Remove the old x86 backend

This commit is contained in:
bjorn3
2021-06-18 17:28:55 +02:00
parent e989caf337
commit 9e34df33b9
246 changed files with 76 additions and 28804 deletions

View File

@@ -1,3 +0,0 @@
//! Shared ISA-specific definitions.
pub mod x86;

View File

@@ -1,419 +0,0 @@
//! Provides a named interface to the `u16` Encoding bits.
use std::ops::RangeInclusive;
/// Named interface to the `u16` Encoding bits, representing an opcode.
///
/// Cranelift requires each recipe to have a single encoding size in bytes.
/// X86 opcodes are variable length, so we use separate recipes for different
/// styles of opcodes and prefixes. The opcode format is indicated by the
/// recipe name prefix.
///
/// VEX/XOP and EVEX prefixes are not yet supported.
/// Encodings using any of these prefixes are represented by separate recipes.
///
/// The encoding bits are:
///
/// 0-7: The opcode byte <op>.
/// 8-9: pp, mandatory prefix:
/// 00: none (Op*)
/// 01: 66 (Mp*)
/// 10: F3 (Mp*)
/// 11: F2 (Mp*)
/// 10-11: mm, opcode map:
/// 00: <op> (Op1/Mp1)
/// 01: 0F <op> (Op2/Mp2)
/// 10: 0F 38 <op> (Op3/Mp3)
/// 11: 0F 3A <op> (Op3/Mp3)
/// 12-14 rrr, opcode bits for the ModR/M byte for certain opcodes.
/// 15: REX.W bit (or VEX.W/E)
#[derive(Copy, Clone, PartialEq)]
pub struct EncodingBits(u16);
const OPCODE: RangeInclusive<u16> = 0..=7;
const OPCODE_PREFIX: RangeInclusive<u16> = 8..=11; // Includes pp and mm.
const RRR: RangeInclusive<u16> = 12..=14;
const REX_W: RangeInclusive<u16> = 15..=15;
impl From<u16> for EncodingBits {
fn from(bits: u16) -> Self {
Self(bits)
}
}
impl EncodingBits {
/// Constructs a new EncodingBits from parts.
pub fn new(op_bytes: &[u8], rrr: u16, rex_w: u16) -> Self {
assert!(
!op_bytes.is_empty(),
"op_bytes must include at least one opcode byte"
);
let mut new = Self::from(0);
let last_byte = op_bytes[op_bytes.len() - 1];
new.write(OPCODE, last_byte as u16);
let prefix: u8 = OpcodePrefix::from_opcode(op_bytes).into();
new.write(OPCODE_PREFIX, prefix as u16);
new.write(RRR, rrr);
new.write(REX_W, rex_w);
new
}
/// Returns a copy of the EncodingBits with the RRR bits set.
#[inline]
pub fn with_rrr(mut self, rrr: u8) -> Self {
debug_assert_eq!(self.rrr(), 0);
self.write(RRR, rrr.into());
self
}
/// Returns a copy of the EncodingBits with the REX.W bit set.
#[inline]
pub fn with_rex_w(mut self) -> Self {
debug_assert_eq!(self.rex_w(), 0);
self.write(REX_W, 1);
self
}
/// Returns the raw bits.
#[inline]
pub fn bits(self) -> u16 {
self.0
}
/// Convenience method for writing bits to specific range.
#[inline]
fn write(&mut self, range: RangeInclusive<u16>, value: u16) {
assert!(ExactSizeIterator::len(&range) > 0);
let size = range.end() - range.start() + 1; // Calculate the number of bits in the range.
let mask = (1 << size) - 1; // Generate a bit mask.
debug_assert!(
value <= mask,
"The written value should have fewer than {} bits.",
size
);
let mask_complement = !(mask << *range.start()); // Create the bitwise complement for the clear mask.
self.0 &= mask_complement; // Clear the bits in `range`.
let value = (value & mask) << *range.start(); // Place the value in the correct location.
self.0 |= value; // Modify the bits in `range`.
}
/// Convenience method for reading bits from a specific range.
#[inline]
fn read(self, range: RangeInclusive<u16>) -> u8 {
assert!(ExactSizeIterator::len(&range) > 0);
let size = range.end() - range.start() + 1; // Calculate the number of bits in the range.
debug_assert!(size <= 8, "This structure expects ranges of at most 8 bits");
let mask = (1 << size) - 1; // Generate a bit mask.
((self.0 >> *range.start()) & mask) as u8
}
/// Instruction opcode byte, without the prefix.
#[inline]
pub fn opcode_byte(self) -> u8 {
self.read(OPCODE)
}
/// Prefix kind for the instruction, as an enum.
#[inline]
pub fn prefix(self) -> OpcodePrefix {
OpcodePrefix::from(self.read(OPCODE_PREFIX))
}
/// Extracts the PP bits of the OpcodePrefix.
#[inline]
pub fn pp(self) -> u8 {
self.prefix().to_primitive() & 0x3
}
/// Extracts the MM bits of the OpcodePrefix.
#[inline]
pub fn mm(self) -> u8 {
(self.prefix().to_primitive() >> 2) & 0x3
}
/// Bits for the ModR/M byte for certain opcodes.
#[inline]
pub fn rrr(self) -> u8 {
self.read(RRR)
}
/// REX.W bit (or VEX.W/E).
#[inline]
pub fn rex_w(self) -> u8 {
self.read(REX_W)
}
}
/// Opcode prefix representation.
///
/// The prefix type occupies four of the EncodingBits.
#[allow(non_camel_case_types)]
#[allow(missing_docs)]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum OpcodePrefix {
Op1,
Mp1_66,
Mp1_f3,
Mp1_f2,
Op2_0f,
Mp2_66_0f,
Mp2_f3_0f,
Mp2_f2_0f,
Op3_0f_38,
Mp3_66_0f_38,
Mp3_f3_0f_38,
Mp3_f2_0f_38,
Op3_0f_3a,
Mp3_66_0f_3a,
Mp3_f3_0f_3a,
Mp3_f2_0f_3a,
}
impl From<u8> for OpcodePrefix {
fn from(n: u8) -> Self {
use OpcodePrefix::*;
match n {
0b0000 => Op1,
0b0001 => Mp1_66,
0b0010 => Mp1_f3,
0b0011 => Mp1_f2,
0b0100 => Op2_0f,
0b0101 => Mp2_66_0f,
0b0110 => Mp2_f3_0f,
0b0111 => Mp2_f2_0f,
0b1000 => Op3_0f_38,
0b1001 => Mp3_66_0f_38,
0b1010 => Mp3_f3_0f_38,
0b1011 => Mp3_f2_0f_38,
0b1100 => Op3_0f_3a,
0b1101 => Mp3_66_0f_3a,
0b1110 => Mp3_f3_0f_3a,
0b1111 => Mp3_f2_0f_3a,
_ => panic!("invalid opcode prefix"),
}
}
}
impl Into<u8> for OpcodePrefix {
fn into(self) -> u8 {
use OpcodePrefix::*;
match self {
Op1 => 0b0000,
Mp1_66 => 0b0001,
Mp1_f3 => 0b0010,
Mp1_f2 => 0b0011,
Op2_0f => 0b0100,
Mp2_66_0f => 0b0101,
Mp2_f3_0f => 0b0110,
Mp2_f2_0f => 0b0111,
Op3_0f_38 => 0b1000,
Mp3_66_0f_38 => 0b1001,
Mp3_f3_0f_38 => 0b1010,
Mp3_f2_0f_38 => 0b1011,
Op3_0f_3a => 0b1100,
Mp3_66_0f_3a => 0b1101,
Mp3_f3_0f_3a => 0b1110,
Mp3_f2_0f_3a => 0b1111,
}
}
}
impl OpcodePrefix {
/// Convert an opcode prefix to a `u8`; this is a convenience proxy for `Into<u8>`.
fn to_primitive(self) -> u8 {
self.into()
}
/// Extracts the OpcodePrefix from the opcode.
pub fn from_opcode(op_bytes: &[u8]) -> Self {
assert!(!op_bytes.is_empty(), "at least one opcode byte");
let prefix_bytes = &op_bytes[..op_bytes.len() - 1];
match prefix_bytes {
[] => Self::Op1,
[0x66] => Self::Mp1_66,
[0xf3] => Self::Mp1_f3,
[0xf2] => Self::Mp1_f2,
[0x0f] => Self::Op2_0f,
[0x66, 0x0f] => Self::Mp2_66_0f,
[0xf3, 0x0f] => Self::Mp2_f3_0f,
[0xf2, 0x0f] => Self::Mp2_f2_0f,
[0x0f, 0x38] => Self::Op3_0f_38,
[0x66, 0x0f, 0x38] => Self::Mp3_66_0f_38,
[0xf3, 0x0f, 0x38] => Self::Mp3_f3_0f_38,
[0xf2, 0x0f, 0x38] => Self::Mp3_f2_0f_38,
[0x0f, 0x3a] => Self::Op3_0f_3a,
[0x66, 0x0f, 0x3a] => Self::Mp3_66_0f_3a,
[0xf3, 0x0f, 0x3a] => Self::Mp3_f3_0f_3a,
[0xf2, 0x0f, 0x3a] => Self::Mp3_f2_0f_3a,
_ => {
panic!("unexpected opcode sequence: {:?}", op_bytes);
}
}
}
/// Returns the recipe name prefix.
///
/// At the moment, each similar OpcodePrefix group is given its own Recipe.
/// In order to distinguish them, this string is prefixed.
pub fn recipe_name_prefix(self) -> &'static str {
use OpcodePrefix::*;
match self {
Op1 => "Op1",
Op2_0f => "Op2",
Op3_0f_38 | Op3_0f_3a => "Op3",
Mp1_66 | Mp1_f3 | Mp1_f2 => "Mp1",
Mp2_66_0f | Mp2_f3_0f | Mp2_f2_0f => "Mp2",
Mp3_66_0f_38 | Mp3_f3_0f_38 | Mp3_f2_0f_38 => "Mp3",
Mp3_66_0f_3a | Mp3_f3_0f_3a | Mp3_f2_0f_3a => "Mp3",
}
}
}
#[cfg(test)]
mod tests {
use super::*;
/// Helper function for prefix_roundtrip() to avoid long lines.
fn test_roundtrip(p: OpcodePrefix) {
assert_eq!(p, OpcodePrefix::from(p.to_primitive()));
}
/// Tests that to/from each opcode matches.
#[test]
fn prefix_roundtrip() {
test_roundtrip(OpcodePrefix::Op1);
test_roundtrip(OpcodePrefix::Mp1_66);
test_roundtrip(OpcodePrefix::Mp1_f3);
test_roundtrip(OpcodePrefix::Mp1_f2);
test_roundtrip(OpcodePrefix::Op2_0f);
test_roundtrip(OpcodePrefix::Mp2_66_0f);
test_roundtrip(OpcodePrefix::Mp2_f3_0f);
test_roundtrip(OpcodePrefix::Mp2_f2_0f);
test_roundtrip(OpcodePrefix::Op3_0f_38);
test_roundtrip(OpcodePrefix::Mp3_66_0f_38);
test_roundtrip(OpcodePrefix::Mp3_f3_0f_38);
test_roundtrip(OpcodePrefix::Mp3_f2_0f_38);
test_roundtrip(OpcodePrefix::Op3_0f_3a);
test_roundtrip(OpcodePrefix::Mp3_66_0f_3a);
test_roundtrip(OpcodePrefix::Mp3_f3_0f_3a);
test_roundtrip(OpcodePrefix::Mp3_f2_0f_3a);
}
#[test]
fn prefix_to_name() {
assert_eq!(OpcodePrefix::Op1.recipe_name_prefix(), "Op1");
assert_eq!(OpcodePrefix::Op2_0f.recipe_name_prefix(), "Op2");
assert_eq!(OpcodePrefix::Op3_0f_38.recipe_name_prefix(), "Op3");
assert_eq!(OpcodePrefix::Mp1_66.recipe_name_prefix(), "Mp1");
assert_eq!(OpcodePrefix::Mp2_66_0f.recipe_name_prefix(), "Mp2");
assert_eq!(OpcodePrefix::Mp3_66_0f_3a.recipe_name_prefix(), "Mp3");
}
/// Tests that the opcode_byte is the lower of the EncodingBits.
#[test]
fn encodingbits_opcode_byte() {
let enc = EncodingBits::from(0x00ff);
assert_eq!(enc.opcode_byte(), 0xff);
assert_eq!(enc.prefix().to_primitive(), 0x0);
assert_eq!(enc.rrr(), 0x0);
assert_eq!(enc.rex_w(), 0x0);
let enc = EncodingBits::from(0x00cd);
assert_eq!(enc.opcode_byte(), 0xcd);
}
/// Tests that the OpcodePrefix is encoded correctly.
#[test]
fn encodingbits_prefix() {
let enc = EncodingBits::from(0x0c00);
assert_eq!(enc.opcode_byte(), 0x00);
assert_eq!(enc.prefix().to_primitive(), 0xc);
assert_eq!(enc.prefix(), OpcodePrefix::Op3_0f_3a);
assert_eq!(enc.rrr(), 0x0);
assert_eq!(enc.rex_w(), 0x0);
}
/// Tests that the PP bits are encoded correctly.
#[test]
fn encodingbits_pp() {
let enc = EncodingBits::from(0x0300);
assert_eq!(enc.opcode_byte(), 0x0);
assert_eq!(enc.pp(), 0x3);
assert_eq!(enc.mm(), 0x0);
assert_eq!(enc.rrr(), 0x0);
assert_eq!(enc.rex_w(), 0x0);
}
/// Tests that the MM bits are encoded correctly.
#[test]
fn encodingbits_mm() {
let enc = EncodingBits::from(0x0c00);
assert_eq!(enc.opcode_byte(), 0x0);
assert_eq!(enc.pp(), 0x00);
assert_eq!(enc.mm(), 0x3);
assert_eq!(enc.rrr(), 0x0);
assert_eq!(enc.rex_w(), 0x0);
}
/// Tests that the ModR/M bits are encoded correctly.
#[test]
fn encodingbits_rrr() {
let enc = EncodingBits::from(0x5000);
assert_eq!(enc.opcode_byte(), 0x0);
assert_eq!(enc.prefix().to_primitive(), 0x0);
assert_eq!(enc.rrr(), 0x5);
assert_eq!(enc.rex_w(), 0x0);
}
/// Tests that the REX.W bit is encoded correctly.
#[test]
fn encodingbits_rex_w() {
let enc = EncodingBits::from(0x8000);
assert_eq!(enc.opcode_byte(), 0x00);
assert_eq!(enc.prefix().to_primitive(), 0x0);
assert_eq!(enc.rrr(), 0x0);
assert_eq!(enc.rex_w(), 0x1);
}
/// Tests setting and unsetting a bit using EncodingBits::write.
#[test]
fn encodingbits_flip() {
let mut bits = EncodingBits::from(0);
let range = 2..=2;
bits.write(range.clone(), 1);
assert_eq!(bits.bits(), 0b100);
bits.write(range, 0);
assert_eq!(bits.bits(), 0b000);
}
/// Tests a round-trip of EncodingBits from/to a u16 (hardcoded endianness).
#[test]
fn encodingbits_roundtrip() {
let bits: u16 = 0x1234;
assert_eq!(EncodingBits::from(bits).bits(), bits);
}
#[test]
// I purposely want to divide the bits using the ranges defined above.
#[allow(clippy::inconsistent_digit_grouping)]
fn encodingbits_construction() {
assert_eq!(
EncodingBits::new(&[0x66, 0x40], 5, 1).bits(),
0b1_101_0001_01000000 // 1 = rex_w, 101 = rrr, 0001 = prefix, 01000000 = opcode
);
}
#[test]
#[should_panic]
fn encodingbits_panics_at_write_to_invalid_range() {
EncodingBits::from(0).write(1..=0, 42);
}
#[test]
#[should_panic]
fn encodingbits_panics_at_read_to_invalid_range() {
EncodingBits::from(0).read(1..=0);
}
}

View File

@@ -1,4 +0,0 @@
//! Shared x86-specific definitions.
mod encoding_bits;
pub use encoding_bits::*;

View File

@@ -22,7 +22,6 @@
pub mod condcodes;
pub mod constant_hash;
pub mod constants;
pub mod isa;
/// Version number of this crate.
pub const VERSION: &str = env!("CARGO_PKG_VERSION");