Add an initial wasi-nn implementation for Wasmtime (#2208)

* Add an initial wasi-nn implementation for Wasmtime

This change adds a crate, `wasmtime-wasi-nn`, that uses `wiggle` to expose the current state of the wasi-nn API and `openvino` to implement the exposed functions. It includes an end-to-end test demonstrating how to do classification using wasi-nn:
 - `crates/wasi-nn/tests/classification-example` contains Rust code that is compiled to the `wasm32-wasi` target and run with a Wasmtime embedding that exposes the wasi-nn calls
 - the example uses Rust bindings for wasi-nn contained in `crates/wasi-nn/tests/wasi-nn-rust-bindings`; this crate contains code generated by `witx-bindgen` and eventually should be its own standalone crate

* Test wasi-nn as a CI step

This change adds:
 - a GitHub action for installing OpenVINO
 - a script, `ci/run-wasi-nn-example.sh`, to run the classification example
This commit is contained in:
Andrew Brown
2020-11-16 10:54:00 -08:00
committed by GitHub
parent 61a0bcbdc6
commit a61f068c64
33 changed files with 1554 additions and 1 deletions

176
crates/wasi-nn/src/impl.rs Normal file
View File

@@ -0,0 +1,176 @@
//! Implements the wasi-nn API.
use crate::ctx::{ExecutionContext, WasiNnResult as Result};
use crate::witx::types::{
ExecutionTarget, Graph, GraphBuilderArray, GraphEncoding, GraphExecutionContext, Tensor,
TensorType,
};
use crate::witx::wasi_ephemeral_nn::WasiEphemeralNn;
use crate::WasiNnCtx;
use openvino::{Layout, Precision, TensorDesc};
use thiserror::Error;
use wiggle::GuestPtr;
#[derive(Debug, Error)]
pub enum UsageError {
#[error("Only OpenVINO's IR is currently supported, passed encoding: {0}")]
InvalidEncoding(GraphEncoding),
#[error("OpenVINO expects only two buffers (i.e. [ir, weights]), passed: {0}")]
InvalidNumberOfBuilders(u32),
#[error("Invalid graph handle; has it been loaded?")]
InvalidGraphHandle,
#[error("Invalid execution context handle; has it been initialized?")]
InvalidExecutionContextHandle,
#[error("Not enough memory to copy tensor data of size: {0}")]
NotEnoughMemory(u32),
}
impl<'a> WasiEphemeralNn for WasiNnCtx {
fn load<'b>(
&self,
builders: &GraphBuilderArray<'_>,
encoding: GraphEncoding,
target: ExecutionTarget,
) -> Result<Graph> {
if encoding != GraphEncoding::Openvino {
return Err(UsageError::InvalidEncoding(encoding).into());
}
if builders.len() != 2 {
return Err(UsageError::InvalidNumberOfBuilders(builders.len()).into());
}
let builders = builders.as_ptr();
let xml = builders.read()?.as_slice()?;
let weights = builders.add(1)?.read()?.as_slice()?;
let graph = self
.ctx
.borrow_mut()
.core
.read_network_from_buffer(&xml, &weights)?;
let executable_graph = self
.ctx
.borrow_mut()
.core
.load_network(&graph, map_execution_target_to_string(target))?;
let id = self
.ctx
.borrow_mut()
.graphs
.insert((graph, executable_graph));
Ok(id)
}
fn init_execution_context(&self, graph: Graph) -> Result<GraphExecutionContext> {
let request =
if let Some((_, executable_graph)) = self.ctx.borrow_mut().graphs.get_mut(graph) {
executable_graph.create_infer_request()?
} else {
return Err(UsageError::InvalidGraphHandle.into());
};
let execution_context = ExecutionContext::new(graph, request);
let handle = self.ctx.borrow_mut().executions.insert(execution_context);
Ok(handle)
}
fn set_input<'b>(
&self,
context: GraphExecutionContext,
index: u32,
tensor: &Tensor<'b>,
) -> Result<()> {
let graph = if let Some(execution) = self.ctx.borrow_mut().executions.get_mut(context) {
execution.graph
} else {
return Err(UsageError::InvalidExecutionContextHandle.into());
};
let input_name = if let Some((graph, _)) = self.ctx.borrow().graphs.get(graph) {
graph.get_input_name(index as usize)?
} else {
unreachable!("It should be impossible to attempt to access an execution's graph and for that graph not to exist--this is a bug.")
};
// Construct the blob structure.
let dimensions = tensor
.dimensions
.as_slice()?
.iter()
.map(|d| *d as u64)
.collect::<Vec<_>>();
let precision = match tensor.type_ {
TensorType::F16 => Precision::FP16,
TensorType::F32 => Precision::FP32,
TensorType::U8 => Precision::U8,
TensorType::I32 => Precision::I32,
};
// TODO There must be some good way to discover the layout here; this should not have to default to NHWC.
let desc = TensorDesc::new(Layout::NHWC, &dimensions, precision);
let data = tensor.data.as_slice()?;
let blob = openvino::Blob::new(desc, &data)?;
// Actually assign the blob to the request (TODO avoid duplication with the borrow above).
if let Some(execution) = self.ctx.borrow_mut().executions.get_mut(context) {
execution.request.set_blob(&input_name, blob)?;
} else {
return Err(UsageError::InvalidExecutionContextHandle.into());
}
Ok(())
}
fn compute(&self, context: GraphExecutionContext) -> Result<()> {
if let Some(execution) = self.ctx.borrow_mut().executions.get_mut(context) {
Ok(execution.request.infer()?)
} else {
return Err(UsageError::InvalidExecutionContextHandle.into());
}
}
fn get_output<'b>(
&self,
context: GraphExecutionContext,
index: u32,
out_buffer: &GuestPtr<'_, u8>,
out_buffer_max_size: u32,
) -> Result<u32> {
let graph = if let Some(execution) = self.ctx.borrow_mut().executions.get_mut(context) {
execution.graph
} else {
return Err(UsageError::InvalidExecutionContextHandle.into());
};
let output_name = if let Some((graph, _)) = self.ctx.borrow().graphs.get(graph) {
graph.get_output_name(index as usize)?
} else {
unreachable!("It should be impossible to attempt to access an execution's graph and for that graph not to exist--this is a bug.")
};
// Retrieve the tensor data.
let (mut blob, blob_size) =
if let Some(execution) = self.ctx.borrow_mut().executions.get_mut(context) {
let mut blob = execution.request.get_blob(&output_name)?; // TODO shouldn't need to be mut
let blob_size = blob.byte_len()? as u32;
if blob_size > out_buffer_max_size {
return Err(UsageError::NotEnoughMemory(blob_size).into());
}
(blob, blob_size)
} else {
return Err(UsageError::InvalidExecutionContextHandle.into());
};
// Copy the tensor data over to the `out_buffer`.
let mut out_slice = out_buffer.as_array(out_buffer_max_size).as_slice()?;
(&mut out_slice[..blob_size as usize]).copy_from_slice(blob.buffer()?);
Ok(blob_size)
}
}
/// Return the execution target string expected by OpenVINO from the `ExecutionTarget` enum provided
/// by wasi-nn.
fn map_execution_target_to_string(target: ExecutionTarget) -> &'static str {
match target {
ExecutionTarget::Cpu => "CPU",
ExecutionTarget::Gpu => "GPU",
ExecutionTarget::Tpu => unimplemented!("OpenVINO does not support TPU execution targets"),
}
}