Move entity into a separate crate (#297)

This commit is contained in:
Amanieu d'Antras
2018-04-10 19:06:49 +01:00
committed by Dan Gohman
parent 18b2f12150
commit 9e17e62d68
13 changed files with 94 additions and 37 deletions

21
lib/entity/Cargo.toml Normal file
View File

@@ -0,0 +1,21 @@
[package]
authors = ["The Cretonne Project Developers"]
name = "cretonne-entity"
version = "0.4.2"
description = "Data structures using entity references as mapping keys"
license = "Apache-2.0"
documentation = "https://cretonne.readthedocs.io/"
repository = "https://github.com/Cretonne/cretonne"
readme = "README.md"
keywords = ["entity", "set", "map"]
[lib]
name = "cton_entity"
[features]
default = ["std"]
std = []
[badges]
maintenance = { status = "experimental" }
travis-ci = { repository = "Cretonne/cretonne" }

2
lib/entity/README.md Normal file
View File

@@ -0,0 +1,2 @@
This crate contains array-based data structures used by the core Cretonne code
generator which use densely numbered entity references as mapping keys.

109
lib/entity/src/iter.rs Normal file
View File

@@ -0,0 +1,109 @@
//! A double-ended iterator over entity references and entities.
use EntityRef;
use std::marker::PhantomData;
use std::slice;
/// Iterate over all keys in order.
pub struct Iter<'a, K: EntityRef, V>
where
V: 'a,
{
pos: usize,
iter: slice::Iter<'a, V>,
unused: PhantomData<K>,
}
impl<'a, K: EntityRef, V> Iter<'a, K, V> {
/// Create an `Iter` iterator that visits the `PrimaryMap` keys and values
/// of `iter`.
pub fn new(key: K, iter: slice::Iter<'a, V>) -> Self {
Self {
pos: key.index(),
iter,
unused: PhantomData,
}
}
}
impl<'a, K: EntityRef, V> Iterator for Iter<'a, K, V> {
type Item = (K, &'a V);
fn next(&mut self) -> Option<Self::Item> {
if let Some(next) = self.iter.next() {
let pos = self.pos;
self.pos += 1;
Some((K::new(pos), next))
} else {
None
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<'a, K: EntityRef, V> DoubleEndedIterator for Iter<'a, K, V> {
fn next_back(&mut self) -> Option<Self::Item> {
if let Some(next_back) = self.iter.next_back() {
Some((K::new(self.pos), next_back))
} else {
None
}
}
}
impl<'a, K: EntityRef, V> ExactSizeIterator for Iter<'a, K, V> {}
/// Iterate over all keys in order.
pub struct IterMut<'a, K: EntityRef, V>
where
V: 'a,
{
pos: usize,
iter: slice::IterMut<'a, V>,
unused: PhantomData<K>,
}
impl<'a, K: EntityRef, V> IterMut<'a, K, V> {
/// Create an `IterMut` iterator that visits the `PrimaryMap` keys and values
/// of `iter`.
pub fn new(key: K, iter: slice::IterMut<'a, V>) -> Self {
Self {
pos: key.index(),
iter,
unused: PhantomData,
}
}
}
impl<'a, K: EntityRef, V> Iterator for IterMut<'a, K, V> {
type Item = (K, &'a mut V);
fn next(&mut self) -> Option<Self::Item> {
if let Some(next) = self.iter.next() {
let pos = self.pos;
self.pos += 1;
Some((K::new(pos), next))
} else {
None
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<'a, K: EntityRef, V> DoubleEndedIterator for IterMut<'a, K, V> {
fn next_back(&mut self) -> Option<Self::Item> {
if let Some(next_back) = self.iter.next_back() {
Some((K::new(self.pos), next_back))
} else {
None
}
}
}
impl<'a, K: EntityRef, V> ExactSizeIterator for IterMut<'a, K, V> {}

55
lib/entity/src/keys.rs Normal file
View File

@@ -0,0 +1,55 @@
//! A double-ended iterator over entity references.
use EntityRef;
use std::marker::PhantomData;
/// Iterate over all keys in order.
pub struct Keys<K: EntityRef> {
pos: usize,
rev_pos: usize,
unused: PhantomData<K>,
}
impl<K: EntityRef> Keys<K> {
/// Create a `Keys` iterator that visits `count` entities starting from 0.
pub fn new(count: usize) -> Self {
Self {
pos: 0,
rev_pos: count,
unused: PhantomData,
}
}
}
impl<K: EntityRef> Iterator for Keys<K> {
type Item = K;
fn next(&mut self) -> Option<Self::Item> {
if self.pos < self.rev_pos {
let k = K::new(self.pos);
self.pos += 1;
Some(k)
} else {
None
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let size = self.rev_pos - self.pos;
(size, Some(size))
}
}
impl<K: EntityRef> DoubleEndedIterator for Keys<K> {
fn next_back(&mut self) -> Option<Self::Item> {
if self.rev_pos > self.pos {
let k = K::new(self.rev_pos - 1);
self.rev_pos -= 1;
Some(k)
} else {
None
}
}
}
impl<K: EntityRef> ExactSizeIterator for Keys<K> {}

122
lib/entity/src/lib.rs Normal file
View File

@@ -0,0 +1,122 @@
//! Array-based data structures using densely numbered entity references as mapping keys.
//!
//! This crate defines a number of data structures based on arrays. The arrays are not indexed by
//! `usize` as usual, but by *entity references* which are integers wrapped in new-types. This has
//! a couple advantages:
//!
//! - Improved type safety. The various map and set types accept a specific key type, so there is
//! no confusion about the meaning of an array index, as there is with plain arrays.
//! - Smaller indexes. The normal `usize` index is often 64 bits which is way too large for most
//! purposes. The entity reference types can be smaller, allowing for more compact data
//! structures.
//!
//! The `EntityRef` trait should be implemented by types to be used as indexed. The `entity_impl!`
//! macro provides convenient defaults for types wrapping `u32` which is common.
//!
//! - [`PrimaryMap`](struct.PrimaryMap.html) is used to keep track of a vector of entities,
//! assigning a unique entity reference to each.
//! - [`EntityMap`](struct.EntityMap.html) is used to associate secondary information to an entity.
//! The map is implemented as a simple vector, so it does not keep track of which entities have
//! been inserted. Instead, any unknown entities map to the default value.
//! - [`SparseMap`](struct.SparseMap.html) is used to associate secondary information to a small
//! number of entities. It tracks accurately which entities have been inserted. This is a
//! specialized data structure which can use a lot of memory, so read the documentation before
//! using it.
//! - [`EntitySet`](struct.EntitySet.html) is used to represent a secondary set of entities.
//! The set is implemented as a simple vector, so it does not keep track of which entities have
//! been inserted into the primary map. Instead, any unknown entities are not in the set.
//! - [`EntityList`](struct.EntityList.html) is a compact representation of lists of entity
//! references allocated from an associated memory pool. It has a much smaller footprint than
//! `Vec`.
#![deny(missing_docs, trivial_numeric_casts, unused_extern_crates)]
#![cfg_attr(feature = "clippy", plugin(clippy(conf_file = "../../clippy.toml")))]
#![cfg_attr(feature = "cargo-clippy",
allow(new_without_default, new_without_default_derive, redundant_field_names))]
// Turns on no_std and alloc features if std is not available.
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(not(feature = "std"), feature(alloc))]
/// This replaces `std` in builds with `core`.
#[cfg(not(feature = "std"))]
mod std {
extern crate alloc;
pub use self::alloc::{boxed, string, vec};
pub use core::*;
}
// Re-export core so that the macros works with both std and no_std crates
#[doc(hidden)]
pub extern crate core as __core;
/// A type wrapping a small integer index should implement `EntityRef` so it can be used as the key
/// of an `EntityMap` or `SparseMap`.
pub trait EntityRef: Copy + Eq {
/// Create a new entity reference from a small integer.
/// This should crash if the requested index is not representable.
fn new(usize) -> Self;
/// Get the index that was used to create this entity reference.
fn index(self) -> usize;
}
/// Macro which provides the common implementation of a 32-bit entity reference.
#[macro_export]
macro_rules! entity_impl {
// Basic traits.
($entity:ident) => {
impl $crate::EntityRef for $entity {
fn new(index: usize) -> Self {
debug_assert!(index < ($crate::__core::u32::MAX as usize));
$entity(index as u32)
}
fn index(self) -> usize {
self.0 as usize
}
}
impl $crate::packed_option::ReservedValue for $entity {
fn reserved_value() -> $entity {
$entity($crate::__core::u32::MAX)
}
}
};
// Include basic `Display` impl using the given display prefix.
// Display an `Ebb` reference as "ebb12".
($entity:ident, $display_prefix:expr) => {
entity_impl!($entity);
impl $crate::__core::fmt::Display for $entity {
fn fmt(&self, f: &mut $crate::__core::fmt::Formatter) -> $crate::__core::fmt::Result {
write!(f, "{}{}", $display_prefix, self.0)
}
}
impl $crate::__core::fmt::Debug for $entity {
fn fmt(&self, f: &mut $crate::__core::fmt::Formatter) -> $crate::__core::fmt::Result {
(self as &$crate::__core::fmt::Display).fmt(f)
}
}
};
}
pub mod packed_option;
mod iter;
mod keys;
mod list;
mod map;
mod primary;
mod set;
mod sparse;
pub use self::iter::{Iter, IterMut};
pub use self::keys::Keys;
pub use self::list::{EntityList, ListPool};
pub use self::map::EntityMap;
pub use self::primary::PrimaryMap;
pub use self::set::EntitySet;
pub use self::sparse::{SparseMap, SparseMapValue, SparseSet};

685
lib/entity/src/list.rs Normal file
View File

@@ -0,0 +1,685 @@
//! Small lists of entity references.
use EntityRef;
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
use std::mem;
use std::vec::Vec;
/// A small list of entity references allocated from a pool.
///
/// An `EntityList<T>` type provides similar functionality to `Vec<T>`, but with some important
/// differences in the implementation:
///
/// 1. Memory is allocated from a `ListPool<T>` instead of the global heap.
/// 2. The footprint of an entity list is 4 bytes, compared with the 24 bytes for `Vec<T>`.
/// 3. An entity list doesn't implement `Drop`, leaving it to the pool to manage memory.
///
/// The list pool is intended to be used as a LIFO allocator. After building up a larger data
/// structure with many list references, the whole thing can be discarded quickly by clearing the
/// pool.
///
/// # Safety
///
/// Entity lists are not as safe to use as `Vec<T>`, but they never jeopardize Rust's memory safety
/// guarantees. These are the problems to be aware of:
///
/// - If you lose track of an entity list, its memory won't be recycled until the pool is cleared.
/// This can cause the pool to grow very large with leaked lists.
/// - If entity lists are used after their pool is cleared, they may contain garbage data, and
/// modifying them may corrupt other lists in the pool.
/// - If an entity list is used with two different pool instances, both pools are likely to become
/// corrupted.
///
/// Entity lists can be cloned, but that operation should only be used as part of cloning the whole
/// function they belong to. *Cloning an entity list does not allocate new memory for the clone*.
/// It creates an alias of the same memory.
///
/// Entity lists can also be hashed and compared for equality, but those operations just panic if,
/// they're ever actually called, because it's not possible to compare the contents of the list
/// without the pool reference.
///
/// # Implementation
///
/// The `EntityList` itself is designed to have the smallest possible footprint. This is important
/// because it is used inside very compact data structures like `InstructionData`. The list
/// contains only a 32-bit index into the pool's memory vector, pointing to the first element of
/// the list.
///
/// The pool is just a single `Vec<T>` containing all of the allocated lists. Each list is
/// represented as three contiguous parts:
///
/// 1. The number of elements in the list.
/// 2. The list elements.
/// 3. Excess capacity elements.
///
/// The total size of the three parts is always a power of two, and the excess capacity is always
/// as small as possible. This means that shrinking a list may cause the excess capacity to shrink
/// if a smaller power-of-two size becomes available.
///
/// Both growing and shrinking a list may cause it to be reallocated in the pool vector.
///
/// The index stored in an `EntityList` points to part 2, the list elements. The value 0 is
/// reserved for the empty list which isn't allocated in the vector.
#[derive(Clone, Debug)]
pub struct EntityList<T: EntityRef> {
index: u32,
unused: PhantomData<T>,
}
/// Create an empty list.
impl<T: EntityRef> Default for EntityList<T> {
fn default() -> Self {
Self {
index: 0,
unused: PhantomData,
}
}
}
impl<T: EntityRef> Hash for EntityList<T> {
fn hash<H: Hasher>(&self, _: &mut H) {
panic!("hash called on EntityList");
}
}
impl<T: EntityRef> PartialEq for EntityList<T> {
fn eq(&self, _: &Self) -> bool {
panic!("eq called on EntityList");
}
}
impl<T: EntityRef> Eq for EntityList<T> {}
/// A memory pool for storing lists of `T`.
#[derive(Clone, Debug)]
pub struct ListPool<T: EntityRef> {
// The main array containing the lists.
data: Vec<T>,
// Heads of the free lists, one for each size class.
free: Vec<usize>,
}
/// Lists are allocated in sizes that are powers of two, starting from 4.
/// Each power of two is assigned a size class number, so the size is `4 << SizeClass`.
type SizeClass = u8;
/// Get the size of a given size class. The size includes the length field, so the maximum list
/// length is one less than the class size.
fn sclass_size(sclass: SizeClass) -> usize {
4 << sclass
}
/// Get the size class to use for a given list length.
/// This always leaves room for the length element in addition to the list elements.
fn sclass_for_length(len: usize) -> SizeClass {
30 - (len as u32 | 3).leading_zeros() as SizeClass
}
/// Is `len` the minimum length in its size class?
fn is_sclass_min_length(len: usize) -> bool {
len > 3 && len.is_power_of_two()
}
impl<T: EntityRef> ListPool<T> {
/// Create a new list pool.
pub fn new() -> Self {
Self {
data: Vec::new(),
free: Vec::new(),
}
}
/// Clear the pool, forgetting about all lists that use it.
///
/// This invalidates any existing entity lists that used this pool to allocate memory.
///
/// The pool's memory is not released to the operating system, but kept around for faster
/// allocation in the future.
pub fn clear(&mut self) {
self.data.clear();
self.free.clear();
}
/// Read the length of a list field, if it exists.
fn len_of(&self, list: &EntityList<T>) -> Option<usize> {
let idx = list.index as usize;
// `idx` points at the list elements. The list length is encoded in the element immediately
// before the list elements.
//
// The `wrapping_sub` handles the special case 0, which is the empty list. This way, the
// cost of the bounds check that we have to pay anyway is co-opted to handle the special
// case of the empty list.
self.data.get(idx.wrapping_sub(1)).map(|len| len.index())
}
/// Allocate a storage block with a size given by `sclass`.
///
/// Returns the first index of an available segment of `self.data` containing
/// `sclass_size(sclass)` elements.
fn alloc(&mut self, sclass: SizeClass) -> usize {
// First try the free list for this size class.
match self.free.get(sclass as usize).cloned() {
Some(head) if head > 0 => {
// The free list pointers are offset by 1, using 0 to terminate the list.
// A block on the free list has two entries: `[ 0, next ]`.
// The 0 is where the length field would be stored for a block in use.
// The free list heads and the next pointer point at the `next` field.
self.free[sclass as usize] = self.data[head].index();
head - 1
}
_ => {
// Nothing on the free list. Allocate more memory.
let offset = self.data.len();
// We don't want to mess around with uninitialized data.
// Just fill it up with nulls.
self.data.resize(offset + sclass_size(sclass), T::new(0));
offset
}
}
}
/// Free a storage block with a size given by `sclass`.
///
/// This must be a block that was previously allocated by `alloc()` with the same size class.
fn free(&mut self, block: usize, sclass: SizeClass) {
let sclass = sclass as usize;
// Make sure we have a free-list head for `sclass`.
if self.free.len() <= sclass {
self.free.resize(sclass + 1, 0);
}
// Make sure the length field is cleared.
self.data[block] = T::new(0);
// Insert the block on the free list which is a single linked list.
self.data[block + 1] = T::new(self.free[sclass]);
self.free[sclass] = block + 1
}
/// Returns two mutable slices representing the two requested blocks.
///
/// The two returned slices can be longer than the blocks. Each block is located at the front
/// of the respective slice.
fn mut_slices(&mut self, block0: usize, block1: usize) -> (&mut [T], &mut [T]) {
if block0 < block1 {
let (s0, s1) = self.data.split_at_mut(block1);
(&mut s0[block0..], s1)
} else {
let (s1, s0) = self.data.split_at_mut(block0);
(s0, &mut s1[block1..])
}
}
/// Reallocate a block to a different size class.
///
/// Copy `elems_to_copy` elements from the old to the new block.
fn realloc(
&mut self,
block: usize,
from_sclass: SizeClass,
to_sclass: SizeClass,
elems_to_copy: usize,
) -> usize {
debug_assert!(elems_to_copy <= sclass_size(from_sclass));
debug_assert!(elems_to_copy <= sclass_size(to_sclass));
let new_block = self.alloc(to_sclass);
if elems_to_copy > 0 {
let (old, new) = self.mut_slices(block, new_block);
(&mut new[0..elems_to_copy]).copy_from_slice(&old[0..elems_to_copy]);
}
self.free(block, from_sclass);
new_block
}
}
impl<T: EntityRef> EntityList<T> {
/// Create a new empty list.
pub fn new() -> Self {
Default::default()
}
/// Returns `true` if the list has a length of 0.
pub fn is_empty(&self) -> bool {
// 0 is a magic value for the empty list. Any list in the pool array must have a positive
// length.
self.index == 0
}
/// Get the number of elements in the list.
pub fn len(&self, pool: &ListPool<T>) -> usize {
// Both the empty list and any invalidated old lists will return `None`.
pool.len_of(self).unwrap_or(0)
}
/// Returns `true` if the list is valid
pub fn is_valid(&self, pool: &ListPool<T>) -> bool {
// We consider an empty list to be valid
self.is_empty() || pool.len_of(self) != None
}
/// Get the list as a slice.
pub fn as_slice<'a>(&'a self, pool: &'a ListPool<T>) -> &'a [T] {
let idx = self.index as usize;
match pool.len_of(self) {
None => &[],
Some(len) => &pool.data[idx..idx + len],
}
}
/// Get a single element from the list.
pub fn get(&self, index: usize, pool: &ListPool<T>) -> Option<T> {
self.as_slice(pool).get(index).cloned()
}
/// Get the first element from the list.
pub fn first(&self, pool: &ListPool<T>) -> Option<T> {
if self.is_empty() {
None
} else {
Some(pool.data[self.index as usize])
}
}
/// Get the list as a mutable slice.
pub fn as_mut_slice<'a>(&'a mut self, pool: &'a mut ListPool<T>) -> &'a mut [T] {
let idx = self.index as usize;
match pool.len_of(self) {
None => &mut [],
Some(len) => &mut pool.data[idx..idx + len],
}
}
/// Get a mutable reference to a single element from the list.
pub fn get_mut<'a>(&'a mut self, index: usize, pool: &'a mut ListPool<T>) -> Option<&'a mut T> {
self.as_mut_slice(pool).get_mut(index)
}
/// Removes all elements from the list.
///
/// The memory used by the list is put back in the pool.
pub fn clear(&mut self, pool: &mut ListPool<T>) {
let idx = self.index as usize;
match pool.len_of(self) {
None => debug_assert_eq!(idx, 0, "Invalid pool"),
Some(len) => pool.free(idx - 1, sclass_for_length(len)),
}
// Switch back to the empty list representation which has no storage.
self.index = 0;
}
/// Take all elements from this list and return them as a new list. Leave this list empty.
///
/// This is the equivalent of `Option::take()`.
pub fn take(&mut self) -> Self {
mem::replace(self, Default::default())
}
/// Appends an element to the back of the list.
/// Returns the index where the element was inserted.
pub fn push(&mut self, element: T, pool: &mut ListPool<T>) -> usize {
let idx = self.index as usize;
match pool.len_of(self) {
None => {
// This is an empty list. Allocate a block and set length=1.
debug_assert_eq!(idx, 0, "Invalid pool");
let block = pool.alloc(sclass_for_length(1));
pool.data[block] = T::new(1);
pool.data[block + 1] = element;
self.index = (block + 1) as u32;
0
}
Some(len) => {
// Do we need to reallocate?
let new_len = len + 1;
let block;
if is_sclass_min_length(new_len) {
// Reallocate, preserving length + all old elements.
let sclass = sclass_for_length(len);
block = pool.realloc(idx - 1, sclass, sclass + 1, len + 1);
self.index = (block + 1) as u32;
} else {
block = idx - 1;
}
pool.data[block + new_len] = element;
pool.data[block] = T::new(new_len);
len
}
}
}
/// Grow list by adding `count` uninitialized elements at the end.
///
/// Returns a mutable slice representing the whole list.
fn grow<'a>(&'a mut self, count: usize, pool: &'a mut ListPool<T>) -> &'a mut [T] {
let idx = self.index as usize;
let new_len;
let block;
match pool.len_of(self) {
None => {
// This is an empty list. Allocate a block.
debug_assert_eq!(idx, 0, "Invalid pool");
if count == 0 {
return &mut [];
}
new_len = count;
block = pool.alloc(sclass_for_length(new_len));
self.index = (block + 1) as u32;
}
Some(len) => {
// Do we need to reallocate?
let sclass = sclass_for_length(len);
new_len = len + count;
let new_sclass = sclass_for_length(new_len);
if new_sclass != sclass {
block = pool.realloc(idx - 1, sclass, new_sclass, len + 1);
self.index = (block + 1) as u32;
} else {
block = idx - 1;
}
}
}
pool.data[block] = T::new(new_len);
&mut pool.data[block + 1..block + 1 + new_len]
}
/// Appends multiple elements to the back of the list.
pub fn extend<I>(&mut self, elements: I, pool: &mut ListPool<T>)
where
I: IntoIterator<Item = T>,
{
// TODO: use `size_hint()` to reduce reallocations.
for x in elements {
self.push(x, pool);
}
}
/// Inserts an element as position `index` in the list, shifting all elements after it to the
/// right.
pub fn insert(&mut self, index: usize, element: T, pool: &mut ListPool<T>) {
// Increase size by 1.
self.push(element, pool);
// Move tail elements.
let seq = self.as_mut_slice(pool);
if index < seq.len() {
let tail = &mut seq[index..];
for i in (1..tail.len()).rev() {
tail[i] = tail[i - 1];
}
tail[0] = element;
} else {
debug_assert_eq!(index, seq.len());
}
}
/// Removes the element at position `index` from the list. Potentially linear complexity.
pub fn remove(&mut self, index: usize, pool: &mut ListPool<T>) {
let len;
{
let seq = self.as_mut_slice(pool);
len = seq.len();
debug_assert!(index < len);
// Copy elements down.
for i in index..len - 1 {
seq[i] = seq[i + 1];
}
}
// Check if we deleted the last element.
if len == 1 {
self.clear(pool);
return;
}
// Do we need to reallocate to a smaller size class?
let mut block = self.index as usize - 1;
if is_sclass_min_length(len) {
let sclass = sclass_for_length(len);
block = pool.realloc(block, sclass, sclass - 1, len);
self.index = (block + 1) as u32;
}
// Finally adjust the length.
pool.data[block] = T::new(len - 1);
}
/// Removes the element at `index` in constant time by switching it with the last element of
/// the list.
pub fn swap_remove(&mut self, index: usize, pool: &mut ListPool<T>) {
let len = self.len(pool);
debug_assert!(index < len);
if index == len - 1 {
self.remove(index, pool);
} else {
{
let seq = self.as_mut_slice(pool);
seq.swap(index, len - 1);
}
self.remove(len - 1, pool);
}
}
/// Grow the list by inserting `count` elements at `index`.
///
/// The new elements are not initialized, they will contain whatever happened to be in memory.
/// Since the memory comes from the pool, this will be either zero entity references or
/// whatever where in a previously deallocated list.
pub fn grow_at(&mut self, index: usize, count: usize, pool: &mut ListPool<T>) {
let data = self.grow(count, pool);
// Copy elements after `index` up.
for i in (index + count..data.len()).rev() {
data[i] = data[i - count];
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use super::{sclass_for_length, sclass_size};
use EntityRef;
/// An opaque reference to an instruction in a function.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Inst(u32);
entity_impl!(Inst, "inst");
#[test]
fn size_classes() {
assert_eq!(sclass_size(0), 4);
assert_eq!(sclass_for_length(0), 0);
assert_eq!(sclass_for_length(1), 0);
assert_eq!(sclass_for_length(2), 0);
assert_eq!(sclass_for_length(3), 0);
assert_eq!(sclass_for_length(4), 1);
assert_eq!(sclass_for_length(7), 1);
assert_eq!(sclass_for_length(8), 2);
assert_eq!(sclass_size(1), 8);
for l in 0..300 {
assert!(sclass_size(sclass_for_length(l)) >= l + 1);
}
}
#[test]
fn block_allocator() {
let mut pool = ListPool::<Inst>::new();
let b1 = pool.alloc(0);
let b2 = pool.alloc(1);
let b3 = pool.alloc(0);
assert_ne!(b1, b2);
assert_ne!(b1, b3);
assert_ne!(b2, b3);
pool.free(b2, 1);
let b2a = pool.alloc(1);
let b2b = pool.alloc(1);
assert_ne!(b2a, b2b);
// One of these should reuse the freed block.
assert!(b2a == b2 || b2b == b2);
// Check the free lists for a size class smaller than the largest seen so far.
pool.free(b1, 0);
pool.free(b3, 0);
let b1a = pool.alloc(0);
let b3a = pool.alloc(0);
assert_ne!(b1a, b3a);
assert!(b1a == b1 || b1a == b3);
assert!(b3a == b1 || b3a == b3);
}
#[test]
fn empty_list() {
let pool = &mut ListPool::<Inst>::new();
let mut list = EntityList::<Inst>::default();
{
let ilist = &list;
assert!(ilist.is_empty());
assert_eq!(ilist.len(pool), 0);
assert_eq!(ilist.as_slice(pool), &[]);
assert_eq!(ilist.get(0, pool), None);
assert_eq!(ilist.get(100, pool), None);
}
assert_eq!(list.as_mut_slice(pool), &[]);
assert_eq!(list.get_mut(0, pool), None);
assert_eq!(list.get_mut(100, pool), None);
list.clear(pool);
assert!(list.is_empty());
assert_eq!(list.len(pool), 0);
assert_eq!(list.as_slice(pool), &[]);
assert_eq!(list.first(pool), None);
}
#[test]
fn push() {
let pool = &mut ListPool::<Inst>::new();
let mut list = EntityList::<Inst>::default();
let i1 = Inst::new(1);
let i2 = Inst::new(2);
let i3 = Inst::new(3);
let i4 = Inst::new(4);
assert_eq!(list.push(i1, pool), 0);
assert_eq!(list.len(pool), 1);
assert!(!list.is_empty());
assert_eq!(list.as_slice(pool), &[i1]);
assert_eq!(list.first(pool), Some(i1));
assert_eq!(list.get(0, pool), Some(i1));
assert_eq!(list.get(1, pool), None);
assert_eq!(list.push(i2, pool), 1);
assert_eq!(list.len(pool), 2);
assert!(!list.is_empty());
assert_eq!(list.as_slice(pool), &[i1, i2]);
assert_eq!(list.first(pool), Some(i1));
assert_eq!(list.get(0, pool), Some(i1));
assert_eq!(list.get(1, pool), Some(i2));
assert_eq!(list.get(2, pool), None);
assert_eq!(list.push(i3, pool), 2);
assert_eq!(list.len(pool), 3);
assert!(!list.is_empty());
assert_eq!(list.as_slice(pool), &[i1, i2, i3]);
assert_eq!(list.first(pool), Some(i1));
assert_eq!(list.get(0, pool), Some(i1));
assert_eq!(list.get(1, pool), Some(i2));
assert_eq!(list.get(2, pool), Some(i3));
assert_eq!(list.get(3, pool), None);
// This triggers a reallocation.
assert_eq!(list.push(i4, pool), 3);
assert_eq!(list.len(pool), 4);
assert!(!list.is_empty());
assert_eq!(list.as_slice(pool), &[i1, i2, i3, i4]);
assert_eq!(list.first(pool), Some(i1));
assert_eq!(list.get(0, pool), Some(i1));
assert_eq!(list.get(1, pool), Some(i2));
assert_eq!(list.get(2, pool), Some(i3));
assert_eq!(list.get(3, pool), Some(i4));
assert_eq!(list.get(4, pool), None);
list.extend([i1, i1, i2, i2, i3, i3, i4, i4].iter().cloned(), pool);
assert_eq!(list.len(pool), 12);
assert_eq!(
list.as_slice(pool),
&[i1, i2, i3, i4, i1, i1, i2, i2, i3, i3, i4, i4]
);
}
#[test]
fn insert_remove() {
let pool = &mut ListPool::<Inst>::new();
let mut list = EntityList::<Inst>::default();
let i1 = Inst::new(1);
let i2 = Inst::new(2);
let i3 = Inst::new(3);
let i4 = Inst::new(4);
list.insert(0, i4, pool);
assert_eq!(list.as_slice(pool), &[i4]);
list.insert(0, i3, pool);
assert_eq!(list.as_slice(pool), &[i3, i4]);
list.insert(2, i2, pool);
assert_eq!(list.as_slice(pool), &[i3, i4, i2]);
list.insert(2, i1, pool);
assert_eq!(list.as_slice(pool), &[i3, i4, i1, i2]);
list.remove(3, pool);
assert_eq!(list.as_slice(pool), &[i3, i4, i1]);
list.remove(2, pool);
assert_eq!(list.as_slice(pool), &[i3, i4]);
list.remove(0, pool);
assert_eq!(list.as_slice(pool), &[i4]);
list.remove(0, pool);
assert_eq!(list.as_slice(pool), &[]);
assert!(list.is_empty());
}
#[test]
fn growing() {
let pool = &mut ListPool::<Inst>::new();
let mut list = EntityList::<Inst>::default();
let i1 = Inst::new(1);
let i2 = Inst::new(2);
let i3 = Inst::new(3);
let i4 = Inst::new(4);
// This is not supposed to change the list.
list.grow_at(0, 0, pool);
assert_eq!(list.len(pool), 0);
assert!(list.is_empty());
list.grow_at(0, 2, pool);
assert_eq!(list.len(pool), 2);
list.as_mut_slice(pool).copy_from_slice(&[i2, i3]);
list.grow_at(1, 0, pool);
assert_eq!(list.as_slice(pool), &[i2, i3]);
list.grow_at(1, 1, pool);
list.as_mut_slice(pool)[1] = i1;
assert_eq!(list.as_slice(pool), &[i2, i1, i3]);
// Append nothing at the end.
list.grow_at(3, 0, pool);
assert_eq!(list.as_slice(pool), &[i2, i1, i3]);
// Append something at the end.
list.grow_at(3, 1, pool);
list.as_mut_slice(pool)[3] = i4;
assert_eq!(list.as_slice(pool), &[i2, i1, i3, i4]);
}
}

176
lib/entity/src/map.rs Normal file
View File

@@ -0,0 +1,176 @@
//! Densely numbered entity references as mapping keys.
use {EntityRef, Iter, IterMut, Keys};
use std::marker::PhantomData;
use std::ops::{Index, IndexMut};
use std::slice;
use std::vec::Vec;
/// A mapping `K -> V` for densely indexed entity references.
///
/// The `EntityMap` data structure uses the dense index space to implement a map with a vector.
/// Unlike `PrimaryMap`, an `EntityMap` can't be used to allocate entity references. It is used to
/// associate secondary information with entities.
///
/// The map does not track if an entry for a key has been inserted or not. Instead it behaves as if
/// all keys have a default entry from the beginning.
#[derive(Debug, Clone)]
pub struct EntityMap<K, V>
where
K: EntityRef,
V: Clone,
{
elems: Vec<V>,
default: V,
unused: PhantomData<K>,
}
/// Shared `EntityMap` implementation for all value types.
impl<K, V> EntityMap<K, V>
where
K: EntityRef,
V: Clone,
{
/// Create a new empty map.
pub fn new() -> Self
where
V: Default,
{
Self {
elems: Vec::new(),
default: Default::default(),
unused: PhantomData,
}
}
/// Create a new empty map with a specified default value.
///
/// This constructor does not require V to implement Default.
pub fn with_default(default: V) -> Self {
Self {
elems: Vec::new(),
default: default,
unused: PhantomData,
}
}
/// Get the element at `k` if it exists.
pub fn get(&self, k: K) -> Option<&V> {
self.elems.get(k.index())
}
/// Is this map completely empty?
pub fn is_empty(&self) -> bool {
self.elems.is_empty()
}
/// Remove all entries from this map.
pub fn clear(&mut self) {
self.elems.clear()
}
/// Iterate over all the keys and values in this map.
pub fn iter(&self) -> Iter<K, V> {
Iter::new(K::new(0), self.elems.iter())
}
/// Iterate over all the keys and values in this map, mutable edition.
pub fn iter_mut(&mut self) -> IterMut<K, V> {
IterMut::new(K::new(0), self.elems.iter_mut())
}
/// Iterate over all the keys in this map.
pub fn keys(&self) -> Keys<K> {
Keys::new(self.elems.len())
}
/// Iterate over all the keys in this map.
pub fn values(&self) -> slice::Iter<V> {
self.elems.iter()
}
/// Iterate over all the keys in this map, mutable edition.
pub fn values_mut(&mut self) -> slice::IterMut<V> {
self.elems.iter_mut()
}
/// Resize the map to have `n` entries by adding default entries as needed.
pub fn resize(&mut self, n: usize) {
self.elems.resize(n, self.default.clone());
}
}
/// Immutable indexing into an `EntityMap`.
///
/// All keys are permitted. Untouched entries have the default value.
impl<K, V> Index<K> for EntityMap<K, V>
where
K: EntityRef,
V: Clone,
{
type Output = V;
fn index(&self, k: K) -> &V {
self.get(k).unwrap_or(&self.default)
}
}
/// Mutable indexing into an `EntityMap`.
///
/// The map grows as needed to accommodate new keys.
impl<K, V> IndexMut<K> for EntityMap<K, V>
where
K: EntityRef,
V: Clone,
{
fn index_mut(&mut self, k: K) -> &mut V {
let i = k.index();
if i >= self.elems.len() {
self.resize(i + 1);
}
&mut self.elems[i]
}
}
#[cfg(test)]
mod tests {
use super::*;
// `EntityRef` impl for testing.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct E(u32);
impl EntityRef for E {
fn new(i: usize) -> Self {
E(i as u32)
}
fn index(self) -> usize {
self.0 as usize
}
}
#[test]
fn basic() {
let r0 = E(0);
let r1 = E(1);
let r2 = E(2);
let mut m = EntityMap::new();
let v: Vec<E> = m.keys().collect();
assert_eq!(v, []);
m[r2] = 3;
m[r1] = 5;
assert_eq!(m[r1], 5);
assert_eq!(m[r2], 3);
let v: Vec<E> = m.keys().collect();
assert_eq!(v, [r0, r1, r2]);
let shared = &m;
assert_eq!(shared[r0], 0);
assert_eq!(shared[r1], 5);
assert_eq!(shared[r2], 3);
}
}

View File

@@ -0,0 +1,153 @@
//! Compact representation of `Option<T>` for types with a reserved value.
//!
//! Small Cretonne types like the 32-bit entity references are often used in tables and linked
//! lists where an `Option<T>` is needed. Unfortunately, that would double the size of the tables
//! because `Option<T>` is twice as big as `T`.
//!
//! This module provides a `PackedOption<T>` for types that have a reserved value that can be used
//! to represent `None`.
use std::fmt;
use std::mem;
/// Types that have a reserved value which can't be created any other way.
pub trait ReservedValue: Eq {
/// Create an instance of the reserved value.
fn reserved_value() -> Self;
}
/// Packed representation of `Option<T>`.
#[derive(Clone, Copy, PartialEq, PartialOrd, Eq, Ord, Hash)]
pub struct PackedOption<T: ReservedValue>(T);
impl<T: ReservedValue> PackedOption<T> {
/// Returns `true` if the packed option is a `None` value.
pub fn is_none(&self) -> bool {
self.0 == T::reserved_value()
}
/// Returns `true` if the packed option is a `Some` value.
pub fn is_some(&self) -> bool {
!self.is_none()
}
/// Expand the packed option into a normal `Option`.
pub fn expand(self) -> Option<T> {
if self.is_none() { None } else { Some(self.0) }
}
/// Maps a `PackedOption<T>` to `Option<U>` by applying a function to a contained value.
pub fn map<U, F>(self, f: F) -> Option<U>
where
F: FnOnce(T) -> U,
{
self.expand().map(f)
}
/// Unwrap a packed `Some` value or panic.
pub fn unwrap(self) -> T {
self.expand().unwrap()
}
/// Unwrap a packed `Some` value or panic.
pub fn expect(self, msg: &str) -> T {
self.expand().expect(msg)
}
/// Takes the value out of the packed option, leaving a `None` in its place.
pub fn take(&mut self) -> Option<T> {
mem::replace(self, None.into()).expand()
}
}
impl<T: ReservedValue> Default for PackedOption<T> {
/// Create a default packed option representing `None`.
fn default() -> PackedOption<T> {
PackedOption(T::reserved_value())
}
}
impl<T: ReservedValue> From<T> for PackedOption<T> {
/// Convert `t` into a packed `Some(x)`.
fn from(t: T) -> PackedOption<T> {
debug_assert!(
t != T::reserved_value(),
"Can't make a PackedOption from the reserved value."
);
PackedOption(t)
}
}
impl<T: ReservedValue> From<Option<T>> for PackedOption<T> {
/// Convert an option into its packed equivalent.
fn from(opt: Option<T>) -> PackedOption<T> {
match opt {
None => Self::default(),
Some(t) => t.into(),
}
}
}
impl<T: ReservedValue> Into<Option<T>> for PackedOption<T> {
fn into(self) -> Option<T> {
self.expand()
}
}
impl<T> fmt::Debug for PackedOption<T>
where
T: ReservedValue + fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.is_none() {
write!(f, "None")
} else {
write!(f, "Some({:?})", self.0)
}
}
}
#[cfg(test)]
mod tests {
use super::*;
// Dummy entity class, with no Copy or Clone.
#[derive(Debug, PartialEq, Eq)]
struct NoC(u32);
impl ReservedValue for NoC {
fn reserved_value() -> Self {
NoC(13)
}
}
#[test]
fn moves() {
let x = NoC(3);
let somex: PackedOption<NoC> = x.into();
assert!(!somex.is_none());
assert_eq!(somex.expand(), Some(NoC(3)));
let none: PackedOption<NoC> = None.into();
assert!(none.is_none());
assert_eq!(none.expand(), None);
}
// Dummy entity class, with Copy.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct Ent(u32);
impl ReservedValue for Ent {
fn reserved_value() -> Self {
Ent(13)
}
}
#[test]
fn copies() {
let x = Ent(2);
let some: PackedOption<Ent> = x.into();
assert_eq!(some.expand(), x.into());
assert_eq!(some, x.into());
}
}

233
lib/entity/src/primary.rs Normal file
View File

@@ -0,0 +1,233 @@
//! Densely numbered entity references as mapping keys.
use {EntityRef, Iter, IterMut, Keys};
use std::marker::PhantomData;
use std::ops::{Index, IndexMut};
use std::slice;
use std::vec::Vec;
/// A primary mapping `K -> V` allocating dense entity references.
///
/// The `PrimaryMap` data structure uses the dense index space to implement a map with a vector.
///
/// A primary map contains the main definition of an entity, and it can be used to allocate new
/// entity references with the `push` method.
///
/// There should only be a single `PrimaryMap` instance for a given `EntityRef` type, otherwise
/// conflicting references will be created. Using unknown keys for indexing will cause a panic.
#[derive(Debug, Clone)]
pub struct PrimaryMap<K, V>
where
K: EntityRef,
{
elems: Vec<V>,
unused: PhantomData<K>,
}
impl<K, V> PrimaryMap<K, V>
where
K: EntityRef,
{
/// Create a new empty map.
pub fn new() -> Self {
Self {
elems: Vec::new(),
unused: PhantomData,
}
}
/// Check if `k` is a valid key in the map.
pub fn is_valid(&self, k: K) -> bool {
k.index() < self.elems.len()
}
/// Get the element at `k` if it exists.
pub fn get(&self, k: K) -> Option<&V> {
self.elems.get(k.index())
}
/// Is this map completely empty?
pub fn is_empty(&self) -> bool {
self.elems.is_empty()
}
/// Get the total number of entity references created.
pub fn len(&self) -> usize {
self.elems.len()
}
/// Iterate over all the keys in this map.
pub fn keys(&self) -> Keys<K> {
Keys::new(self.elems.len())
}
/// Iterate over all the values in this map.
pub fn values(&self) -> slice::Iter<V> {
self.elems.iter()
}
/// Iterate over all the values in this map, mutable edition.
pub fn values_mut(&mut self) -> slice::IterMut<V> {
self.elems.iter_mut()
}
/// Iterate over all the keys and values in this map.
pub fn iter(&self) -> Iter<K, V> {
Iter::new(K::new(0), self.elems.iter())
}
/// Iterate over all the keys and values in this map, mutable edition.
pub fn iter_mut(&mut self) -> IterMut<K, V> {
IterMut::new(K::new(0), self.elems.iter_mut())
}
/// Remove all entries from this map.
pub fn clear(&mut self) {
self.elems.clear()
}
/// Get the key that will be assigned to the next pushed value.
pub fn next_key(&self) -> K {
K::new(self.elems.len())
}
/// Append `v` to the mapping, assigning a new key which is returned.
pub fn push(&mut self, v: V) -> K {
let k = self.next_key();
self.elems.push(v);
k
}
}
/// Immutable indexing into an `PrimaryMap`.
/// The indexed value must be in the map.
impl<K, V> Index<K> for PrimaryMap<K, V>
where
K: EntityRef,
{
type Output = V;
fn index(&self, k: K) -> &V {
&self.elems[k.index()]
}
}
/// Mutable indexing into an `PrimaryMap`.
impl<K, V> IndexMut<K> for PrimaryMap<K, V>
where
K: EntityRef,
{
fn index_mut(&mut self, k: K) -> &mut V {
&mut self.elems[k.index()]
}
}
#[cfg(test)]
mod tests {
use super::*;
// `EntityRef` impl for testing.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct E(u32);
impl EntityRef for E {
fn new(i: usize) -> Self {
E(i as u32)
}
fn index(self) -> usize {
self.0 as usize
}
}
#[test]
fn basic() {
let r0 = E(0);
let r1 = E(1);
let m = PrimaryMap::<E, isize>::new();
let v: Vec<E> = m.keys().collect();
assert_eq!(v, []);
assert!(!m.is_valid(r0));
assert!(!m.is_valid(r1));
}
#[test]
fn push() {
let mut m = PrimaryMap::new();
let k0: E = m.push(12);
let k1 = m.push(33);
assert_eq!(m[k0], 12);
assert_eq!(m[k1], 33);
let v: Vec<E> = m.keys().collect();
assert_eq!(v, [k0, k1]);
}
#[test]
fn iter() {
let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
m.push(12);
m.push(33);
let mut i = 0;
for (key, value) in m.iter() {
assert_eq!(key.index(), i);
match i {
0 => assert_eq!(*value, 12),
1 => assert_eq!(*value, 33),
_ => panic!(),
}
i += 1;
}
i = 0;
for (key_mut, value_mut) in m.iter_mut() {
assert_eq!(key_mut.index(), i);
match i {
0 => assert_eq!(*value_mut, 12),
1 => assert_eq!(*value_mut, 33),
_ => panic!(),
}
i += 1;
}
}
#[test]
fn keys() {
let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
m.push(12);
m.push(33);
let mut i = 0;
for key in m.keys() {
assert_eq!(key.index(), i);
i += 1;
}
}
#[test]
fn values() {
let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
m.push(12);
m.push(33);
let mut i = 0;
for value in m.values() {
match i {
0 => assert_eq!(*value, 12),
1 => assert_eq!(*value, 33),
_ => panic!(),
}
i += 1;
}
i = 0;
for value_mut in m.values_mut() {
match i {
0 => assert_eq!(*value_mut, 12),
1 => assert_eq!(*value_mut, 33),
_ => panic!(),
}
i += 1;
}
}
}

143
lib/entity/src/set.rs Normal file
View File

@@ -0,0 +1,143 @@
//! Densely numbered entity references as set keys.
use {EntityRef, Keys};
use std::marker::PhantomData;
use std::vec::Vec;
/// A set of `K` for densely indexed entity references.
///
/// The `EntitySet` data structure uses the dense index space to implement a set with a bitvector.
/// Like `EntityMap`, an `EntitySet` is used to associate secondary information with entities.
#[derive(Debug, Clone)]
pub struct EntitySet<K>
where
K: EntityRef,
{
elems: Vec<u8>,
len: usize,
unused: PhantomData<K>,
}
/// Shared `EntitySet` implementation for all value types.
impl<K> EntitySet<K>
where
K: EntityRef,
{
/// Create a new empty set.
pub fn new() -> Self {
Self {
elems: Vec::new(),
len: 0,
unused: PhantomData,
}
}
/// Get the element at `k` if it exists.
pub fn contains(&self, k: K) -> bool {
let index = k.index();
if index < self.len {
(self.elems[index / 8] & (1 << (index % 8))) != 0
} else {
false
}
}
/// Is this set completely empty?
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// Remove all entries from this set.
pub fn clear(&mut self) {
self.len = 0;
self.elems.clear()
}
/// Iterate over all the keys in this set.
pub fn keys(&self) -> Keys<K> {
Keys::new(self.len)
}
/// Resize the set to have `n` entries by adding default entries as needed.
pub fn resize(&mut self, n: usize) {
self.elems.resize((n + 7) / 8, 0);
self.len = n
}
/// Insert the element at `k`.
pub fn insert(&mut self, k: K) -> bool {
let index = k.index();
if index >= self.len {
self.resize(index + 1)
}
let result = !self.contains(k);
self.elems[index / 8] |= 1 << (index % 8);
result
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::u32;
// `EntityRef` impl for testing.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct E(u32);
impl EntityRef for E {
fn new(i: usize) -> Self {
E(i as u32)
}
fn index(self) -> usize {
self.0 as usize
}
}
#[test]
fn basic() {
let r0 = E(0);
let r1 = E(1);
let r2 = E(2);
let mut m = EntitySet::new();
let v: Vec<E> = m.keys().collect();
assert_eq!(v, []);
assert!(m.is_empty());
m.insert(r2);
m.insert(r1);
assert!(!m.contains(r0));
assert!(m.contains(r1));
assert!(m.contains(r2));
assert!(!m.contains(E(3)));
assert!(!m.is_empty());
let v: Vec<E> = m.keys().collect();
assert_eq!(v, [r0, r1, r2]);
m.resize(20);
assert!(!m.contains(E(3)));
assert!(!m.contains(E(4)));
assert!(!m.contains(E(8)));
assert!(!m.contains(E(15)));
assert!(!m.contains(E(19)));
m.insert(E(8));
m.insert(E(15));
assert!(!m.contains(E(3)));
assert!(!m.contains(E(4)));
assert!(m.contains(E(8)));
assert!(!m.contains(E(9)));
assert!(!m.contains(E(14)));
assert!(m.contains(E(15)));
assert!(!m.contains(E(16)));
assert!(!m.contains(E(19)));
assert!(!m.contains(E(20)));
assert!(!m.contains(E(u32::MAX)));
m.clear();
assert!(m.is_empty());
}
}

362
lib/entity/src/sparse.rs Normal file
View File

@@ -0,0 +1,362 @@
//! Sparse mapping of entity references to larger value types.
//!
//! This module provides a `SparseMap` data structure which implements a sparse mapping from an
//! `EntityRef` key to a value type that may be on the larger side. This implementation is based on
//! the paper:
//!
//! > Briggs, Torczon, *An efficient representation for sparse sets*,
//! ACM Letters on Programming Languages and Systems, Volume 2, Issue 1-4, March-Dec. 1993.
use {EntityMap, EntityRef};
use std::mem;
use std::slice;
use std::u32;
use std::vec::Vec;
/// Trait for extracting keys from values stored in a `SparseMap`.
///
/// All values stored in a `SparseMap` must keep track of their own key in the map and implement
/// this trait to provide access to the key.
pub trait SparseMapValue<K> {
/// Get the key of this sparse map value. This key is not allowed to change while the value
/// is a member of the map.
fn key(&self) -> K;
}
/// A sparse mapping of entity references.
///
/// A `SparseMap<K, V>` map provides:
///
/// - Memory usage equivalent to `EntityMap<K, u32>` + `Vec<V>`, so much smaller than
/// `EntityMap<K, V>` for sparse mappings of larger `V` types.
/// - Constant time lookup, slightly slower than `EntityMap`.
/// - A very fast, constant time `clear()` operation.
/// - Fast insert and erase operations.
/// - Stable iteration that is as fast as a `Vec<V>`.
///
/// # Compared to `EntityMap`
///
/// When should we use a `SparseMap` instead of a secondary `EntityMap`? First of all, `SparseMap`
/// does not provide the functionality of a `PrimaryMap` which can allocate and assign entity
/// references to objects as they are pushed onto the map. It is only the secondary entity maps
/// that can be replaced with a `SparseMap`.
///
/// - A secondary entity map assigns a default mapping to all keys. It doesn't distinguish between
/// an unmapped key and one that maps to the default value. `SparseMap` does not require
/// `Default` values, and it tracks accurately if a key has been mapped or not.
/// - Iterating over the contents of an `EntityMap` is linear in the size of the *key space*, while
/// iterating over a `SparseMap` is linear in the number of elements in the mapping. This is an
/// advantage precisely when the mapping is sparse.
/// - `SparseMap::clear()` is constant time and super-fast. `EntityMap::clear()` is linear in the
/// size of the key space. (Or, rather the required `resize()` call following the `clear()` is).
/// - `SparseMap` requires the values to implement `SparseMapValue<K>` which means that they must
/// contain their own key.
pub struct SparseMap<K, V>
where
K: EntityRef,
V: SparseMapValue<K>,
{
sparse: EntityMap<K, u32>,
dense: Vec<V>,
}
impl<K, V> SparseMap<K, V>
where
K: EntityRef,
V: SparseMapValue<K>,
{
/// Create a new empty mapping.
pub fn new() -> Self {
Self {
sparse: EntityMap::new(),
dense: Vec::new(),
}
}
/// Returns the number of elements in the map.
pub fn len(&self) -> usize {
self.dense.len()
}
/// Returns true is the map contains no elements.
pub fn is_empty(&self) -> bool {
self.dense.is_empty()
}
/// Remove all elements from the mapping.
pub fn clear(&mut self) {
self.dense.clear();
}
/// Returns a reference to the value corresponding to the key.
pub fn get(&self, key: K) -> Option<&V> {
if let Some(idx) = self.sparse.get(key).cloned() {
if let Some(entry) = self.dense.get(idx as usize) {
if entry.key() == key {
return Some(entry);
}
}
}
None
}
/// Returns a mutable reference to the value corresponding to the key.
///
/// Note that the returned value must not be mutated in a way that would change its key. This
/// would invalidate the sparse set data structure.
pub fn get_mut(&mut self, key: K) -> Option<&mut V> {
if let Some(idx) = self.sparse.get(key).cloned() {
if let Some(entry) = self.dense.get_mut(idx as usize) {
if entry.key() == key {
return Some(entry);
}
}
}
None
}
/// Return the index into `dense` of the value corresponding to `key`.
fn index(&self, key: K) -> Option<usize> {
if let Some(idx) = self.sparse.get(key).cloned() {
let idx = idx as usize;
if let Some(entry) = self.dense.get(idx) {
if entry.key() == key {
return Some(idx);
}
}
}
None
}
/// Return `true` if the map contains a value corresponding to `key`.
pub fn contains_key(&self, key: K) -> bool {
self.get(key).is_some()
}
/// Insert a value into the map.
///
/// If the map did not have this key present, `None` is returned.
///
/// If the map did have this key present, the value is updated, and the old value is returned.
///
/// It is not necessary to provide a key since the value knows its own key already.
pub fn insert(&mut self, value: V) -> Option<V> {
let key = value.key();
// Replace the existing entry for `key` if there is one.
if let Some(entry) = self.get_mut(key) {
return Some(mem::replace(entry, value));
}
// There was no previous entry for `key`. Add it to the end of `dense`.
let idx = self.dense.len();
debug_assert!(idx <= u32::MAX as usize, "SparseMap overflow");
self.dense.push(value);
self.sparse[key] = idx as u32;
None
}
/// Remove a value from the map and return it.
pub fn remove(&mut self, key: K) -> Option<V> {
if let Some(idx) = self.index(key) {
let back = self.dense.pop().unwrap();
// Are we popping the back of `dense`?
if idx == self.dense.len() {
return Some(back);
}
// We're removing an element from the middle of `dense`.
// Replace the element at `idx` with the back of `dense`.
// Repair `sparse` first.
self.sparse[back.key()] = idx as u32;
return Some(mem::replace(&mut self.dense[idx], back));
}
// Nothing to remove.
None
}
/// Remove the last value from the map.
pub fn pop(&mut self) -> Option<V> {
self.dense.pop()
}
/// Get an iterator over the values in the map.
///
/// The iteration order is entirely determined by the preceding sequence of `insert` and
/// `remove` operations. In particular, if no elements were removed, this is the insertion
/// order.
pub fn values(&self) -> slice::Iter<V> {
self.dense.iter()
}
/// Get the values as a slice.
pub fn as_slice(&self) -> &[V] {
self.dense.as_slice()
}
}
/// Iterating over the elements of a set.
impl<'a, K, V> IntoIterator for &'a SparseMap<K, V>
where
K: EntityRef,
V: SparseMapValue<K>,
{
type Item = &'a V;
type IntoIter = slice::Iter<'a, V>;
fn into_iter(self) -> Self::IntoIter {
self.values()
}
}
/// Any `EntityRef` can be used as a sparse map value representing itself.
impl<T> SparseMapValue<T> for T
where
T: EntityRef,
{
fn key(&self) -> Self {
*self
}
}
/// A sparse set of entity references.
///
/// Any type that implements `EntityRef` can be used as a sparse set value too.
pub type SparseSet<T> = SparseMap<T, T>;
#[cfg(test)]
mod tests {
use super::*;
use EntityRef;
/// An opaque reference to an instruction in a function.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Inst(u32);
entity_impl!(Inst, "inst");
// Mock key-value object for testing.
#[derive(PartialEq, Eq, Debug)]
struct Obj(Inst, &'static str);
impl SparseMapValue<Inst> for Obj {
fn key(&self) -> Inst {
self.0
}
}
#[test]
fn empty_immutable_map() {
let i1 = Inst::new(1);
let map: SparseMap<Inst, Obj> = SparseMap::new();
assert!(map.is_empty());
assert_eq!(map.len(), 0);
assert_eq!(map.get(i1), None);
assert_eq!(map.values().count(), 0);
}
#[test]
fn single_entry() {
let i0 = Inst::new(0);
let i1 = Inst::new(1);
let i2 = Inst::new(2);
let mut map = SparseMap::new();
assert!(map.is_empty());
assert_eq!(map.len(), 0);
assert_eq!(map.get(i1), None);
assert_eq!(map.get_mut(i1), None);
assert_eq!(map.remove(i1), None);
assert_eq!(map.insert(Obj(i1, "hi")), None);
assert!(!map.is_empty());
assert_eq!(map.len(), 1);
assert_eq!(map.get(i0), None);
assert_eq!(map.get(i1), Some(&Obj(i1, "hi")));
assert_eq!(map.get(i2), None);
assert_eq!(map.get_mut(i0), None);
assert_eq!(map.get_mut(i1), Some(&mut Obj(i1, "hi")));
assert_eq!(map.get_mut(i2), None);
assert_eq!(map.remove(i0), None);
assert_eq!(map.remove(i2), None);
assert_eq!(map.remove(i1), Some(Obj(i1, "hi")));
assert_eq!(map.len(), 0);
assert_eq!(map.get(i1), None);
assert_eq!(map.get_mut(i1), None);
assert_eq!(map.remove(i0), None);
assert_eq!(map.remove(i1), None);
assert_eq!(map.remove(i2), None);
}
#[test]
fn multiple_entries() {
let i0 = Inst::new(0);
let i1 = Inst::new(1);
let i2 = Inst::new(2);
let i3 = Inst::new(3);
let mut map = SparseMap::new();
assert_eq!(map.insert(Obj(i2, "foo")), None);
assert_eq!(map.insert(Obj(i1, "bar")), None);
assert_eq!(map.insert(Obj(i0, "baz")), None);
// Iteration order = insertion order when nothing has been removed yet.
assert_eq!(
map.values().map(|obj| obj.1).collect::<Vec<_>>(),
["foo", "bar", "baz"]
);
assert_eq!(map.len(), 3);
assert_eq!(map.get(i0), Some(&Obj(i0, "baz")));
assert_eq!(map.get(i1), Some(&Obj(i1, "bar")));
assert_eq!(map.get(i2), Some(&Obj(i2, "foo")));
assert_eq!(map.get(i3), None);
// Remove front object, causing back to be swapped down.
assert_eq!(map.remove(i1), Some(Obj(i1, "bar")));
assert_eq!(map.len(), 2);
assert_eq!(map.get(i0), Some(&Obj(i0, "baz")));
assert_eq!(map.get(i1), None);
assert_eq!(map.get(i2), Some(&Obj(i2, "foo")));
assert_eq!(map.get(i3), None);
// Reinsert something at a previously used key.
assert_eq!(map.insert(Obj(i1, "barbar")), None);
assert_eq!(map.len(), 3);
assert_eq!(map.get(i0), Some(&Obj(i0, "baz")));
assert_eq!(map.get(i1), Some(&Obj(i1, "barbar")));
assert_eq!(map.get(i2), Some(&Obj(i2, "foo")));
assert_eq!(map.get(i3), None);
// Replace an entry.
assert_eq!(map.insert(Obj(i0, "bazbaz")), Some(Obj(i0, "baz")));
assert_eq!(map.len(), 3);
assert_eq!(map.get(i0), Some(&Obj(i0, "bazbaz")));
assert_eq!(map.get(i1), Some(&Obj(i1, "barbar")));
assert_eq!(map.get(i2), Some(&Obj(i2, "foo")));
assert_eq!(map.get(i3), None);
// Check the reference `IntoIter` impl.
let mut v = Vec::new();
for i in &map {
v.push(i.1);
}
assert_eq!(v.len(), map.len());
}
#[test]
fn entity_set() {
let i0 = Inst::new(0);
let i1 = Inst::new(1);
let mut set = SparseSet::new();
assert_eq!(set.insert(i0), None);
assert_eq!(set.insert(i0), Some(i0));
assert_eq!(set.insert(i1), None);
assert_eq!(set.get(i0), Some(&i0));
assert_eq!(set.get(i1), Some(&i1));
}
}