Move entity into a separate crate (#297)
This commit is contained in:
committed by
Dan Gohman
parent
18b2f12150
commit
9e17e62d68
685
lib/entity/src/list.rs
Normal file
685
lib/entity/src/list.rs
Normal file
@@ -0,0 +1,685 @@
|
||||
//! Small lists of entity references.
|
||||
use EntityRef;
|
||||
use std::hash::{Hash, Hasher};
|
||||
use std::marker::PhantomData;
|
||||
use std::mem;
|
||||
use std::vec::Vec;
|
||||
|
||||
/// A small list of entity references allocated from a pool.
|
||||
///
|
||||
/// An `EntityList<T>` type provides similar functionality to `Vec<T>`, but with some important
|
||||
/// differences in the implementation:
|
||||
///
|
||||
/// 1. Memory is allocated from a `ListPool<T>` instead of the global heap.
|
||||
/// 2. The footprint of an entity list is 4 bytes, compared with the 24 bytes for `Vec<T>`.
|
||||
/// 3. An entity list doesn't implement `Drop`, leaving it to the pool to manage memory.
|
||||
///
|
||||
/// The list pool is intended to be used as a LIFO allocator. After building up a larger data
|
||||
/// structure with many list references, the whole thing can be discarded quickly by clearing the
|
||||
/// pool.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// Entity lists are not as safe to use as `Vec<T>`, but they never jeopardize Rust's memory safety
|
||||
/// guarantees. These are the problems to be aware of:
|
||||
///
|
||||
/// - If you lose track of an entity list, its memory won't be recycled until the pool is cleared.
|
||||
/// This can cause the pool to grow very large with leaked lists.
|
||||
/// - If entity lists are used after their pool is cleared, they may contain garbage data, and
|
||||
/// modifying them may corrupt other lists in the pool.
|
||||
/// - If an entity list is used with two different pool instances, both pools are likely to become
|
||||
/// corrupted.
|
||||
///
|
||||
/// Entity lists can be cloned, but that operation should only be used as part of cloning the whole
|
||||
/// function they belong to. *Cloning an entity list does not allocate new memory for the clone*.
|
||||
/// It creates an alias of the same memory.
|
||||
///
|
||||
/// Entity lists can also be hashed and compared for equality, but those operations just panic if,
|
||||
/// they're ever actually called, because it's not possible to compare the contents of the list
|
||||
/// without the pool reference.
|
||||
///
|
||||
/// # Implementation
|
||||
///
|
||||
/// The `EntityList` itself is designed to have the smallest possible footprint. This is important
|
||||
/// because it is used inside very compact data structures like `InstructionData`. The list
|
||||
/// contains only a 32-bit index into the pool's memory vector, pointing to the first element of
|
||||
/// the list.
|
||||
///
|
||||
/// The pool is just a single `Vec<T>` containing all of the allocated lists. Each list is
|
||||
/// represented as three contiguous parts:
|
||||
///
|
||||
/// 1. The number of elements in the list.
|
||||
/// 2. The list elements.
|
||||
/// 3. Excess capacity elements.
|
||||
///
|
||||
/// The total size of the three parts is always a power of two, and the excess capacity is always
|
||||
/// as small as possible. This means that shrinking a list may cause the excess capacity to shrink
|
||||
/// if a smaller power-of-two size becomes available.
|
||||
///
|
||||
/// Both growing and shrinking a list may cause it to be reallocated in the pool vector.
|
||||
///
|
||||
/// The index stored in an `EntityList` points to part 2, the list elements. The value 0 is
|
||||
/// reserved for the empty list which isn't allocated in the vector.
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct EntityList<T: EntityRef> {
|
||||
index: u32,
|
||||
unused: PhantomData<T>,
|
||||
}
|
||||
|
||||
/// Create an empty list.
|
||||
impl<T: EntityRef> Default for EntityList<T> {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
index: 0,
|
||||
unused: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: EntityRef> Hash for EntityList<T> {
|
||||
fn hash<H: Hasher>(&self, _: &mut H) {
|
||||
panic!("hash called on EntityList");
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: EntityRef> PartialEq for EntityList<T> {
|
||||
fn eq(&self, _: &Self) -> bool {
|
||||
panic!("eq called on EntityList");
|
||||
}
|
||||
}
|
||||
impl<T: EntityRef> Eq for EntityList<T> {}
|
||||
|
||||
/// A memory pool for storing lists of `T`.
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct ListPool<T: EntityRef> {
|
||||
// The main array containing the lists.
|
||||
data: Vec<T>,
|
||||
|
||||
// Heads of the free lists, one for each size class.
|
||||
free: Vec<usize>,
|
||||
}
|
||||
|
||||
/// Lists are allocated in sizes that are powers of two, starting from 4.
|
||||
/// Each power of two is assigned a size class number, so the size is `4 << SizeClass`.
|
||||
type SizeClass = u8;
|
||||
|
||||
/// Get the size of a given size class. The size includes the length field, so the maximum list
|
||||
/// length is one less than the class size.
|
||||
fn sclass_size(sclass: SizeClass) -> usize {
|
||||
4 << sclass
|
||||
}
|
||||
|
||||
/// Get the size class to use for a given list length.
|
||||
/// This always leaves room for the length element in addition to the list elements.
|
||||
fn sclass_for_length(len: usize) -> SizeClass {
|
||||
30 - (len as u32 | 3).leading_zeros() as SizeClass
|
||||
}
|
||||
|
||||
/// Is `len` the minimum length in its size class?
|
||||
fn is_sclass_min_length(len: usize) -> bool {
|
||||
len > 3 && len.is_power_of_two()
|
||||
}
|
||||
|
||||
impl<T: EntityRef> ListPool<T> {
|
||||
/// Create a new list pool.
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
data: Vec::new(),
|
||||
free: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Clear the pool, forgetting about all lists that use it.
|
||||
///
|
||||
/// This invalidates any existing entity lists that used this pool to allocate memory.
|
||||
///
|
||||
/// The pool's memory is not released to the operating system, but kept around for faster
|
||||
/// allocation in the future.
|
||||
pub fn clear(&mut self) {
|
||||
self.data.clear();
|
||||
self.free.clear();
|
||||
}
|
||||
|
||||
/// Read the length of a list field, if it exists.
|
||||
fn len_of(&self, list: &EntityList<T>) -> Option<usize> {
|
||||
let idx = list.index as usize;
|
||||
// `idx` points at the list elements. The list length is encoded in the element immediately
|
||||
// before the list elements.
|
||||
//
|
||||
// The `wrapping_sub` handles the special case 0, which is the empty list. This way, the
|
||||
// cost of the bounds check that we have to pay anyway is co-opted to handle the special
|
||||
// case of the empty list.
|
||||
self.data.get(idx.wrapping_sub(1)).map(|len| len.index())
|
||||
}
|
||||
|
||||
/// Allocate a storage block with a size given by `sclass`.
|
||||
///
|
||||
/// Returns the first index of an available segment of `self.data` containing
|
||||
/// `sclass_size(sclass)` elements.
|
||||
fn alloc(&mut self, sclass: SizeClass) -> usize {
|
||||
// First try the free list for this size class.
|
||||
match self.free.get(sclass as usize).cloned() {
|
||||
Some(head) if head > 0 => {
|
||||
// The free list pointers are offset by 1, using 0 to terminate the list.
|
||||
// A block on the free list has two entries: `[ 0, next ]`.
|
||||
// The 0 is where the length field would be stored for a block in use.
|
||||
// The free list heads and the next pointer point at the `next` field.
|
||||
self.free[sclass as usize] = self.data[head].index();
|
||||
head - 1
|
||||
}
|
||||
_ => {
|
||||
// Nothing on the free list. Allocate more memory.
|
||||
let offset = self.data.len();
|
||||
// We don't want to mess around with uninitialized data.
|
||||
// Just fill it up with nulls.
|
||||
self.data.resize(offset + sclass_size(sclass), T::new(0));
|
||||
offset
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Free a storage block with a size given by `sclass`.
|
||||
///
|
||||
/// This must be a block that was previously allocated by `alloc()` with the same size class.
|
||||
fn free(&mut self, block: usize, sclass: SizeClass) {
|
||||
let sclass = sclass as usize;
|
||||
|
||||
// Make sure we have a free-list head for `sclass`.
|
||||
if self.free.len() <= sclass {
|
||||
self.free.resize(sclass + 1, 0);
|
||||
}
|
||||
|
||||
// Make sure the length field is cleared.
|
||||
self.data[block] = T::new(0);
|
||||
// Insert the block on the free list which is a single linked list.
|
||||
self.data[block + 1] = T::new(self.free[sclass]);
|
||||
self.free[sclass] = block + 1
|
||||
}
|
||||
|
||||
/// Returns two mutable slices representing the two requested blocks.
|
||||
///
|
||||
/// The two returned slices can be longer than the blocks. Each block is located at the front
|
||||
/// of the respective slice.
|
||||
fn mut_slices(&mut self, block0: usize, block1: usize) -> (&mut [T], &mut [T]) {
|
||||
if block0 < block1 {
|
||||
let (s0, s1) = self.data.split_at_mut(block1);
|
||||
(&mut s0[block0..], s1)
|
||||
} else {
|
||||
let (s1, s0) = self.data.split_at_mut(block0);
|
||||
(s0, &mut s1[block1..])
|
||||
}
|
||||
}
|
||||
|
||||
/// Reallocate a block to a different size class.
|
||||
///
|
||||
/// Copy `elems_to_copy` elements from the old to the new block.
|
||||
fn realloc(
|
||||
&mut self,
|
||||
block: usize,
|
||||
from_sclass: SizeClass,
|
||||
to_sclass: SizeClass,
|
||||
elems_to_copy: usize,
|
||||
) -> usize {
|
||||
debug_assert!(elems_to_copy <= sclass_size(from_sclass));
|
||||
debug_assert!(elems_to_copy <= sclass_size(to_sclass));
|
||||
let new_block = self.alloc(to_sclass);
|
||||
|
||||
if elems_to_copy > 0 {
|
||||
let (old, new) = self.mut_slices(block, new_block);
|
||||
(&mut new[0..elems_to_copy]).copy_from_slice(&old[0..elems_to_copy]);
|
||||
}
|
||||
|
||||
self.free(block, from_sclass);
|
||||
new_block
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: EntityRef> EntityList<T> {
|
||||
/// Create a new empty list.
|
||||
pub fn new() -> Self {
|
||||
Default::default()
|
||||
}
|
||||
|
||||
/// Returns `true` if the list has a length of 0.
|
||||
pub fn is_empty(&self) -> bool {
|
||||
// 0 is a magic value for the empty list. Any list in the pool array must have a positive
|
||||
// length.
|
||||
self.index == 0
|
||||
}
|
||||
|
||||
/// Get the number of elements in the list.
|
||||
pub fn len(&self, pool: &ListPool<T>) -> usize {
|
||||
// Both the empty list and any invalidated old lists will return `None`.
|
||||
pool.len_of(self).unwrap_or(0)
|
||||
}
|
||||
|
||||
/// Returns `true` if the list is valid
|
||||
pub fn is_valid(&self, pool: &ListPool<T>) -> bool {
|
||||
// We consider an empty list to be valid
|
||||
self.is_empty() || pool.len_of(self) != None
|
||||
}
|
||||
|
||||
/// Get the list as a slice.
|
||||
pub fn as_slice<'a>(&'a self, pool: &'a ListPool<T>) -> &'a [T] {
|
||||
let idx = self.index as usize;
|
||||
match pool.len_of(self) {
|
||||
None => &[],
|
||||
Some(len) => &pool.data[idx..idx + len],
|
||||
}
|
||||
}
|
||||
|
||||
/// Get a single element from the list.
|
||||
pub fn get(&self, index: usize, pool: &ListPool<T>) -> Option<T> {
|
||||
self.as_slice(pool).get(index).cloned()
|
||||
}
|
||||
|
||||
/// Get the first element from the list.
|
||||
pub fn first(&self, pool: &ListPool<T>) -> Option<T> {
|
||||
if self.is_empty() {
|
||||
None
|
||||
} else {
|
||||
Some(pool.data[self.index as usize])
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the list as a mutable slice.
|
||||
pub fn as_mut_slice<'a>(&'a mut self, pool: &'a mut ListPool<T>) -> &'a mut [T] {
|
||||
let idx = self.index as usize;
|
||||
match pool.len_of(self) {
|
||||
None => &mut [],
|
||||
Some(len) => &mut pool.data[idx..idx + len],
|
||||
}
|
||||
}
|
||||
|
||||
/// Get a mutable reference to a single element from the list.
|
||||
pub fn get_mut<'a>(&'a mut self, index: usize, pool: &'a mut ListPool<T>) -> Option<&'a mut T> {
|
||||
self.as_mut_slice(pool).get_mut(index)
|
||||
}
|
||||
|
||||
/// Removes all elements from the list.
|
||||
///
|
||||
/// The memory used by the list is put back in the pool.
|
||||
pub fn clear(&mut self, pool: &mut ListPool<T>) {
|
||||
let idx = self.index as usize;
|
||||
match pool.len_of(self) {
|
||||
None => debug_assert_eq!(idx, 0, "Invalid pool"),
|
||||
Some(len) => pool.free(idx - 1, sclass_for_length(len)),
|
||||
}
|
||||
// Switch back to the empty list representation which has no storage.
|
||||
self.index = 0;
|
||||
}
|
||||
|
||||
/// Take all elements from this list and return them as a new list. Leave this list empty.
|
||||
///
|
||||
/// This is the equivalent of `Option::take()`.
|
||||
pub fn take(&mut self) -> Self {
|
||||
mem::replace(self, Default::default())
|
||||
}
|
||||
|
||||
/// Appends an element to the back of the list.
|
||||
/// Returns the index where the element was inserted.
|
||||
pub fn push(&mut self, element: T, pool: &mut ListPool<T>) -> usize {
|
||||
let idx = self.index as usize;
|
||||
match pool.len_of(self) {
|
||||
None => {
|
||||
// This is an empty list. Allocate a block and set length=1.
|
||||
debug_assert_eq!(idx, 0, "Invalid pool");
|
||||
let block = pool.alloc(sclass_for_length(1));
|
||||
pool.data[block] = T::new(1);
|
||||
pool.data[block + 1] = element;
|
||||
self.index = (block + 1) as u32;
|
||||
0
|
||||
}
|
||||
Some(len) => {
|
||||
// Do we need to reallocate?
|
||||
let new_len = len + 1;
|
||||
let block;
|
||||
if is_sclass_min_length(new_len) {
|
||||
// Reallocate, preserving length + all old elements.
|
||||
let sclass = sclass_for_length(len);
|
||||
block = pool.realloc(idx - 1, sclass, sclass + 1, len + 1);
|
||||
self.index = (block + 1) as u32;
|
||||
} else {
|
||||
block = idx - 1;
|
||||
}
|
||||
pool.data[block + new_len] = element;
|
||||
pool.data[block] = T::new(new_len);
|
||||
len
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Grow list by adding `count` uninitialized elements at the end.
|
||||
///
|
||||
/// Returns a mutable slice representing the whole list.
|
||||
fn grow<'a>(&'a mut self, count: usize, pool: &'a mut ListPool<T>) -> &'a mut [T] {
|
||||
let idx = self.index as usize;
|
||||
let new_len;
|
||||
let block;
|
||||
match pool.len_of(self) {
|
||||
None => {
|
||||
// This is an empty list. Allocate a block.
|
||||
debug_assert_eq!(idx, 0, "Invalid pool");
|
||||
if count == 0 {
|
||||
return &mut [];
|
||||
}
|
||||
new_len = count;
|
||||
block = pool.alloc(sclass_for_length(new_len));
|
||||
self.index = (block + 1) as u32;
|
||||
}
|
||||
Some(len) => {
|
||||
// Do we need to reallocate?
|
||||
let sclass = sclass_for_length(len);
|
||||
new_len = len + count;
|
||||
let new_sclass = sclass_for_length(new_len);
|
||||
if new_sclass != sclass {
|
||||
block = pool.realloc(idx - 1, sclass, new_sclass, len + 1);
|
||||
self.index = (block + 1) as u32;
|
||||
} else {
|
||||
block = idx - 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
pool.data[block] = T::new(new_len);
|
||||
&mut pool.data[block + 1..block + 1 + new_len]
|
||||
}
|
||||
|
||||
/// Appends multiple elements to the back of the list.
|
||||
pub fn extend<I>(&mut self, elements: I, pool: &mut ListPool<T>)
|
||||
where
|
||||
I: IntoIterator<Item = T>,
|
||||
{
|
||||
// TODO: use `size_hint()` to reduce reallocations.
|
||||
for x in elements {
|
||||
self.push(x, pool);
|
||||
}
|
||||
}
|
||||
|
||||
/// Inserts an element as position `index` in the list, shifting all elements after it to the
|
||||
/// right.
|
||||
pub fn insert(&mut self, index: usize, element: T, pool: &mut ListPool<T>) {
|
||||
// Increase size by 1.
|
||||
self.push(element, pool);
|
||||
|
||||
// Move tail elements.
|
||||
let seq = self.as_mut_slice(pool);
|
||||
if index < seq.len() {
|
||||
let tail = &mut seq[index..];
|
||||
for i in (1..tail.len()).rev() {
|
||||
tail[i] = tail[i - 1];
|
||||
}
|
||||
tail[0] = element;
|
||||
} else {
|
||||
debug_assert_eq!(index, seq.len());
|
||||
}
|
||||
}
|
||||
|
||||
/// Removes the element at position `index` from the list. Potentially linear complexity.
|
||||
pub fn remove(&mut self, index: usize, pool: &mut ListPool<T>) {
|
||||
let len;
|
||||
{
|
||||
let seq = self.as_mut_slice(pool);
|
||||
len = seq.len();
|
||||
debug_assert!(index < len);
|
||||
|
||||
// Copy elements down.
|
||||
for i in index..len - 1 {
|
||||
seq[i] = seq[i + 1];
|
||||
}
|
||||
}
|
||||
|
||||
// Check if we deleted the last element.
|
||||
if len == 1 {
|
||||
self.clear(pool);
|
||||
return;
|
||||
}
|
||||
|
||||
// Do we need to reallocate to a smaller size class?
|
||||
let mut block = self.index as usize - 1;
|
||||
if is_sclass_min_length(len) {
|
||||
let sclass = sclass_for_length(len);
|
||||
block = pool.realloc(block, sclass, sclass - 1, len);
|
||||
self.index = (block + 1) as u32;
|
||||
}
|
||||
|
||||
// Finally adjust the length.
|
||||
pool.data[block] = T::new(len - 1);
|
||||
}
|
||||
|
||||
/// Removes the element at `index` in constant time by switching it with the last element of
|
||||
/// the list.
|
||||
pub fn swap_remove(&mut self, index: usize, pool: &mut ListPool<T>) {
|
||||
let len = self.len(pool);
|
||||
debug_assert!(index < len);
|
||||
if index == len - 1 {
|
||||
self.remove(index, pool);
|
||||
} else {
|
||||
{
|
||||
let seq = self.as_mut_slice(pool);
|
||||
seq.swap(index, len - 1);
|
||||
}
|
||||
self.remove(len - 1, pool);
|
||||
}
|
||||
}
|
||||
|
||||
/// Grow the list by inserting `count` elements at `index`.
|
||||
///
|
||||
/// The new elements are not initialized, they will contain whatever happened to be in memory.
|
||||
/// Since the memory comes from the pool, this will be either zero entity references or
|
||||
/// whatever where in a previously deallocated list.
|
||||
pub fn grow_at(&mut self, index: usize, count: usize, pool: &mut ListPool<T>) {
|
||||
let data = self.grow(count, pool);
|
||||
|
||||
// Copy elements after `index` up.
|
||||
for i in (index + count..data.len()).rev() {
|
||||
data[i] = data[i - count];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use super::{sclass_for_length, sclass_size};
|
||||
use EntityRef;
|
||||
|
||||
/// An opaque reference to an instruction in a function.
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
|
||||
pub struct Inst(u32);
|
||||
entity_impl!(Inst, "inst");
|
||||
|
||||
#[test]
|
||||
fn size_classes() {
|
||||
assert_eq!(sclass_size(0), 4);
|
||||
assert_eq!(sclass_for_length(0), 0);
|
||||
assert_eq!(sclass_for_length(1), 0);
|
||||
assert_eq!(sclass_for_length(2), 0);
|
||||
assert_eq!(sclass_for_length(3), 0);
|
||||
assert_eq!(sclass_for_length(4), 1);
|
||||
assert_eq!(sclass_for_length(7), 1);
|
||||
assert_eq!(sclass_for_length(8), 2);
|
||||
assert_eq!(sclass_size(1), 8);
|
||||
for l in 0..300 {
|
||||
assert!(sclass_size(sclass_for_length(l)) >= l + 1);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn block_allocator() {
|
||||
let mut pool = ListPool::<Inst>::new();
|
||||
let b1 = pool.alloc(0);
|
||||
let b2 = pool.alloc(1);
|
||||
let b3 = pool.alloc(0);
|
||||
assert_ne!(b1, b2);
|
||||
assert_ne!(b1, b3);
|
||||
assert_ne!(b2, b3);
|
||||
pool.free(b2, 1);
|
||||
let b2a = pool.alloc(1);
|
||||
let b2b = pool.alloc(1);
|
||||
assert_ne!(b2a, b2b);
|
||||
// One of these should reuse the freed block.
|
||||
assert!(b2a == b2 || b2b == b2);
|
||||
|
||||
// Check the free lists for a size class smaller than the largest seen so far.
|
||||
pool.free(b1, 0);
|
||||
pool.free(b3, 0);
|
||||
let b1a = pool.alloc(0);
|
||||
let b3a = pool.alloc(0);
|
||||
assert_ne!(b1a, b3a);
|
||||
assert!(b1a == b1 || b1a == b3);
|
||||
assert!(b3a == b1 || b3a == b3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn empty_list() {
|
||||
let pool = &mut ListPool::<Inst>::new();
|
||||
let mut list = EntityList::<Inst>::default();
|
||||
{
|
||||
let ilist = &list;
|
||||
assert!(ilist.is_empty());
|
||||
assert_eq!(ilist.len(pool), 0);
|
||||
assert_eq!(ilist.as_slice(pool), &[]);
|
||||
assert_eq!(ilist.get(0, pool), None);
|
||||
assert_eq!(ilist.get(100, pool), None);
|
||||
}
|
||||
assert_eq!(list.as_mut_slice(pool), &[]);
|
||||
assert_eq!(list.get_mut(0, pool), None);
|
||||
assert_eq!(list.get_mut(100, pool), None);
|
||||
|
||||
list.clear(pool);
|
||||
assert!(list.is_empty());
|
||||
assert_eq!(list.len(pool), 0);
|
||||
assert_eq!(list.as_slice(pool), &[]);
|
||||
assert_eq!(list.first(pool), None);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn push() {
|
||||
let pool = &mut ListPool::<Inst>::new();
|
||||
let mut list = EntityList::<Inst>::default();
|
||||
|
||||
let i1 = Inst::new(1);
|
||||
let i2 = Inst::new(2);
|
||||
let i3 = Inst::new(3);
|
||||
let i4 = Inst::new(4);
|
||||
|
||||
assert_eq!(list.push(i1, pool), 0);
|
||||
assert_eq!(list.len(pool), 1);
|
||||
assert!(!list.is_empty());
|
||||
assert_eq!(list.as_slice(pool), &[i1]);
|
||||
assert_eq!(list.first(pool), Some(i1));
|
||||
assert_eq!(list.get(0, pool), Some(i1));
|
||||
assert_eq!(list.get(1, pool), None);
|
||||
|
||||
assert_eq!(list.push(i2, pool), 1);
|
||||
assert_eq!(list.len(pool), 2);
|
||||
assert!(!list.is_empty());
|
||||
assert_eq!(list.as_slice(pool), &[i1, i2]);
|
||||
assert_eq!(list.first(pool), Some(i1));
|
||||
assert_eq!(list.get(0, pool), Some(i1));
|
||||
assert_eq!(list.get(1, pool), Some(i2));
|
||||
assert_eq!(list.get(2, pool), None);
|
||||
|
||||
assert_eq!(list.push(i3, pool), 2);
|
||||
assert_eq!(list.len(pool), 3);
|
||||
assert!(!list.is_empty());
|
||||
assert_eq!(list.as_slice(pool), &[i1, i2, i3]);
|
||||
assert_eq!(list.first(pool), Some(i1));
|
||||
assert_eq!(list.get(0, pool), Some(i1));
|
||||
assert_eq!(list.get(1, pool), Some(i2));
|
||||
assert_eq!(list.get(2, pool), Some(i3));
|
||||
assert_eq!(list.get(3, pool), None);
|
||||
|
||||
// This triggers a reallocation.
|
||||
assert_eq!(list.push(i4, pool), 3);
|
||||
assert_eq!(list.len(pool), 4);
|
||||
assert!(!list.is_empty());
|
||||
assert_eq!(list.as_slice(pool), &[i1, i2, i3, i4]);
|
||||
assert_eq!(list.first(pool), Some(i1));
|
||||
assert_eq!(list.get(0, pool), Some(i1));
|
||||
assert_eq!(list.get(1, pool), Some(i2));
|
||||
assert_eq!(list.get(2, pool), Some(i3));
|
||||
assert_eq!(list.get(3, pool), Some(i4));
|
||||
assert_eq!(list.get(4, pool), None);
|
||||
|
||||
list.extend([i1, i1, i2, i2, i3, i3, i4, i4].iter().cloned(), pool);
|
||||
assert_eq!(list.len(pool), 12);
|
||||
assert_eq!(
|
||||
list.as_slice(pool),
|
||||
&[i1, i2, i3, i4, i1, i1, i2, i2, i3, i3, i4, i4]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn insert_remove() {
|
||||
let pool = &mut ListPool::<Inst>::new();
|
||||
let mut list = EntityList::<Inst>::default();
|
||||
|
||||
let i1 = Inst::new(1);
|
||||
let i2 = Inst::new(2);
|
||||
let i3 = Inst::new(3);
|
||||
let i4 = Inst::new(4);
|
||||
|
||||
list.insert(0, i4, pool);
|
||||
assert_eq!(list.as_slice(pool), &[i4]);
|
||||
|
||||
list.insert(0, i3, pool);
|
||||
assert_eq!(list.as_slice(pool), &[i3, i4]);
|
||||
|
||||
list.insert(2, i2, pool);
|
||||
assert_eq!(list.as_slice(pool), &[i3, i4, i2]);
|
||||
|
||||
list.insert(2, i1, pool);
|
||||
assert_eq!(list.as_slice(pool), &[i3, i4, i1, i2]);
|
||||
|
||||
list.remove(3, pool);
|
||||
assert_eq!(list.as_slice(pool), &[i3, i4, i1]);
|
||||
|
||||
list.remove(2, pool);
|
||||
assert_eq!(list.as_slice(pool), &[i3, i4]);
|
||||
|
||||
list.remove(0, pool);
|
||||
assert_eq!(list.as_slice(pool), &[i4]);
|
||||
|
||||
list.remove(0, pool);
|
||||
assert_eq!(list.as_slice(pool), &[]);
|
||||
assert!(list.is_empty());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn growing() {
|
||||
let pool = &mut ListPool::<Inst>::new();
|
||||
let mut list = EntityList::<Inst>::default();
|
||||
|
||||
let i1 = Inst::new(1);
|
||||
let i2 = Inst::new(2);
|
||||
let i3 = Inst::new(3);
|
||||
let i4 = Inst::new(4);
|
||||
|
||||
// This is not supposed to change the list.
|
||||
list.grow_at(0, 0, pool);
|
||||
assert_eq!(list.len(pool), 0);
|
||||
assert!(list.is_empty());
|
||||
|
||||
list.grow_at(0, 2, pool);
|
||||
assert_eq!(list.len(pool), 2);
|
||||
|
||||
list.as_mut_slice(pool).copy_from_slice(&[i2, i3]);
|
||||
|
||||
list.grow_at(1, 0, pool);
|
||||
assert_eq!(list.as_slice(pool), &[i2, i3]);
|
||||
|
||||
list.grow_at(1, 1, pool);
|
||||
list.as_mut_slice(pool)[1] = i1;
|
||||
assert_eq!(list.as_slice(pool), &[i2, i1, i3]);
|
||||
|
||||
// Append nothing at the end.
|
||||
list.grow_at(3, 0, pool);
|
||||
assert_eq!(list.as_slice(pool), &[i2, i1, i3]);
|
||||
|
||||
// Append something at the end.
|
||||
list.grow_at(3, 1, pool);
|
||||
list.as_mut_slice(pool)[3] = i4;
|
||||
assert_eq!(list.as_slice(pool), &[i2, i1, i3, i4]);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user