideEffectNoResult.Inst (gen_move $I64 dst val))))
;; Helpers for stackslot effective address generation.
(decl compute_stack_addr (StackSlot Offset32) Reg)
(rule (compute_stack_addr stack_slot offset)
(let ((dst WritableReg (temp_writable_reg $I64))
(_ Unit (emit (abi_stackslot_addr dst stack_slot offset))))
dst))

View File

@@ -2030,3 +2030,212 @@
;; N.B.: the Ret itself is generated by the ABI. ;; N.B.: the Ret itself is generated by the ABI.
(rule (lower (return args)) (rule (lower (return args))
(lower_return (range 0 (value_slice_len args)) args)) (lower_return (range 0 (value_slice_len args)) args))
;;; Rules for `{get,set}_pinned_reg` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(rule (lower (get_pinned_reg))
(pinned_reg))
(rule (lower (set_pinned_reg val))
(side_effect (write_pinned_reg val)))
;;; Rules for `bitcast` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(rule (lower (has_type $I32 (bitcast src @ (value_type $F32))))
(mov_from_vec src 0 (ScalarSize.Size32)))
(rule (lower (has_type $F32 (bitcast src @ (value_type $I32))))
(mov_to_fpu src (ScalarSize.Size32)))
(rule (lower (has_type $I64 (bitcast src @ (value_type $F64))))
(mov_from_vec src 0 (ScalarSize.Size64)))
(rule (lower (has_type $F64 (bitcast src @ (value_type $I64))))
(mov_to_fpu src (ScalarSize.Size64)))
;;; Rules for `raw_bitcast` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(rule (lower (raw_bitcast val))
val)
;;; Rules for `extractlane` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; extractlane with lane 0 can pass through the value unchanged; upper
;; bits are undefined when a narrower type is in a wider register.
(rule (lower (has_type (ty_scalar_float _) (extractlane val (u8_from_uimm8 0))))
val)
(rule (lower (has_type (ty_int_bool ty)
(extractlane val
(u8_from_uimm8 lane))))
(mov_from_vec val lane (scalar_size ty)))
(rule (lower (has_type (ty_scalar_float ty)
(extractlane val @ (value_type vty)
(u8_from_uimm8 lane))))
(fpu_move_from_vec val lane (vector_size vty)))
;;; Rules for `insertlane` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(rule (lower (insertlane vec @ (value_type vty)
val @ (value_type (ty_int_bool _))
(u8_from_uimm8 lane)))
(mov_to_vec vec val lane (vector_size vty)))
(rule (lower (insertlane vec @ (value_type vty)
val @ (value_type (ty_scalar_float _))
(u8_from_uimm8 lane)))
(mov_vec_elem vec val lane 0 (vector_size vty)))
;;; Rules for `copy` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(rule (lower (copy x))
x)
;;; Rules for `stack_addr` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(rule (lower (stack_addr stack_slot offset))
(compute_stack_addr stack_slot offset))
;;; Rules for `vhigh_bits` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; All three sequences use one integer temporary and two vector
;; temporaries. The shift is done early so as to give the register
;; allocator the possibility of using the same reg for `tmp_v1` and
;; `src_v` in the case that this is the last use of `src_v`. See
;; https://github.com/WebAssembly/simd/pull/201 for the background and
;; derivation of these sequences. Alternative sequences are discussed
;; in https://github.com/bytecodealliance/wasmtime/issues/2296,
;; although they are not used here.
(rule (lower (vhigh_bits vec @ (value_type $I8X16)))
(let (
;; Replicate the MSB of each of the 16 byte lanes across
;; the whole lane (sshr is an arithmetic right shift).
(shifted Reg (vec_shift_imm (VecShiftImmOp.Sshr) 7 vec (VectorSize.Size8x16)))
;; Bitwise-and with a mask
;; `0x80402010_08040201_80402010_08040201` to get the bit
;; in the proper location for each group of 8 lanes.
(anded Reg (and_vec shifted (constant_f128 0x80402010_08040201_80402010_08040201) (VectorSize.Size8x16)))
;; Produce a version of `anded` with upper 8 lanes and
;; lower 8 lanes swapped.
(anded_swapped Reg (vec_extract anded anded 8))
;; Zip together the two; with the above this produces the lane permutation:
;; 15 7 14 6 13 5 12 4 11 3 10 2 9 1 8 0
(zipped Reg (zip1 anded anded_swapped (VectorSize.Size8x16)))
;; Add 16-bit lanes together ("add across vector"), so we
;; get, in the low 16 bits, 15+14+...+8 in the high byte
;; and 7+6+...+0 in the low byte. This effectively puts
;; the 16 MSBs together, giving our results.
;;
;; N.B.: `Size16x8` is not a typo!
(result Reg (addv zipped (VectorSize.Size16x8))))
(mov_from_vec result 0 (ScalarSize.Size16))))
(rule (lower (vhigh_bits vec @ (value_type $I16X8)))
(let (
;; Replicate the MSB of each of the 8 16-bit lanes across
;; the whole lane (sshr is an arithmetic right shift).
(shifted Reg (vec_shift_imm (VecShiftImmOp.Sshr) 15 vec (VectorSize.Size16x8)))
;; Bitwise-and with a mask
;; `0x0080_0040_0020_0010_0008_0004_0002_0001` to get the
;; bit in the proper location for each group of 4 lanes.
(anded Reg (and_vec shifted (constant_f128 0x0080_0040_0020_0010_0008_0004_0002_0001) (VectorSize.Size16x8)))
;; Add lanes together to get the 8 MSBs in the low byte.
(result Reg (addv anded (VectorSize.Size16x8))))
(mov_from_vec result 0 (ScalarSize.Size16))))
(rule (lower (vhigh_bits vec @ (value_type $I32X4)))
(let (
;; Replicate the MSB of each of the 4 32-bit lanes across
;; the whole lane (sshr is an arithmetic right shift).
(shifted Reg (vec_shift_imm (VecShiftImmOp.Sshr) 31 vec (VectorSize.Size32x4)))
;; Bitwise-and with a mask
;; `0x00000008_00000004_00000002_00000001` to get the bit
;; in the proper location for each group of 4 lanes.
(anded Reg (and_vec shifted (constant_f128 0x00000008_00000004_00000002_00000001) (VectorSize.Size32x4)))
;; Add lanes together to get the 4 MSBs in the low byte.
(result Reg (addv anded (VectorSize.Size32x4))))
(mov_from_vec result 0 (ScalarSize.Size32))))
(rule (lower (vhigh_bits vec @ (value_type $I64X2)))
(let (
;; Grab the MSB out of each of the lanes, right-shift to
;; LSB, and add with a left-shift of upper lane's MSB back
;; to bit 1. the whole lane (sshr is an arithmetic right
;; shift).
(upper_msb Reg (mov_from_vec vec 1 (ScalarSize.Size64)))
(lower_msb Reg (mov_from_vec vec 0 (ScalarSize.Size64)))
(upper_msb Reg (lsr_imm $I64 upper_msb (imm_shift_from_u8 63)))
(lower_msb Reg (lsr_imm $I64 lower_msb (imm_shift_from_u8 63))))
(add_shift $I64 lower_msb upper_msb (lshl_from_u64 $I64 1))))
;;; Rules for `iadd_ifcout` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; This is a two-output instruction that is needed for the
;; legalizer's explicit heap-check sequence, among possible other
;; uses. Its second output is a flags output only ever meant to
;; check for overflow using the
;; `backend.unsigned_add_overflow_condition()` condition.
;;
;; Note that the CLIF validation will ensure that no flag-setting
;; operation comes between this IaddIfcout and its use (e.g., a
;; Trapif). Thus, we can rely on implicit communication through the
;; processor flags rather than explicitly generating flags into a
;; register. We simply use the variant of the add instruction that
;; sets flags (`adds`) here.
;;
;; Note that the second output (the flags) need not be generated,
;; because flags are never materialized into a register; the only
;; instructions that can use a value of type `iflags` or `fflags`
;; will look directly for the flags-producing instruction (which can
;; always be found, by construction) and merge it.
;;
;; Now handle the iadd as above, except use an AddS opcode that sets
;; flags.
(rule (lower (has_type (ty_int ty)
(iadd_ifcout a b)))
(output_pair
(add_with_flags ty a b)
(invalid_reg)))
;;; Rules for `tls_value` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; TODO.
;;; Rules for `fcvt_low_from_sint` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(rule (lower (has_type $F64X2 (fcvt_low_from_sint val)))
(let ((extended Reg (vec_extend (VecExtendOp.Sxtl) val $false (ScalarSize.Size64)))
(converted Reg (vec_misc (VecMisc2.Scvtf) extended (VectorSize.Size64x2))))
converted))
;;; Rules for `fvpromote_low` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(rule (lower (fvpromote_low val))
(vec_rr_long (VecRRLongOp.Fcvtl32) val $false))
;;; Rules for `select` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; TODO: requires icmp/fcmp first.
;;; Rules for `selectif` / `selectif_spectre_guard` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; TODO: requires icmp/fcmp first.
;;; Rules for `trueif` / `trueff` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; TODO: requires icmp/fcmp first.
;;; Rules for `brz`/`brnz`/`brif`/`brff`/`bricmp` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; TODO: requires icmp/fcmp first.
;;; Rules for `jump` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; TODO.
;;; Rules for `br_table` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; TODO.

View File

@@ -128,7 +128,11 @@ impl Context for IsleContext<'_, '_, MInst, Flags, IsaFlags, 6> {
} }
fn lshl_from_imm64(&mut self, ty: Type, n: Imm64) -> Option<ShiftOpAndAmt> { fn lshl_from_imm64(&mut self, ty: Type, n: Imm64) -> Option<ShiftOpAndAmt> {
let shiftimm = ShiftOpShiftImm::maybe_from_shift(n.bits() as u64)?; self.lshl_from_u64(ty, n.bits() as u64)
}
fn lshl_from_u64(&mut self, ty: Type, n: u64) -> Option<ShiftOpAndAmt> {
let shiftimm = ShiftOpShiftImm::maybe_from_shift(n)?;
let shiftee_bits = ty_bits(ty); let shiftee_bits = ty_bits(ty);
if shiftee_bits <= std::u8::MAX as usize { if shiftee_bits <= std::u8::MAX as usize {
let shiftimm = shiftimm.mask(shiftee_bits as u8); let shiftimm = shiftimm.mask(shiftee_bits as u8);
@@ -722,4 +726,8 @@ impl Context for IsleContext<'_, '_, MInst, Flags, IsaFlags, 6> {
); );
} }
} }
fn writable_pinned_reg(&mut self) -> WritableReg {
super::regs::writable_xreg(super::regs::PINNED_REG)
}
} }

View File

@@ -4,7 +4,7 @@ use super::lower::*;
use crate::binemit::CodeOffset; use crate::binemit::CodeOffset;
use crate::ir::types::*; use crate::ir::types::*;
use crate::ir::Inst as IRInst; use crate::ir::Inst as IRInst;
use crate::ir::{InstructionData, Opcode}; use crate::ir::Opcode;
use crate::isa::aarch64::inst::*; use crate::isa::aarch64::inst::*;
use crate::isa::aarch64::settings as aarch64_settings; use crate::isa::aarch64::settings as aarch64_settings;
use crate::machinst::lower::*; use crate::machinst::lower::*;
@@ -13,7 +13,6 @@ use crate::settings::{Flags, TlsModel};
use crate::{CodegenError, CodegenResult}; use crate::{CodegenError, CodegenResult};
use alloc::boxed::Box; use alloc::boxed::Box;
use alloc::vec::Vec; use alloc::vec::Vec;
use core::convert::TryFrom;
use target_lexicon::Triple; use target_lexicon::Triple;
/// Actually codegen an instruction's results into registers. /// Actually codegen an instruction's results into registers.
@@ -231,23 +230,7 @@ pub(crate) fn lower_insn_to_regs(
} }
} }
Opcode::StackAddr => { Opcode::StackAddr => implemented_in_isle(ctx),
let (stack_slot, offset) = match *ctx.data(insn) {
InstructionData::StackLoad {
opcode: Opcode::StackAddr,
stack_slot,
offset,
} => (stack_slot, offset),
_ => unreachable!(),
};
let rd = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
let offset: i32 = offset.into();
assert!(ctx.abi().sized_stackslot_offsets().is_valid(stack_slot));
let inst =
ctx.abi()
.sized_stackslot_addr(stack_slot, u32::try_from(offset).unwrap(), rd);
ctx.emit(inst);
}
Opcode::DynamicStackAddr => implemented_in_isle(ctx), Opcode::DynamicStackAddr => implemented_in_isle(ctx),
@@ -421,52 +404,7 @@ pub(crate) fn lower_insn_to_regs(
Opcode::Bint => implemented_in_isle(ctx), Opcode::Bint => implemented_in_isle(ctx),
Opcode::Bitcast => { Opcode::Bitcast => implemented_in_isle(ctx),
let rd = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
let ity = ctx.input_ty(insn, 0);
let oty = ctx.output_ty(insn, 0);
let ity_bits = ty_bits(ity);
let ity_vec_reg = ty_has_float_or_vec_representation(ity);
let oty_bits = ty_bits(oty);
let oty_vec_reg = ty_has_float_or_vec_representation(oty);
debug_assert_eq!(ity_bits, oty_bits);
match (ity_vec_reg, oty_vec_reg) {
(true, true) => {
let narrow_mode = if ity_bits <= 32 {
NarrowValueMode::ZeroExtend32
} else {
NarrowValueMode::ZeroExtend64
};
let rm = put_input_in_reg(ctx, inputs[0], narrow_mode);
ctx.emit(Inst::gen_move(rd, rm, oty));
}
(false, false) => {
let rm = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
ctx.emit(Inst::gen_move(rd, rm, oty));
}
(false, true) => {
let rn = put_input_in_reg(ctx, inputs[0], NarrowValueMode::ZeroExtend64);
ctx.emit(Inst::MovToFpu {
rd,
rn,
size: ScalarSize::Size64,
});
}
(true, false) => {
let rn = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
let size = ScalarSize::from_bits(oty_bits);
ctx.emit(Inst::MovFromVec {
rd,
rn,
idx: 0,
size,
});
}
}
}
Opcode::Return => implemented_in_isle(ctx), Opcode::Return => implemented_in_isle(ctx),
@@ -556,15 +494,7 @@ pub(crate) fn lower_insn_to_regs(
Opcode::Call | Opcode::CallIndirect => implemented_in_isle(ctx), Opcode::Call | Opcode::CallIndirect => implemented_in_isle(ctx),
Opcode::GetPinnedReg => { Opcode::GetPinnedReg | Opcode::SetPinnedReg => implemented_in_isle(ctx),
let rd = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
ctx.emit(Inst::gen_move(rd, xreg(PINNED_REG), I64));
}
Opcode::SetPinnedReg => {
let rm = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
ctx.emit(Inst::gen_move(writable_xreg(PINNED_REG), rm, I64));
}
Opcode::Jump Opcode::Jump
| Opcode::Brz | Opcode::Brz
@@ -578,67 +508,11 @@ pub(crate) fn lower_insn_to_regs(
Opcode::Vconst => implemented_in_isle(ctx), Opcode::Vconst => implemented_in_isle(ctx),
Opcode::RawBitcast => { Opcode::RawBitcast => implemented_in_isle(ctx),
let rm = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
let rd = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
let ty = ctx.input_ty(insn, 0);
ctx.emit(Inst::gen_move(rd, rm, ty));
}
Opcode::Extractlane => { Opcode::Extractlane => implemented_in_isle(ctx),
if let InstructionData::BinaryImm8 { imm, .. } = ctx.data(insn) {
let idx = *imm;
let rd = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
let rn = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
let input_ty = ctx.input_ty(insn, 0);
let size = VectorSize::from_ty(input_ty);
let ty = ty.unwrap();
if ty_has_int_representation(ty) { Opcode::Insertlane => implemented_in_isle(ctx),
ctx.emit(Inst::MovFromVec {
rd,
rn,
idx,
size: size.lane_size(),
});
// Plain moves are faster on some processors.
} else if idx == 0 {
ctx.emit(Inst::gen_move(rd, rn, ty));
} else {
ctx.emit(Inst::FpuMoveFromVec { rd, rn, idx, size });
}
} else {
unreachable!();
}
}
Opcode::Insertlane => {
let idx = if let InstructionData::TernaryImm8 { imm, .. } = ctx.data(insn) {
*imm
} else {
unreachable!();
};
let input_ty = ctx.input_ty(insn, 1);
let rd = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
let rm = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
let rn = put_input_in_reg(ctx, inputs[1], NarrowValueMode::None);
let ty = ty.unwrap();
let size = VectorSize::from_ty(ty);
ctx.emit(Inst::gen_move(rd, rm, ty));
if ty_has_int_representation(input_ty) {
ctx.emit(Inst::MovToVec { rd, rn, idx, size });
} else {
ctx.emit(Inst::VecMovElement {
rd,
rn,
dest_idx: idx,
src_idx: 0,
size,
});
}
}
Opcode::Splat => implemented_in_isle(ctx), Opcode::Splat => implemented_in_isle(ctx),
@@ -646,240 +520,7 @@ pub(crate) fn lower_insn_to_regs(
Opcode::VallTrue | Opcode::VanyTrue => implemented_in_isle(ctx), Opcode::VallTrue | Opcode::VanyTrue => implemented_in_isle(ctx),
Opcode::VhighBits => { Opcode::VhighBits => implemented_in_isle(ctx),
let dst_r = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
let src_v = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
let ty = ctx.input_ty(insn, 0);
// All three sequences use one integer temporary and two vector temporaries. The
// shift is done early so as to give the register allocator the possibility of using
// the same reg for `tmp_v1` and `src_v` in the case that this is the last use of
// `src_v`. See https://github.com/WebAssembly/simd/pull/201 for the background and
// derivation of these sequences. Alternative sequences are discussed in
// https://github.com/bytecodealliance/wasmtime/issues/2296, although they are not
// used here.
let tmp_r0 = ctx.alloc_tmp(I64).only_reg().unwrap();
let tmp_v0 = ctx.alloc_tmp(I8X16).only_reg().unwrap();
let tmp_v1 = ctx.alloc_tmp(I8X16).only_reg().unwrap();
match ty {
I8X16 => {
// sshr tmp_v1.16b, src_v.16b, #7
// mov tmp_r0, #0x0201
// movk tmp_r0, #0x0804, lsl 16
// movk tmp_r0, #0x2010, lsl 32
// movk tmp_r0, #0x8040, lsl 48
// dup tmp_v0.2d, tmp_r0
// and tmp_v1.16b, tmp_v1.16b, tmp_v0.16b
// ext tmp_v0.16b, tmp_v1.16b, tmp_v1.16b, #8
// zip1 tmp_v0.16b, tmp_v1.16b, tmp_v0.16b
// addv tmp_v0h, tmp_v0.8h
// mov dst_r, tmp_v0.h[0]
ctx.emit(Inst::VecShiftImm {
op: VecShiftImmOp::Sshr,
rd: tmp_v1,
rn: src_v,
size: VectorSize::Size8x16,
imm: 7,
});
lower_splat_const(ctx, tmp_v0, 0x8040201008040201u64, VectorSize::Size64x2);
ctx.emit(Inst::VecRRR {
alu_op: VecALUOp::And,
rd: tmp_v1,
rn: tmp_v1.to_reg(),
rm: tmp_v0.to_reg(),
size: VectorSize::Size8x16,
});
ctx.emit(Inst::VecExtract {
rd: tmp_v0,
rn: tmp_v1.to_reg(),
rm: tmp_v1.to_reg(),
imm4: 8,
});
ctx.emit(Inst::VecRRR {
alu_op: VecALUOp::Zip1,
rd: tmp_v0,
rn: tmp_v1.to_reg(),
rm: tmp_v0.to_reg(),
size: VectorSize::Size8x16,
});
ctx.emit(Inst::VecLanes {
op: VecLanesOp::Addv,
rd: tmp_v0,
rn: tmp_v0.to_reg(),
size: VectorSize::Size16x8,
});
ctx.emit(Inst::MovFromVec {
rd: dst_r,
rn: tmp_v0.to_reg(),
idx: 0,
size: ScalarSize::Size16,
});
}
I16X8 => {
// sshr tmp_v1.8h, src_v.8h, #15
// mov tmp_r0, #0x1
// movk tmp_r0, #0x2, lsl 16
// movk tmp_r0, #0x4, lsl 32
// movk tmp_r0, #0x8, lsl 48
// dup tmp_v0.2d, tmp_r0
// shl tmp_r0, tmp_r0, #4
// mov tmp_v0.d[1], tmp_r0
// and tmp_v0.16b, tmp_v1.16b, tmp_v0.16b
// addv tmp_v0h, tmp_v0.8h
// mov dst_r, tmp_v0.h[0]
ctx.emit(Inst::VecShiftImm {
op: VecShiftImmOp::Sshr,
rd: tmp_v1,
rn: src_v,
size: VectorSize::Size16x8,
imm: 15,
});
lower_constant_u64(ctx, tmp_r0, 0x0008000400020001u64);
ctx.emit(Inst::VecDup {
rd: tmp_v0,
rn: tmp_r0.to_reg(),
size: VectorSize::Size64x2,
});
ctx.emit(Inst::AluRRImmShift {
alu_op: ALUOp::Lsl,
size: OperandSize::Size64,
rd: tmp_r0,
rn: tmp_r0.to_reg(),
immshift: ImmShift { imm: 4 },
});
ctx.emit(Inst::MovToVec {
rd: tmp_v0,
rn: tmp_r0.to_reg(),
idx: 1,
size: VectorSize::Size64x2,
});
ctx.emit(Inst::VecRRR {
alu_op: VecALUOp::And,
rd: tmp_v0,
rn: tmp_v1.to_reg(),
rm: tmp_v0.to_reg(),
size: VectorSize::Size8x16,
});
ctx.emit(Inst::VecLanes {
op: VecLanesOp::Addv,
rd: tmp_v0,
rn: tmp_v0.to_reg(),
size: VectorSize::Size16x8,
});
ctx.emit(Inst::MovFromVec {
rd: dst_r,
rn: tmp_v0.to_reg(),
idx: 0,
size: ScalarSize::Size16,
});
}
I32X4 => {
// sshr tmp_v1.4s, src_v.4s, #31
// mov tmp_r0, #0x1
// movk tmp_r0, #0x2, lsl 32
// dup tmp_v0.2d, tmp_r0
// shl tmp_r0, tmp_r0, #2
// mov tmp_v0.d[1], tmp_r0
// and tmp_v0.16b, tmp_v1.16b, tmp_v0.16b
// addv tmp_v0s, tmp_v0.4s
// mov dst_r, tmp_v0.s[0]
ctx.emit(Inst::VecShiftImm {
op: VecShiftImmOp::Sshr,
rd: tmp_v1,
rn: src_v,
size: VectorSize::Size32x4,
imm: 31,
});
lower_constant_u64(ctx, tmp_r0, 0x0000000200000001u64);
ctx.emit(Inst::VecDup {
rd: tmp_v0,
rn: tmp_r0.to_reg(),
size: VectorSize::Size64x2,
});
ctx.emit(Inst::AluRRImmShift {
alu_op: ALUOp::Lsl,
size: OperandSize::Size64,
rd: tmp_r0,
rn: tmp_r0.to_reg(),
immshift: ImmShift { imm: 2 },
});
ctx.emit(Inst::MovToVec {
rd: tmp_v0,
rn: tmp_r0.to_reg(),
idx: 1,
size: VectorSize::Size64x2,
});
ctx.emit(Inst::VecRRR {
alu_op: VecALUOp::And,
rd: tmp_v0,
rn: tmp_v1.to_reg(),
rm: tmp_v0.to_reg(),
size: VectorSize::Size8x16,
});
ctx.emit(Inst::VecLanes {
op: VecLanesOp::Addv,
rd: tmp_v0,
rn: tmp_v0.to_reg(),
size: VectorSize::Size32x4,
});
ctx.emit(Inst::MovFromVec {
rd: dst_r,
rn: tmp_v0.to_reg(),
idx: 0,
size: ScalarSize::Size32,
});
}
I64X2 => {
// mov dst_r, src_v.d[0]
// mov tmp_r0, src_v.d[1]
// lsr dst_r, dst_r, #63
// lsr tmp_r0, tmp_r0, #63
// add dst_r, dst_r, tmp_r0, lsl #1
ctx.emit(Inst::MovFromVec {
rd: dst_r,
rn: src_v,
idx: 0,
size: ScalarSize::Size64,
});
ctx.emit(Inst::MovFromVec {
rd: tmp_r0,
rn: src_v,
idx: 1,
size: ScalarSize::Size64,
});
ctx.emit(Inst::AluRRImmShift {
alu_op: ALUOp::Lsr,
size: OperandSize::Size64,
rd: dst_r,
rn: dst_r.to_reg(),
immshift: ImmShift::maybe_from_u64(63).unwrap(),
});
ctx.emit(Inst::AluRRImmShift {
alu_op: ALUOp::Lsr,
size: OperandSize::Size64,
rd: tmp_r0,
rn: tmp_r0.to_reg(),
immshift: ImmShift::maybe_from_u64(63).unwrap(),
});
ctx.emit(Inst::AluRRRShift {
alu_op: ALUOp::Add,
size: OperandSize::Size32,
rd: dst_r,
rn: dst_r.to_reg(),
rm: tmp_r0.to_reg(),
shiftop: ShiftOpAndAmt::new(
ShiftOp::LSL,
ShiftOpShiftImm::maybe_from_shift(1).unwrap(),
),
});
}
_ => {
return Err(CodegenError::Unsupported(format!(
"VhighBits: Unsupported type: {:?}",
ty
)))
}
}
}
Opcode::Shuffle => implemented_in_isle(ctx), Opcode::Shuffle => implemented_in_isle(ctx),
@@ -917,34 +558,7 @@ pub(crate) fn lower_insn_to_regs(
Opcode::FcvtToUintSat | Opcode::FcvtToSintSat => implemented_in_isle(ctx), Opcode::FcvtToUintSat | Opcode::FcvtToSintSat => implemented_in_isle(ctx),
Opcode::IaddIfcout => { Opcode::IaddIfcout => implemented_in_isle(ctx),
// This is a two-output instruction that is needed for the
// legalizer's explicit heap-check sequence, among possible other
// uses. Its second output is a flags output only ever meant to
// check for overflow using the
// `backend.unsigned_add_overflow_condition()` condition.
//
// Note that the CLIF validation will ensure that no flag-setting
// operation comes between this IaddIfcout and its use (e.g., a
// Trapif). Thus, we can rely on implicit communication through the
// processor flags rather than explicitly generating flags into a
// register. We simply use the variant of the add instruction that
// sets flags (`adds`) here.
// Note that the second output (the flags) need not be generated,
// because flags are never materialized into a register; the only
// instructions that can use a value of type `iflags` or `fflags`
// will look directly for the flags-producing instruction (which can
// always be found, by construction) and merge it.
// Now handle the iadd as above, except use an AddS opcode that sets
// flags.
let rd = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
let rn = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
let rm = put_input_in_rse_imm12(ctx, inputs[1], NarrowValueMode::None);
let ty = ty.unwrap();
ctx.emit(alu_inst_imm12(ALUOp::AddS, ty, rd, rn, rm));
}
Opcode::IaddImm Opcode::IaddImm
| Opcode::ImulImm | Opcode::ImulImm
@@ -1006,47 +620,9 @@ pub(crate) fn lower_insn_to_regs(
Opcode::SqmulRoundSat => implemented_in_isle(ctx), Opcode::SqmulRoundSat => implemented_in_isle(ctx),
Opcode::FcvtLowFromSint => { Opcode::FcvtLowFromSint => implemented_in_isle(ctx),
let ty = ty.unwrap();
if ty != F64X2 { Opcode::FvpromoteLow => implemented_in_isle(ctx),
return Err(CodegenError::Unsupported(format!(
"FcvtLowFromSint: Unsupported type: {:?}",
ty
)));
}
let rd = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
let rn = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
ctx.emit(Inst::VecExtend {
t: VecExtendOp::Sxtl,
rd,
rn,
high_half: false,
lane_size: ScalarSize::Size64,
});
ctx.emit(Inst::VecMisc {
op: VecMisc2::Scvtf,
rd,
rn: rd.to_reg(),
size: VectorSize::Size64x2,
});
}
Opcode::FvpromoteLow => {
debug_assert_eq!(ty.unwrap(), F64X2);
let rd = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
let rn = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
ctx.emit(Inst::VecRRLong {
op: VecRRLongOp::Fcvtl32,
rd,
rn,
high_half: false,
});
}
Opcode::Fvdemote => implemented_in_isle(ctx), Opcode::Fvdemote => implemented_in_isle(ctx),

View File

@@ -371,6 +371,15 @@ macro_rules! isle_prelude_methods {
ty.is_int().then(|| ty) ty.is_int().then(|| ty)
} }
#[inline]
fn ty_int_bool(&mut self, ty: Type) -> Option<Type> {
if ty.is_int() || ty.is_bool() {
Some(ty)
} else {
None
}
}
#[inline] #[inline]
fn ty_scalar_float(&mut self, ty: Type) -> Option<Type> { fn ty_scalar_float(&mut self, ty: Type) -> Option<Type> {
match ty { match ty {
@@ -379,6 +388,15 @@ macro_rules! isle_prelude_methods {
} }
} }
#[inline]
fn ty_float_or_vec(&mut self, ty: Type) -> Option<Type> {
match ty {
F32 | F64 => Some(ty),
ty if ty.is_vector() => Some(ty),
_ => None,
}
}
#[inline] #[inline]
fn ty_vec64(&mut self, ty: Type) -> Option<Type> { fn ty_vec64(&mut self, ty: Type) -> Option<Type> {
if ty.is_vector() && ty.bits() == 64 { if ty.is_vector() && ty.bits() == 64 {

View File

@@ -365,6 +365,10 @@
(decl ty_int_bool_128 (Type) Type) (decl ty_int_bool_128 (Type) Type)
(extern extractor ty_int_bool_128 ty_int_bool_128) (extern extractor ty_int_bool_128 ty_int_bool_128)
;; An extractor that matches any int or bool.
(decl ty_int_bool (Type) Type)
(extern extractor ty_int_bool ty_int_bool)
;; An extractor that only matches integers. ;; An extractor that only matches integers.
(decl ty_int (Type) Type) (decl ty_int (Type) Type)
(extern extractor ty_int ty_int) (extern extractor ty_int ty_int)
@@ -373,6 +377,10 @@
(decl ty_scalar_float (Type) Type) (decl ty_scalar_float (Type) Type)
(extern extractor ty_scalar_float ty_scalar_float) (extern extractor ty_scalar_float ty_scalar_float)
;; An extractor that matches scalar floating-point types or vector types.
(decl ty_float_or_vec (Type) Type)
(extern extractor ty_float_or_vec ty_float_or_vec)
;; A pure constructor that only matches 64-bit vector types. ;; A pure constructor that only matches 64-bit vector types.
(decl pure ty_vec64 (Type) Type) (decl pure ty_vec64 (Type) Type)
(extern constructor ty_vec64 ty_vec64) (extern constructor ty_vec64 ty_vec64)

View File

@@ -0,0 +1,43 @@
test compile precise-output
target aarch64
function %f1(f32) -> i32 {
block0(v0: f32):
v1 = bitcast.i32 v0
return v1
}
; block0:
; mov w0, v0.s[0]
; ret
function %f2(i32) -> f32 {
block0(v0: i32):
v1 = bitcast.f32 v0
return v1
}
; block0:
; fmov s0, w0
; ret
function %f3(f64) -> i64 {
block0(v0: f64):
v1 = bitcast.i64 v0
return v1
}
; block0:
; mov x0, v0.d[0]
; ret
function %f4(i64) -> f64 {
block0(v0: i64):
v1 = bitcast.f64 v0
return v1
}
; block0:
; fmov d0, x0
; ret

View File

@@ -15,9 +15,9 @@ block0:
; mov fp, sp ; mov fp, sp
; sub sp, sp, #16 ; sub sp, sp, #16
; block0: ; block0:
; mov x0, sp ; mov x1, sp
; movz x2, #1 ; movz x2, #1
; str x2, [x0] ; str x2, [x1]
; add sp, sp, #16 ; add sp, sp, #16
; ldp fp, lr, [sp], #16 ; ldp fp, lr, [sp], #16
; ret ; ret
@@ -36,9 +36,9 @@ block0:
; mov fp, sp ; mov fp, sp
; sub sp, sp, #16 ; sub sp, sp, #16
; block0: ; block0:
; mov x0, sp ; mov x1, sp
; movz x2, #1 ; movz x2, #1
; str x2, [x0] ; str x2, [x1]
; add sp, sp, #16 ; add sp, sp, #16
; ldp fp, lr, [sp], #16 ; ldp fp, lr, [sp], #16
; ret ; ret

View File

@@ -0,0 +1,461 @@
test compile precise-output
target aarch64
function %f1(i8) -> f32 {
block0(v0: i8):
v1 = fcvt_from_sint.f32 v0
return v1
}
; block0:
; sxtb w3, w0
; scvtf s0, w3
; ret
function %f2(i16) -> f32 {
block0(v0: i16):
v1 = fcvt_from_sint.f32 v0
return v1
}
; block0:
; sxth w3, w0
; scvtf s0, w3
; ret
function %f3(i32) -> f32 {
block0(v0: i32):
v1 = fcvt_from_sint.f32 v0
return v1
}
; block0:
; scvtf s0, w0
; ret
function %f4(i64) -> f32 {
block0(v0: i64):
v1 = fcvt_from_sint.f32 v0
return v1
}
; block0:
; scvtf s0, x0
; ret
function %f5(i8) -> f64 {
block0(v0: i8):
v1 = fcvt_from_sint.f64 v0
return v1
}
; block0:
; sxtb w3, w0
; scvtf d0, w3
; ret
function %f6(i16) -> f64 {
block0(v0: i16):
v1 = fcvt_from_sint.f64 v0
return v1
}
; block0:
; sxth w3, w0
; scvtf d0, w3
; ret
function %f7(i32) -> f64 {
block0(v0: i32):
v1 = fcvt_from_sint.f64 v0
return v1
}
; block0:
; scvtf d0, w0
; ret
function %f8(i64) -> f64 {
block0(v0: i64):
v1 = fcvt_from_sint.f64 v0
return v1
}
; block0:
; scvtf d0, x0
; ret
function %f9(i32x4) -> f64x2 {
block0(v0: i32x4):
v1 = fcvt_low_from_sint.f64x2 v0
return v1
}
; block0:
; sxtl v3.2d, v0.2s
; scvtf v0.2d, v3.2d
; ret
function %f10(i8, i16, i32, i64) -> f32 {
block0(v0: i8, v1: i16, v2: i32, v3: i64):
v4 = fcvt_from_uint.f32 v0
v5 = fcvt_from_uint.f32 v1
v6 = fcvt_from_uint.f32 v2
v7 = fcvt_from_uint.f32 v3
v8 = fadd.f32 v4, v5
v9 = fadd.f32 v8, v6
v10 = fadd.f32 v9, v7
return v10
}
; block0:
; uxtb w0, w0
; ucvtf s26, w0
; uxth w0, w1
; ucvtf s27, w0
; ucvtf s25, w2
; ucvtf s28, x3
; fadd s26, s26, s27
; fadd s25, s26, s25
; fadd s0, s25, s28
; ret
function %f11(i32x4) -> f64x2 {
block0(v0: i32x4):
v1 = uwiden_low v0
v2 = fcvt_from_uint.f64x2 v1
return v2
}
; block0:
; uxtl v4.2d, v0.2s
; ucvtf v0.2d, v4.2d
; ret
function %f12(i32x4) -> f32x4 {
block0(v0: i32x4):
v1 = fcvt_from_uint.f32x4 v0
return v1
}
; block0:
; ucvtf v0.4s, v0.4s
; ret
function %f13(f32) -> i32 {
block0(v0: f32):
v1 = fcvt_to_uint.i32 v0
return v1
}
; block0:
; fcmp s0, s0
; b.vc 8 ; udf
; fmov s5, #-1
; fcmp s0, s5
; b.gt 8 ; udf
; movz x10, #20352, LSL #16
; fmov s18, w10
; fcmp s0, s18
; b.lt 8 ; udf
; fcvtzu w0, s0
; ret
function %f14(f32) -> i64 {
block0(v0: f32):
v1 = fcvt_to_uint.i64 v0
return v1
}
; block0:
; fcmp s0, s0
; b.vc 8 ; udf
; fmov s5, #-1
; fcmp s0, s5
; b.gt 8 ; udf
; movz x10, #24448, LSL #16
; fmov s18, w10
; fcmp s0, s18
; b.lt 8 ; udf
; fcvtzu x0, s0
; ret
function %f15(f64) -> i32 {
block0(v0: f64):
v1 = fcvt_to_uint.i32 v0
return v1
}
; block0:
; fcmp d0, d0
; b.vc 8 ; udf
; fmov d5, #-1
; fcmp d0, d5
; b.gt 8 ; udf
; movz x10, #16880, LSL #48
; fmov d18, x10
; fcmp d0, d18
; b.lt 8 ; udf
; fcvtzu w0, d0
; ret
function %f16(f64) -> i64 {
block0(v0: f64):
v1 = fcvt_to_uint.i64 v0
return v1
}
; block0:
; fcmp d0, d0
; b.vc 8 ; udf
; fmov d5, #-1
; fcmp d0, d5
; b.gt 8 ; udf
; movz x10, #17392, LSL #48
; fmov d18, x10
; fcmp d0, d18
; b.lt 8 ; udf
; fcvtzu x0, d0
; ret
function %f17(f32) -> i32 {
block0(v0: f32):
v1 = fcvt_to_uint_sat.i32 v0
return v1
}
; block0:
; movz x4, #20352, LSL #16
; fmov s4, w4
; fmin s7, s0, s4
; movi v17.2s, #0
; fmax s19, s7, s17
; fcmp s0, s0
; fcsel s22, s17, s19, ne
; fcvtzu w0, s22
; ret
function %f18(f32) -> i64 {
block0(v0: f32):
v1 = fcvt_to_uint_sat.i64 v0
return v1
}
; block0:
; movz x4, #24448, LSL #16
; fmov s4, w4
; fmin s7, s0, s4
; movi v17.2s, #0
; fmax s19, s7, s17
; fcmp s0, s0
; fcsel s22, s17, s19, ne
; fcvtzu x0, s22
; ret
function %f19(f64) -> i32 {
block0(v0: f64):
v1 = fcvt_to_uint_sat.i32 v0
return v1
}
; block0:
; ldr d3, pc+8 ; b 12 ; data.f64 4294967295
; fmin d5, d0, d3
; movi v7.2s, #0
; fmax d17, d5, d7
; fcmp d0, d0
; fcsel d20, d7, d17, ne
; fcvtzu w0, d20
; ret
function %f20(f64) -> i64 {
block0(v0: f64):
v1 = fcvt_to_uint_sat.i64 v0
return v1
}
; block0:
; movz x4, #17392, LSL #48
; fmov d4, x4
; fmin d7, d0, d4
; movi v17.2s, #0
; fmax d19, d7, d17
; fcmp d0, d0
; fcsel d22, d17, d19, ne
; fcvtzu x0, d22
; ret
function %f21(f32) -> i32 {
block0(v0: f32):
v1 = fcvt_to_sint.i32 v0
return v1
}
; block0:
; fcmp s0, s0
; b.vc 8 ; udf
; movz x6, #52992, LSL #16
; fmov s6, w6
; fcmp s0, s6
; b.ge 8 ; udf
; movz x12, #20224, LSL #16
; fmov s20, w12
; fcmp s0, s20
; b.lt 8 ; udf
; fcvtzs w0, s0
; ret
function %f22(f32) -> i64 {
block0(v0: f32):
v1 = fcvt_to_sint.i64 v0
return v1
}
; block0:
; fcmp s0, s0
; b.vc 8 ; udf
; movz x6, #57088, LSL #16
; fmov s6, w6
; fcmp s0, s6
; b.ge 8 ; udf
; movz x12, #24320, LSL #16
; fmov s20, w12
; fcmp s0, s20
; b.lt 8 ; udf
; fcvtzs x0, s0
; ret
function %f23(f64) -> i32 {
block0(v0: f64):
v1 = fcvt_to_sint.i32 v0
return v1
}
; block0:
; fcmp d0, d0
; b.vc 8 ; udf
; ldr d5, pc+8 ; b 12 ; data.f64 -2147483649
; fcmp d0, d5
; b.gt 8 ; udf
; movz x10, #16864, LSL #48
; fmov d18, x10
; fcmp d0, d18
; b.lt 8 ; udf
; fcvtzs w0, d0
; ret
function %f24(f64) -> i64 {
block0(v0: f64):
v1 = fcvt_to_sint.i64 v0
return v1
}
; block0:
; fcmp d0, d0
; b.vc 8 ; udf
; movz x6, #50144, LSL #48
; fmov d6, x6
; fcmp d0, d6
; b.ge 8 ; udf
; movz x12, #17376, LSL #48
; fmov d20, x12
; fcmp d0, d20
; b.lt 8 ; udf
; fcvtzs x0, d0
; ret
function %f25(f32) -> i32 {
block0(v0: f32):
v1 = fcvt_to_sint_sat.i32 v0
return v1
}
; block0:
; movz x4, #20224, LSL #16
; fmov s4, w4
; fmin s7, s0, s4
; movz x10, #52992, LSL #16
; fmov s18, w10
; fmax s21, s7, s18
; movi v23.16b, #0
; fcmp s0, s0
; fcsel s26, s23, s21, ne
; fcvtzs w0, s26
; ret
function %f26(f32) -> i64 {
block0(v0: f32):
v1 = fcvt_to_sint_sat.i64 v0
return v1
}
; block0:
; movz x4, #24320, LSL #16
; fmov s4, w4
; fmin s7, s0, s4
; movz x10, #57088, LSL #16
; fmov s18, w10
; fmax s21, s7, s18
; movi v23.16b, #0
; fcmp s0, s0
; fcsel s26, s23, s21, ne
; fcvtzs x0, s26
; ret
function %f27(f64) -> i32 {
block0(v0: f64):
v1 = fcvt_to_sint_sat.i32 v0
return v1
}
; block0:
; ldr d3, pc+8 ; b 12 ; data.f64 2147483647
; fmin d5, d0, d3
; movz x8, #49632, LSL #48
; fmov d16, x8
; fmax d19, d5, d16
; movi v21.16b, #0
; fcmp d0, d0
; fcsel d24, d21, d19, ne
; fcvtzs w0, d24
; ret
function %f28(f64) -> i64 {
block0(v0: f64):
v1 = fcvt_to_sint_sat.i64 v0
return v1
}
; block0:
; movz x4, #17376, LSL #48
; fmov d4, x4
; fmin d7, d0, d4
; movz x10, #50144, LSL #48
; fmov d18, x10
; fmax d21, d7, d18
; movi v23.16b, #0
; fcmp d0, d0
; fcsel d26, d23, d21, ne
; fcvtzs x0, d26
; ret
function %f29(f32x4) -> i32x4 {
block0(v0: f32x4):
v1 = fcvt_to_uint_sat.i32x4 v0
return v1
}
; block0:
; fcvtzu v0.4s, v0.4s
; ret
function %f30(f32x4) -> i32x4 {
block0(v0: f32x4):
v1 = fcvt_to_sint_sat.i32x4 v0
return v1
}
; block0:
; fcvtzs v0.4s, v0.4s
; ret

View File

@@ -71,11 +71,11 @@ block3(v7: r64, v8: r64):
; str x0, [sp, #8] ; str x0, [sp, #8]
; ldr x2, 8 ; b 12 ; data TestCase(%f) + 0 ; ldr x2, 8 ; b 12 ; data TestCase(%f) + 0
; blr x2 ; blr x2
; mov x8, sp ; mov x4, sp
; ldr x11, [sp, #8] ; ldr x11, [sp, #8]
; str x11, [x8] ; str x11, [x4]
; and w6, w0, #1 ; and w5, w0, #1
; cbz x6, label1 ; b label3 ; cbz x5, label1 ; b label3
; block1: ; block1:
; b label2 ; b label2
; block2: ; block2:
@@ -89,8 +89,8 @@ block3(v7: r64, v8: r64):
; ldr x1, [sp, #16] ; ldr x1, [sp, #16]
; b label5 ; b label5
; block5: ; block5:
; mov x3, sp ; mov x6, sp
; ldr x2, [x3] ; ldr x2, [x6]
; add sp, sp, #32 ; add sp, sp, #32
; ldp fp, lr, [sp], #16 ; ldp fp, lr, [sp], #16
; ret ; ret

View File

@@ -0,0 +1,213 @@
test compile precise-output
set enable_simd
target aarch64
function %band_f32x4(f32x4, f32x4) -> f32x4 {
block0(v0: f32x4, v1: f32x4):
v2 = band v0, v1
return v2
}
; block0:
; and v0.16b, v0.16b, v1.16b
; ret
function %band_f64x2(f64x2, f64x2) -> f64x2 {
block0(v0: f64x2, v1: f64x2):
v2 = band v0, v1
return v2
}
; block0:
; and v0.16b, v0.16b, v1.16b
; ret
function %band_i32x4(i32x4, i32x4) -> i32x4 {
block0(v0: i32x4, v1: i32x4):
v2 = band v0, v1
return v2
}
; block0:
; and v0.16b, v0.16b, v1.16b
; ret
function %bor_f32x4(f32x4, f32x4) -> f32x4 {
block0(v0: f32x4, v1: f32x4):
v2 = bor v0, v1
return v2
}
; block0:
; orr v0.16b, v0.16b, v1.16b
; ret
function %bor_f64x2(f64x2, f64x2) -> f64x2 {
block0(v0: f64x2, v1: f64x2):
v2 = bor v0, v1
return v2
}
; block0:
; orr v0.16b, v0.16b, v1.16b
; ret
function %bor_i32x4(i32x4, i32x4) -> i32x4 {
block0(v0: i32x4, v1: i32x4):
v2 = bor v0, v1
return v2
}
; block0:
; orr v0.16b, v0.16b, v1.16b
; ret
function %bxor_f32x4(f32x4, f32x4) -> f32x4 {
block0(v0: f32x4, v1: f32x4):
v2 = bxor v0, v1
return v2
}
; block0:
; eor v0.16b, v0.16b, v1.16b
; ret
function %bxor_f64x2(f64x2, f64x2) -> f64x2 {
block0(v0: f64x2, v1: f64x2):
v2 = bxor v0, v1
return v2
}
; block0:
; eor v0.16b, v0.16b, v1.16b
; ret
function %bxor_i32x4(i32x4, i32x4) -> i32x4 {
block0(v0: i32x4, v1: i32x4):
v2 = bxor v0, v1
return v2
}
; block0:
; eor v0.16b, v0.16b, v1.16b
; ret
function %bitselect_i16x8() -> i16x8 {
block0:
v0 = vconst.i16x8 [0 0 0 0 0 0 0 0]
v1 = vconst.i16x8 [0 0 0 0 0 0 0 0]
v2 = vconst.i16x8 [0 0 0 0 0 0 0 0]
v3 = bitselect v0, v1, v2
return v3
}
; block0:
; movi v0.16b, #0
; movi v4.16b, #0
; movi v5.16b, #0
; bsl v0.16b, v4.16b, v5.16b
; ret
function %vselect_i16x8(b16x8, i16x8, i16x8) -> i16x8 {
block0(v0: b16x8, v1: i16x8, v2: i16x8):
v3 = vselect v0, v1, v2
return v3
}
; block0:
; bsl v0.16b, v1.16b, v2.16b
; ret
function %vselect_f32x4(b32x4, f32x4, f32x4) -> f32x4 {
block0(v0: b32x4, v1: f32x4, v2: f32x4):
v3 = vselect v0, v1, v2
return v3
}
; block0:
; bsl v0.16b, v1.16b, v2.16b
; ret
function %vselect_f64x2(b64x2, f64x2, f64x2) -> f64x2 {
block0(v0: b64x2, v1: f64x2, v2: f64x2):
v3 = vselect v0, v1, v2
return v3
}
; block0:
; bsl v0.16b, v1.16b, v2.16b
; ret
function %ishl_i8x16(i32) -> i8x16 {
block0(v0: i32):
v1 = vconst.i8x16 [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]
v2 = ishl v1, v0
return v2
}
; block0:
; ldr q6, pc+8 ; b 20 ; data.f128 0x0f0e0d0c0b0a09080706050403020100
; and w4, w0, #7
; dup v7.16b, w4
; sshl v0.16b, v6.16b, v7.16b
; ret
function %ushr_i8x16_imm() -> i8x16 {
block0:
v0 = iconst.i32 1
v1 = vconst.i8x16 [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]
v2 = ushr v1, v0
return v2
}
; block0:
; ldr q6, pc+8 ; b 20 ; data.f128 0x0f0e0d0c0b0a09080706050403020100
; movz x2, #1
; and w4, w2, #7
; sub x6, xzr, x4
; dup v16.16b, w6
; ushl v0.16b, v6.16b, v16.16b
; ret
function %sshr_i8x16(i32) -> i8x16 {
block0(v0: i32):
v1 = vconst.i8x16 [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]
v2 = sshr v1, v0
return v2
}
; block0:
; ldr q7, pc+8 ; b 20 ; data.f128 0x0f0e0d0c0b0a09080706050403020100
; and w4, w0, #7
; sub x6, xzr, x4
; dup v16.16b, w6
; sshl v0.16b, v7.16b, v16.16b
; ret
function %sshr_i8x16_imm(i8x16, i32) -> i8x16 {
block0(v0: i8x16, v1: i32):
v2 = sshr_imm v0, 3
return v2
}
; block0:
; movz x5, #3
; and w7, w5, #7
; sub x9, xzr, x7
; dup v19.16b, w9
; sshl v0.16b, v0.16b, v19.16b
; ret
function %sshr_i64x2(i64x2, i32) -> i64x2 {
block0(v0: i64x2, v1: i32):
v2 = sshr v0, v1
return v2
}
; block0:
; and w5, w0, #63
; sub x7, xzr, x5
; dup v17.2d, x7
; sshl v0.2d, v0.2d, v17.2d
; ret

View File

@@ -0,0 +1,45 @@
test compile precise-output
set enable_simd
target aarch64
function %icmp_ne_32x4(i32x4, i32x4) -> b32x4 {
block0(v0: i32x4, v1: i32x4):
v2 = icmp ne v0, v1
return v2
}
; block0:
; cmeq v0.4s, v0.4s, v1.4s
; mvn v0.16b, v0.16b
; ret
function %icmp_ugt_i32x4(i32x4, i32x4) -> b32x4 {
block0(v0: i32x4, v1: i32x4):
v2 = icmp ugt v0, v1
return v2
}
; block0:
; cmhi v0.4s, v0.4s, v1.4s
; ret
function %icmp_sge_i16x8(i16x8, i16x8) -> b16x8 {
block0(v0: i16x8, v1: i16x8):
v2 = icmp sge v0, v1
return v2
}
; block0:
; cmge v0.8h, v0.8h, v1.8h
; ret
function %icmp_uge_i8x16(i8x16, i8x16) -> b8x16 {
block0(v0: i8x16, v1: i8x16):
v2 = icmp uge v0, v1
return v2
}
; block0:
; cmhs v0.16b, v0.16b, v1.16b
; ret

View File

@@ -0,0 +1,124 @@
test compile precise-output
set enable_simd
target aarch64
;; shuffle
function %shuffle_different_ssa_values() -> i8x16 {
block0:
v0 = vconst.i8x16 0x00
v1 = vconst.i8x16 0x01
v2 = shuffle v0, v1, 0x11000000000000000000000000000000 ;; pick the second lane of v1, the rest use the first lane of v0
return v2
}
; block0:
; movi v30.16b, #0
; movz x5, #1
; fmov s31, w5
; ldr q4, pc+8 ; b 20 ; data.f128 0x11000000000000000000000000000000
; tbl v0.16b, { v30.16b, v31.16b }, v4.16b
; ret
function %shuffle_same_ssa_value() -> i8x16 {
block0:
v1 = vconst.i8x16 0x01
v2 = shuffle v1, v1, 0x13000000000000000000000000000000 ;; pick the fourth lane of v1 and the rest from the first lane of v1
return v2
}
; block0:
; movz x4, #1
; fmov s30, w4
; ldr q3, pc+8 ; b 20 ; data.f128 0x13000000000000000000000000000000
; mov v31.16b, v30.16b
; tbl v0.16b, { v30.16b, v31.16b }, v3.16b
; ret
function %swizzle() -> i8x16 {
block0:
v0 = vconst.i8x16 [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]
v1 = vconst.i8x16 [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]
v2 = swizzle.i8x16 v0, v1
return v2
}
; block0:
; ldr q3, pc+8 ; b 20 ; data.f128 0x0f0e0d0c0b0a09080706050403020100
; ldr q4, pc+8 ; b 20 ; data.f128 0x0f0e0d0c0b0a09080706050403020100
; tbl v0.16b, { v3.16b }, v4.16b
; ret
function %splat_i8(i8) -> i8x16 {
block0(v0: i8):
v1 = splat.i8x16 v0
return v1
}
; block0:
; dup v0.16b, w0
; ret
function %splat_b16() -> b16x8 {
block0:
v0 = bconst.b16 true
v1 = splat.b16x8 v0
return v1
}
; block0:
; movi v0.16b, #255
; ret
function %splat_i32(i32) -> i32x4 {
block0(v0: i32):
v1 = splat.i32x4 v0
return v1
}
; block0:
; dup v0.4s, w0
; ret
function %splat_f64(f64) -> f64x2 {
block0(v0: f64):
v1 = splat.f64x2 v0
return v1
}
; block0:
; dup v0.2d, v0.d[0]
; ret
function %load32_zero_coalesced(i64) -> i32x4 {
block0(v0: i64):
v1 = load.i32 v0
v2 = scalar_to_vector.i32x4 v1
return v2
}
; block0:
; ldr w2, [x0]
; fmov s0, w2
; ret
function %load32_zero_int(i32) -> i32x4 {
block0(v0: i32):
v1 = scalar_to_vector.i32x4 v0
return v1
}
; block0:
; fmov s0, w0
; ret
function %load32_zero_float(f32) -> f32x4 {
block0(v0: f32):
v1 = scalar_to_vector.f32x4 v0
return v1
}
; block0:
; fmov s0, s0
; ret

View File

@@ -0,0 +1,40 @@
test compile precise-output
set enable_simd
target aarch64
function %bnot_b32x4(b32x4) -> b32x4 {
block0(v0: b32x4):
v1 = bnot v0
return v1
}
; block0:
; mvn v0.16b, v0.16b
; ret
function %vany_true_b32x4(b32x4) -> b1 {
block0(v0: b32x4):
v1 = vany_true v0
return v1
}
; block0:
; umaxp v3.4s, v0.4s, v0.4s
; mov x5, v3.d[0]
; subs xzr, x5, #0
; csetm x0, ne
; ret
function %vall_true_i64x2(i64x2) -> b1 {
block0(v0: i64x2):
v1 = vall_true v0
return v1
}
; block0:
; cmeq v3.2d, v0.2d, #0
; addp v5.2d, v3.2d, v3.2d
; fcmp d5, d5
; cset x0, eq
; ret

View File

@@ -1,8 +1,6 @@
test compile precise-output test compile precise-output
set unwind_info=false
target aarch64 target aarch64
function %fn1(i8x16) -> i16x8 { function %fn1(i8x16) -> i16x8 {
block0(v0: i8x16): block0(v0: i8x16):
v1 = swiden_low v0 v1 = swiden_low v0
@@ -15,19 +13,7 @@ block0(v0: i8x16):
; saddlp v0.8h, v0.16b ; saddlp v0.8h, v0.16b
; ret ; ret
function %fn2(i8x16) -> i16x8 { function %fn2(i16x8) -> i32x4 {
block0(v0: i8x16):
v1 = uwiden_low v0
v2 = uwiden_high v0
v3 = iadd_pairwise v1, v2
return v3
}
; block0:
; uaddlp v0.8h, v0.16b
; ret
function %fn3(i16x8) -> i32x4 {
block0(v0: i16x8): block0(v0: i16x8):
v1 = swiden_low v0 v1 = swiden_low v0
v2 = swiden_high v0 v2 = swiden_high v0
@@ -39,6 +25,18 @@ block0(v0: i16x8):
; saddlp v0.4s, v0.8h ; saddlp v0.4s, v0.8h
; ret ; ret
function %fn3(i8x16) -> i16x8 {
block0(v0: i8x16):
v1 = uwiden_low v0
v2 = uwiden_high v0
v3 = iadd_pairwise v1, v2
return v3
}
; block0:
; uaddlp v0.8h, v0.16b
; ret
function %fn4(i16x8) -> i32x4 { function %fn4(i16x8) -> i32x4 {
block0(v0: i16x8): block0(v0: i16x8):
v1 = uwiden_low v0 v1 = uwiden_low v0
@@ -51,169 +49,3 @@ block0(v0: i16x8):
; uaddlp v0.4s, v0.8h ; uaddlp v0.4s, v0.8h
; ret ; ret
function %fn5(i8x16, i8x16) -> i16x8 {
block0(v0: i8x16, v1: i8x16):
v2 = swiden_low v0
v3 = swiden_high v1
v4 = iadd_pairwise v2, v3
return v4
}
; block0:
; sxtl v7.8h, v0.8b
; sxtl2 v16.8h, v1.16b
; addp v0.8h, v7.8h, v16.8h
; ret
function %fn6(i8x16, i8x16) -> i16x8 {
block0(v0: i8x16, v1: i8x16):
v2 = uwiden_low v0
v3 = uwiden_high v1
v4 = iadd_pairwise v2, v3
return v4
}
; block0:
; uxtl v7.8h, v0.8b
; uxtl2 v16.8h, v1.16b
; addp v0.8h, v7.8h, v16.8h
; ret
function %fn7(i8x16) -> i16x8 {
block0(v0: i8x16):
v1 = uwiden_low v0
v2 = swiden_high v0
v3 = iadd_pairwise v1, v2
return v3
}
; block0:
; uxtl v5.8h, v0.8b
; sxtl2 v6.8h, v0.16b
; addp v0.8h, v5.8h, v6.8h
; ret
function %fn8(i8x16) -> i16x8 {
block0(v0: i8x16):
v1 = swiden_low v0
v2 = uwiden_high v0
v3 = iadd_pairwise v1, v2
return v3
}
; block0:
; sxtl v5.8h, v0.8b
; uxtl2 v6.8h, v0.16b
; addp v0.8h, v5.8h, v6.8h
; ret
function %fn9(i8x8, i8x8) -> i8x8 {
block0(v0: i8x8, v1: i8x8):
v2 = iadd_pairwise v0, v1
return v2
}
; block0:
; addp v0.8b, v0.8b, v1.8b
; ret
function %fn10(i8x16, i8x16) -> i8x16 {
block0(v0: i8x16, v1: i8x16):
v2 = iadd_pairwise v0, v1
return v2
}
; block0:
; addp v0.16b, v0.16b, v1.16b
; ret
function %fn11(i16x4, i16x4) -> i16x4 {
block0(v0: i16x4, v1: i16x4):
v2 = iadd_pairwise v0, v1
return v2
}
; block0:
; addp v0.4h, v0.4h, v1.4h
; ret
function %fn12(i16x8, i16x8) -> i16x8 {
block0(v0: i16x8, v1: i16x8):
v2 = iadd_pairwise v0, v1
return v2
}
; block0:
; addp v0.8h, v0.8h, v1.8h
; ret
function %fn14(i32x4, i32x4) -> i32x4 {
block0(v0: i32x4, v1: i32x4):
v2 = iadd_pairwise v0, v1
return v2
}
; block0:
; addp v0.4s, v0.4s, v1.4s
; ret
function %fn15(i8x8, i8x8) -> i16x4 {
block0(v0: i8x8, v1: i8x8):
v2 = swiden_low v0
v3 = swiden_high v1
v4 = iadd_pairwise v2, v3
return v4
}
; block0:
; sxtl v16.8h, v0.8b
; mov s7, v1.s[1]
; sxtl v17.8h, v7.8b
; addp v0.4h, v16.4h, v17.4h
; ret
function %fn16(i8x8, i8x8) -> i16x4 {
block0(v0: i8x8, v1: i8x8):
v2 = uwiden_low v0
v3 = uwiden_high v1
v4 = iadd_pairwise v2, v3
return v4
}
; block0:
; uxtl v16.8h, v0.8b
; mov s7, v1.s[1]
; uxtl v17.8h, v7.8b
; addp v0.4h, v16.4h, v17.4h
; ret
function %fn17(i8x8) -> i16x4 {
block0(v0: i8x8):
v1 = uwiden_low v0
v2 = swiden_high v0
v3 = iadd_pairwise v1, v2
return v3
}
; block0:
; uxtl v6.8h, v0.8b
; mov s5, v0.s[1]
; sxtl v7.8h, v5.8b
; addp v0.4h, v6.4h, v7.4h
; ret
function %fn18(i8x8) -> i16x4 {
block0(v0: i8x8):
v1 = swiden_low v0
v2 = uwiden_high v0
v3 = iadd_pairwise v1, v2
return v3
}
; block0:
; sxtl v6.8h, v0.8b
; mov s5, v0.s[1]
; uxtl v7.8h, v5.8b
; addp v0.4h, v6.4h, v7.4h
; ret

View File

@@ -53,8 +53,8 @@ block0:
; mov fp, sp ; mov fp, sp
; sub sp, sp, #16 ; sub sp, sp, #16
; block0: ; block0:
; mov x0, sp ; mov x2, sp
; ldr x0, [x0] ; ldr x0, [x2]
; add sp, sp, #16 ; add sp, sp, #16
; ldp fp, lr, [sp], #16 ; ldp fp, lr, [sp], #16
; ret ; ret
@@ -74,8 +74,8 @@ block0:
; movk w16, #1, LSL #16 ; movk w16, #1, LSL #16
; sub sp, sp, x16, UXTX ; sub sp, sp, x16, UXTX
; block0: ; block0:
; mov x0, sp ; mov x2, sp
; ldr x0, [x0] ; ldr x0, [x2]
; movz w16, #34480 ; movz w16, #34480
; movk w16, #1, LSL #16 ; movk w16, #1, LSL #16
; add sp, sp, x16, UXTX ; add sp, sp, x16, UXTX
@@ -442,8 +442,8 @@ block0(v0: i128):
; mov fp, sp ; mov fp, sp
; sub sp, sp, #16 ; sub sp, sp, #16
; block0: ; block0:
; mov x4, sp ; mov x5, sp
; stp x0, x1, [x4] ; stp x0, x1, [x5]
; add sp, sp, #16 ; add sp, sp, #16
; ldp fp, lr, [sp], #16 ; ldp fp, lr, [sp], #16
; ret ; ret
@@ -461,8 +461,8 @@ block0(v0: i128):
; mov fp, sp ; mov fp, sp
; sub sp, sp, #32 ; sub sp, sp, #32
; block0: ; block0:
; add x4, sp, #32 ; add x5, sp, #32
; stp x0, x1, [x4] ; stp x0, x1, [x5]
; add sp, sp, #32 ; add sp, sp, #32
; ldp fp, lr, [sp], #16 ; ldp fp, lr, [sp], #16
; ret ; ret
@@ -482,8 +482,8 @@ block0(v0: i128):
; movk w16, #1, LSL #16 ; movk w16, #1, LSL #16
; sub sp, sp, x16, UXTX ; sub sp, sp, x16, UXTX
; block0: ; block0:
; mov x4, sp ; mov x5, sp
; stp x0, x1, [x4] ; stp x0, x1, [x5]
; movz w16, #34480 ; movz w16, #34480
; movk w16, #1, LSL #16 ; movk w16, #1, LSL #16
; add sp, sp, x16, UXTX ; add sp, sp, x16, UXTX
@@ -502,8 +502,8 @@ block0:
; mov fp, sp ; mov fp, sp
; sub sp, sp, #16 ; sub sp, sp, #16
; block0: ; block0:
; mov x0, sp ; mov x5, sp
; ldp x0, x1, [x0] ; ldp x0, x1, [x5]
; add sp, sp, #16 ; add sp, sp, #16
; ldp fp, lr, [sp], #16 ; ldp fp, lr, [sp], #16
; ret ; ret
@@ -521,8 +521,8 @@ block0:
; mov fp, sp ; mov fp, sp
; sub sp, sp, #32 ; sub sp, sp, #32
; block0: ; block0:
; add x0, sp, #32 ; add x5, sp, #32
; ldp x0, x1, [x0] ; ldp x0, x1, [x5]
; add sp, sp, #32 ; add sp, sp, #32
; ldp fp, lr, [sp], #16 ; ldp fp, lr, [sp], #16
; ret ; ret
@@ -542,8 +542,8 @@ block0:
; movk w16, #1, LSL #16 ; movk w16, #1, LSL #16
; sub sp, sp, x16, UXTX ; sub sp, sp, x16, UXTX
; block0: ; block0:
; mov x0, sp ; mov x5, sp
; ldp x0, x1, [x0] ; ldp x0, x1, [x5]
; movz w16, #34480 ; movz w16, #34480
; movk w16, #1, LSL #16 ; movk w16, #1, LSL #16
; add sp, sp, x16, UXTX ; add sp, sp, x16, UXTX

View File

@@ -1,8 +1,7 @@
test compile precise-output test compile precise-output
set unwind_info=false
target aarch64 target aarch64
function %f() { function %trap() {
block0: block0:
trap user0 trap user0
} }
@@ -10,26 +9,14 @@ block0:
; block0: ; block0:
; udf #0xc11f ; udf #0xc11f
function %g(i64) { function %trap_iadd_ifcout(i64, i64) {
block0(v0: i64): block0(v0: i64, v1: i64):
v1 = iconst.i64 42 v2, v3 = iadd_ifcout v0, v1
v2 = ifcmp v0, v1 trapif of v3, user0
trapif eq v2, user0
return return
} }
; block0: ; block0:
; subs xzr, x0, #42 ; b.vc 8 ; udf
; b.ne 8 ; udf
; ret
function %h() {
block0:
debugtrap
return
}
; block0:
; brk #0
; ret ; ret

View File

@@ -0,0 +1,85 @@
test compile precise-output
target aarch64
function %f1(i8x16) -> i8 {
block0(v0: i8x16):
v1 = vhigh_bits.i8 v0
return v1
}
; block0:
; sshr v3.16b, v0.16b, #7
; movz x6, #513
; movk x6, #2052, LSL #16
; movk x6, #8208, LSL #32
; movk x6, #32832, LSL #48
; dup v17.2d, x6
; and v20.16b, v3.16b, v17.16b
; ext v22.16b, v20.16b, v20.16b, #8
; zip1 v24.16b, v20.16b, v22.16b
; addv h26, v24.8h
; umov w0, v26.h[0]
; ret
function %f2(i8x16) -> i16 {
block0(v0: i8x16):
v1 = vhigh_bits.i16 v0
return v1
}
; block0:
; sshr v3.16b, v0.16b, #7
; movz x6, #513
; movk x6, #2052, LSL #16
; movk x6, #8208, LSL #32
; movk x6, #32832, LSL #48
; dup v17.2d, x6
; and v20.16b, v3.16b, v17.16b
; ext v22.16b, v20.16b, v20.16b, #8
; zip1 v24.16b, v20.16b, v22.16b
; addv h26, v24.8h
; umov w0, v26.h[0]
; ret
function %f3(i16x8) -> i8 {
block0(v0: i16x8):
v1 = vhigh_bits.i8 v0
return v1
}
; block0:
; sshr v3.8h, v0.8h, #15
; ldr q5, pc+8 ; b 20 ; data.f128 0x00800040002000100008000400020001
; and v7.16b, v3.16b, v5.16b
; addv h17, v7.8h
; umov w0, v17.h[0]
; ret
function %f4(i32x4) -> i8 {
block0(v0: i32x4):
v1 = vhigh_bits.i8 v0
return v1
}
; block0:
; sshr v3.4s, v0.4s, #31
; ldr q5, pc+8 ; b 20 ; data.f128 0x00000008000000040000000200000001
; and v7.16b, v3.16b, v5.16b
; addv s17, v7.4s
; mov w0, v17.s[0]
; ret
function %f5(i64x2) -> i8 {
block0(v0: i64x2):
v1 = vhigh_bits.i8 v0
return v1
}
; block0:
; mov x3, v0.d[1]
; mov x5, v0.d[0]
; lsr x7, x3, #63
; lsr x9, x5, #63
; add x0, x9, x7, LSL 1
; ret